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Abstract

The diversity of processed transcripts in eukaryotic genomes poses a challenge for the classification of their biological
functions. Sparse sequence conservation in non-coding sequences and the unreliable nature of RNA structure
predictions further exacerbate this conundrum. Here, we describe a computational method, DotAligner, for the
unsupervised discovery and classification of homologous RNA structure motifs from a set of sequences of interest. Our
approach outperforms comparable algorithms at clustering known RNA structure families, both in speed and
accuracy. It identifies clusters of known and novel structure motifs from ENCODE immunoprecipitation data for 44
RNA-binding proteins.
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Background
As genomic technologies progress, an ever-increasing
number of non-protein-coding RNAs (ncRNAs) are being
discovered. Long non-coding RNAs (lncRNAs) are of par-
ticular interest for functional genome annotation given
their abundance throughout the genome. So far, few lncR-
NAs have been functionally characterised, and those that
have seem to be involved in regulation of gene expression
and epigenetic states [1, 2]. Understanding the molec-
ular mechanisms underlying the biological functions of
lncRNAs – and how they are disrupted in disease –
is required to improve the functional annotation of the
human genome.
Many ncRNAs lack sequence conservation, in contrast

to protein-coding genes. Most small ncRNAs have well
characterised secondary and tertiary structures, as evi-
denced in Rfam, the largest collection of curated RNA
families (2588 families as of version 12.2 [3]). In con-
trast, determining the structural features of lncRNAs
is a complex problem given their size and, in general,
faster evolutionary turnover. These challenges have raised
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doubts concerning the prevalence of functional structural
motifs in lncRNAs [4, 5], despite evolutionary and bio-
chemical support for conserved base pairing interactions
[6–8]. Nonetheless, the higher-order structure of RNA
molecules is an essential feature of ncRNAs, which can
be used for their classification and the inference of their
biological function.
We, and others, hypothesise that lncRNAs act as scaf-

folds for the recruitment of proteins and assembly of
ribonucleoproteins (RNPs), mediated by the presence of
modular RNA structures, akin to the domain organisa-
tion of proteins [6, 9–14]. Protein-interacting regions of
lncRNAs are likely to contain a combination of sequence
and structure motifs that confer binding specificity, which
may be present inmultiple target transcripts. For example,
there is evidence that sequence and structure components
of transposable elements, which are frequent in lncRNAs
[15, 16], have been co-opted into mammalian gene reg-
ulatory networks [17, 18]. Identifying and annotating the
genomic occurrence of homologous RNA structuremotifs
from sets of biologically related sequences will improve
our understanding of the structure–function relationship
of lncRNAs and the molecular mechanisms underlying
their regulatory features. Resolving this challenge can
be beneficial for the analysis of high-throughput RNA
sequencing experiments that measure how RNAs interact
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with other molecules, such as cross-linked RNA immuno-
precipitation and RNAse footprinting methodologies.
The identification of RNAs with similar functions

involves comparing both their primary sequence and
higher-order structures simultaneously. However,
sequence-based methods to identify common structural
features perform poorly when sequence identity falls
below 60% [19]. Hence, methods are needed that find
structural similarity independent from sequence conser-
vation and freed from single RNA secondary structure
predictions. The Sankoff algorithm resolves the optimal
sequence-structure alignment of two RNAs [20], but
its computational complexity limits its practicality. Its
most comparable implementation, FoldAlign, employs
a minimum free energy-based strategy with pruning of
the associated dynamical programming matrix [21, 22].
Alternative strategies often employ pre-calculated
secondary structure probability distributions (thermo-
dynamically equilibrated canonical ensembles) for each
sequence [23]. These can substantially speed up the
calculation of structure-based alignments [24], of which
there are many variants. The programs PMcomp [24],
LocaRNA [25] and ProbAlign [26] use the pre-computed
base pair probability matrices of two sequences and
score the alignment based on the notion of a common
secondary structure. The sequence-structure alignment
problem is reduced to a two-dimensional problem in
RNApaln [27] and StrAL [28], which derive probabil-
ities for individual bases (such as the probability of
being unpaired) from all base pairing probabilities.
These methods all fail to consider explicitly suboptimal
structures in the alignment. The pairwise alignment
of entire base pairing probability matrices (RNA dot
plots) was first introduced by CARNA [29, 30], which
iteratively improves alignments using a constraint pro-
gramming technique implementing a branch and bound
scheme.
These pairwise RNA structure alignment algorithms

can be used to identify clusters of homologous RNA
structure motifs from a set of sequences of interest. Will
et al. first showed that a (dis)similarity matrix can be
constructed from all-vs-all pairwise RNA structure align-
ments with the pairwise alignment tool LocaRNA, iden-
tifying known and novel groups of homologous RNAs
using hierarchical clustering [25]. However, this strategy
involves applying a subjective threshold to the result-
ing dendrogram to extract structurally related sequences.
Alternative approaches to all-vs-all pairwise compar-
isons for RNA structure clustering include NoFold, which
clusters query sequences based on their relative simi-
larity to a panel of reference structure motif profiles
[31], and GraphClust, an alignment-free approach that
decomposes RNA structures into graph-encoded features
[32]. RNAscClust, an extension of GraphClust, utilises

the evolutionary signatures of RNA structures (when
available) as an additional classification feature [33].
Here, we describe a computational pipeline for the iden-

tification and clustering of homologous RNA structures
from a large set of query sequences. At its core lies DotAl-
igner, a heuristic pairwise sequence alignment algorithm
that considers the ensemble of base pair probabilities for
each queried sequence. We benchmark the performance
of DotAligner with other pairwise RNA structure align-
ment algorithms through several iterations of a stochas-
tic sampling strategy across all Rfam seed alignments,
highlighting the speed and accuracy of our method. We
combine DotAligner with density-based clustering for
the unsupervised identification of RNA structure motifs,
which can identify both known Rfam families and novel
RNA structure motifs from ENCODE enhanced cross-
linked immunoprecipitation (eCLIP) data. Finally, we
exemplify how clusters of homologous RNA structures
identified by our method can be used to search for homol-
ogous structures across reference genomes and transcrip-
tomes to generate a map of functionally related RNA
structure motifs.

Results
Ensemble-guided pairwise RNA structure alignment
We developed an algorithm that leverages the diversity of
suboptimal solutions from a partition function of RNA
alignments to identify an optimal sequence-structure
alignment of two RNAs. The algorithm, termed DotAl-
igner, overcomes the limitations of comparing unique
RNA secondary structures (such as minimum free energy
predictions) to yield a pairwise alignment that consid-
ers mutual base pair probabilities. A schematic of how
DotAligner functions is illustrated in Fig. 1.
DotAligner was developed with an emphasis on run-

time performance to facilitate all-vs-all pairwise compar-
isons of RNA structures on large data sets. Consequently,
it uses pre-calculated RNA dot plots to perform align-
ments. It also uses the observation that a significant subset
of stochastic sequence alignments between two RNAs
will overlap the correct structure-based alignment, even
though the optimal sequence alignment deviates signifi-
cantly from the structural alignment [34]. The algorithm
combines an alignment-envelope heuristic with a fold-
envelope heuristic, which impose constraints on subop-
timal sequence alignments and pre-calculated base pair
probabilities, respectively. The alignment procedure con-
sists of two steps, each considering base pair probabilities:
(1) generating a partition function of pairwise proba-
bilistic string alignments and (2) stochastic sampling of
string alignments and scoring of aligned dot plots. Exist-
ing building blocks are integrated to DotAligner in a novel
way. A StrAL-like score is applied during the dynamic pro-
gramming in step 1, then a CARNA-like score is used
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Fig. 1 Schematic of a pairwise alignment with DotAligner. A dynamic programming matrix is first filled in based on the similarity in sequence and
cumulative base-wise pairing probabilities of two RNA sequences (top left: colour intensity indicates cumulative similarity score). A partition
function over all pairwise alignments is calculated and interrogated for structural compatibility by stochastic backtracking (not illustrated). Two
ensembles over all secondary structures are considered for this purpose (bottom left and top right dot plots: blue lines indicate cumulative
base-wise pairing probabilities). The final scoring uses the base pair probabilities in the dot plots. This effectively warps the optimal sequence
alignment path (top left, black outline) towards one that includes structural features (top left, blue outline and fill). In the bottom right, the optimal
sequence alignment and associated consensus secondary structure is contrasted to that produced by DotAligner, exposing the common structural
features hidden in the suboptimal base pairing ensemble of both sequences

to score the aligned dot plots in step 2, and, lastly, the
partition function in step 1 and sampling in step 2 are
adapted from ProbA [34]. The detailed implementation
and mathematical description of DotAligner can be found
in Additional file 1.

Evaluation of pairwise alignment quality
We first tested DotAligner on BRAliBase 2.1 pairwise
RNA structure alignments, a reference data set specifi-
cally designed for algorithm benchmarking [19, 35] (see
‘Methods’). In this application, DotAligner seemingly
performs worse than three other state-of-the-art algo-
rithms, namely CARNA [30], FoldAlign [22, 36] and
LocaRNA [25], as well as the Needleman–Wunsch pair-
wise sequence alignment algorithm, which ignores RNA
structure content (Fig. 2). When comparing how well

the algorithms perform as a function of the pairwise
sequence identity of BRAliBase 2.1 reference alignments,
DotAligner produces alignments of lesser quality than
comparable RNA structure alignment tools, particularly
below 60% sequence identity, albeit with better accu-
racy than sequence-only alignments. Upon closer inspec-
tion, DotAligner outperforms the other tools around the
65–80% sequence identity range. As mentioned in the
next section, this roughly corresponds to the aver-
age pairwise intra-family sequence identity of Rfam
clans.
Interestingly, many of the pairwise structure alignments

produced structural conservation index (SCI) scores
above those from the BRAliBase 2.1 reference alignments
(Fig. 2). The SCI represents the alignment consensus
energy normalised by the average energy of the single
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Fig. 2 Comparison of RNA structure alignment quality as a function of sequence identity. BRAliBase 2.1 reference RNA structure alignments were
submitted to five different pairwise alignment algorithms, including the Needleman–Wunsch sequence-only alignment algorithm. Top: The total
number of surveyed alignments as a function of pairwise sequence identity. The Matthews correlation coefficient (MCC), the difference in the
structural conservation index (�-SCI) and RNAdistance calculated topological edit distance between the RNAalifold consensus of the computed
alignment and the reference BRAliBase 2.1 alignment consensus are compared in the lower three plots. MCC Matthews correlation coefficient, SCI
structural conservation index

sequences folded independently [37]. It has been shown
to be one of the most reliable metrics for conserved RNA
structure detection [38]. With the exception of DotAl-
igner, the other RNA structure alignment tools display,
on average, SCI values above 0 in the 45–60% identity
range, suggesting that the underlying optimisation algo-
rithms tend to overestimate the number of paired bases in
consensus RNA structure predictions.
DotAligner’s capacity to produce competitive pairwise

alignments is demonstrated via a 5S-adenosyl methio-
nine riboswitch (Rfam clan RF00634, Additional file 2:
Figure S1). In the Rfam alignment, the two representa-
tive sequences (AM420293_1 and CP000580_2_6) have
a sequence identity of 55%. Pure sequence alignment
increases this to 69%, but fails to align most structural
features. DotAligner’s pairwise probabilistic string align-
ment (step 1) creates an alignment with pairwise sequence
identity (PID) = 56%, which is increased to PID = 63%
through DotAligner’s sampling. The number of correctly
aligned suboptimal base pairs increases via DotAligner’s
sampling. In this example, the alignment scores do not

differ very much between DotAligner’s optimal string
alignment (step 1) and the best sample (step 2) (0.58 and
0.60, respectively), despite a ∼ 25× increase of runtime
through sampling (s = 1000 in this example). As justified
below, the benefits of sampling are outweighed by other
properties of the algorithm.

Fast and accurate classification of RNA structures
The intended application of DotAligner is the identifica-
tion and clustering of RNA structural motifs from a large
and diverse set of sequences of interest. Therefore, we
evaluated the ability of DotAligner to distinguish between
distinct structured RNA species from a heterogeneous
sample of known RNA structure families. We performed
all-vs-all pairwise structure alignments of stochastically
sampled Rfam sequences, which were selected with con-
straints on their sequence composition (PID) to control
for and ascertain any sequence-dependent biases (see
‘Methods’). DotAligner alignment scores were then com-
pared to a binary classification matrix representing the
distinct Rfam families (Additional file 2: Figure S3).
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Despite the seemingly poor quality of pairwise align-
ments generated by DotAligner, it reproduces the known
classification of Rfam structures more accurately, in
general, than the other surveyed pairwise RNA structure
alignment tools (Fig. 3 and Additional file 2: Table S1).
In fact, only when the average pairwise sequence iden-
tity drops below 55% for a given set of homolo-
gous RNA structures do the other algorithms perform
comparably to DotAligner (Fig. 3c). Interestingly, the
sequence alignments produced by Needleman–Wunsch
are able to cluster Rfam sequences into their respective
clans well compared to more specialised RNA struc-
ture alignment tools, suggesting that most Rfam clans
present sufficient stretches of local sequence identity

to cluster them appropriately. Indeed, realigning the
sequences from Rfam seed alignments based on their
sequence alone, while permitting free end gaps to evalu-
ate local sequence similarity, shifts the median pairwise
sequence identity from 59% to 72% (Additional file 2:
Figure S4).
The efficacy of the heuristics implemented in DotAl-

igner is further accentuated by its runtime, which con-
sistently lies between simple sequence alignment and
more sophisticated RNA structure alignment algorithms
(Fig. 3d and Additional file 2: Figure S5). The impact of
sequence length does not correlate with area under the
curve (AUC) scores, but it increases the runtime in a
polynomial way (Additional file 2: Figure S6).

a

c

d

b

Fig. 3 Classification of known RNA structures. a Receiving operator characteristic (ROC) curves measuring the classification accuracy of the surveyed
algorithms by contrasting their computed similarity matrices to a binary classification matrix of Rfam sequences (1 if the sequences are in the same
family or 0 if different). High PID = 56–95% pairwise sequence identity from the provided Rfam alignment; low PID = 1–55%. b Precision vs recall
curve. c Area under the curve (AUC) of ROC values with 95% confidence intervals for the top four performing algorithms across five ranges of
pairwise sequence identity, as calculated from a variant of the Needleman–Wunsch algorithm with free end gaps. The three replicates correspond
to stochastically sampled sequences from Rfam 12.3 (see Additional file 2: Table S1). d Runtime distribution of single-thread computation on a
2.6 GHz AMD Opteron processor (note, a fixed upper limit of 120 s was imposed for CARNA). AUC area under the curve
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Density-based clustering of homologous RNA structures
Given DotAligner’s accurate clustering of known struc-
tured RNA using binary classification, we subjected
its output to cluster analysis to identify and extract
input sequences that display common sequence-structure
motifs. Will et al. applied hierarchical clustering to the
dissimilarity matrices produced by LocaRNA to organise
sequences based on their structural homology [25]. How-
ever, this does not apply a cut-off that can be used to
extract accurate novel clusters of structurally homologous
sequences in an unsupervised manner. We attempted to
achieve this by applying a statistical threshold derived
from bootstrapping the underlying data using pvclust
[39], but this generated clusters of variable size that often
spanned across many disjoint families (data not shown).
We, therefore, opted for a density-based clustering strat-

egy that, in theory, can decipher clusters of varying den-
sity (i.e. subsets of the data with significantly greater
sequence-structure homology). The OPTICS (Ordering
Points to Identify the Clustering Structure) algorithm [40]
was chosen for this, as it has very few parameters to
optimise. OPTICS is a derivative of the Density-Based
Clustering for Application with Noise (DBSCAN) algo-
rithm [41], which, as its name states, is suitable for
noisy data, such as RNA immunoprecipitation followed
by high-throughput sequencing. We benchmarked the
two main OPTICS clustering parameters – the steepness
threshold xi and the minimum number of points in a
cluster (Additional file 2: Figure S7) – on a pooled set
of 580 stochastically sampled Rfam sequences encom-
passing various ranges of sequence similarity, as well as
a corresponding set of 580 dinucleotide shuffled con-
trols (see ‘Methods’). After performing all-vs-all pairwise
alignments with DotAligner, we evaluated the effect of
OPTICS parameters on clustering performance, reveal-
ing that a minimum of four points (or sequences) and
a steepness threshold of 0.006 gave the best results
(Additional file 2: Figure S7A).

Table 1 Comparative clustering performance

Algorithm Number of Sensitivity Specificity Accuracy
clusters

DotAligner+OPTICS 53 0.716 0.886 0.802

GraphClust 201 0.990 0.110 0.635

NoFold (all CMs) 62 0.866 0.965 0.916

NoFold (filtered) 45 0.674 0.976 0.826

In comparison to GraphClust, the combination of
DotAligner and OPTICS performs comparably well
(Fig. 4, Table 1, Additional file 2: Table S2). The default
version of NoFold nonetheless outshines DotAligner at
clustering known Rfam families. However, it intrinsically
employs Rfam covariance models (CMs) that are also
present in the test data; therefore, this specific application
is likely to be subject to over-fitting. We, thus, removed
72 CMs associated with the Rfam sequences in our
benchmarking data set from the NoFold algorithm, which
yielded lower sensitivity and less accurate qualitative
cluster metrics than the DotAligner and OPTICS com-
bination, while its specificity increased slightly despite
removing CMs from its classification set.

Identifying protein-binding RNAmotifs from eCLIP data
The optimised parameters for OPTICS clustering of
DotAligner output were incorporated into a high-
performance computing pipeline that extracts clusters of
homologous RNA structure motifs from a set of input
sequences (see ‘Methods’). This pipeline was applied to
eCLIP sequencing data from 44 RNA binding proteins
from the ENCODE consortium [42], with 100 positive
control sequences from Rfam (Additional file 2: Table
S3). From 2650 high-confidence eCLIP peaks (>eightfold-
enrichment vs background, P value < 10−4) that overlap
evolutionarily conserved secondary structure predictions,
25 significant clusters of homologous RNA were detected,
including all 11 positive controls (Fig. 5).

a b

Fig. 4 Comparative clustering benchmark of Rfam sequences and their shuffled controls. Clustering performance metrics of three algorithms on
580 reference Rfam structures and their dinucleotide-shuffled controls. a Sensitivity vs false positive rate. b Qualitative cluster statistics (the
horizontal dashed line indicates the real number of clusters from unique Rfam families). CM covariance model
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Indeed, the spike-in Rfam sequences facilitate the iden-
tification of similar RNA structures, such as the homo-
logues to SNORNA72 depicted in Fig. 5c, d. The four
additional sequences that co-cluster with SNORNA72
controls are all associated with the DKC1 protein, which
binds to H/ACA snoRNAs. Furthermore, three of the
DKC1-bound peaks are annotated as snoRNAs in the
Gencode 24 reference, while the fourth is not annotated as
a snoRNA despite strong sequence and structure similar-
ity, highlighting how this method can successfully identify
and cluster new RNA structure motifs. Another exam-
ple is the Y RNA cluster, which contains three sequences
homologous to this Rfam family that are also associ-
ated with the TROVE2 protein, which binds to misfolded
non-coding RNAs, pre-5S rRNA and Y RNAs.
Our method also identifies RNA structure fami-

lies impartially, as exemplified by several clusters of

DKC1-associated sequences, which present consensus
secondary structures indicative of snoRNAs (Fig. 5e).
Closer inspection of the corresponding eCLIP peaks
revealed that these sequences are indeed annotated
as snoRNAs in Gencode. There are also examples
of de novo structural motifs that are associated with
RNA-binding proteins with no previously known bind-
ing sites, such as an UPF1-dominated cluster (Fig. 5f)
composed of a structure motif belonging to ALU repeats
(Additional file 2: Figure S8). When searching the human
genome for homology to the RNA structure motif derived
from this cluster, most ALU elements are detected,
as well as a few other repeat-containing sequences.
Interestingly, 998 homologues to the motif did not
localise to ALU elements (Additional file 2: Figure S8C,
D), 58% of which overlap miTranscriptome reference
transcripts [43].

a

c

d e f

b

Fig. 5 De novo homologous RNA motif identification. a,b Reachability plots of OPTICS clustering display the OPTICS-derived ordering of points
(x-axis) and their distance to the nearest neighbour (y-axis). Colours represent significant clusters. a Clustering of Rfam benchmarking data
indicating the distance to the nearest neighbour. b Clustering of 2650 ENCODE eCLIP peaks + 100 Rfam controls that overlap evolutionarily
conserved secondary structure predictions. The dominant RNA binding protein in each cluster is displayed next to significant clusters. Those with an
asterisk are portrayed below. cMultiple structure alignment generated by mLocaRNA on the sequences from a cluster containing both Rfam
SNORNA72 sequences and DKC1 (a snoRNA-binding protein) eCLIP peaks. An unannotated DKC1-bound sequence is marked with an asterisk. d–f
RNAalifold-predicted consensus RNA secondary structures: d Structure of the alignment displayed in (c). e Structure of a cluster of impartially
detected DKC1-bound snoRNAs. f Structure of a novel UPF1-bound motif. dist. distance



Smith et al. Genome Biology  (2017) 18:244 Page 8 of 12

Discussion
The increasing accessibility of next-generation sequenc-
ing and immunoprecipitation protocols provides large
resources for in-depth transcriptome and interactome
profiling. Elucidating the structural features of RNAs
associated with RNA-binding proteins and RNP com-
plexes, combined with the systematic classification of
their genome- or transcriptome-wide occurrence, can
identify recurrent functional motifs that may form
components of regulatory networks. Pragmatically, the
method we describe facilitates this process by enabling
rapid and unsupervised clustering of RNA structure
motifs with reasonable accuracy. We also show that clus-
tering eCLIP sequences can identify new RNA structures
and their homologues throughout the genome (Additional
file 2: Figure S8A–C), which can be used to assign puta-
tive functions to non-coding loci and categorise them
accordingly.
Given its relative speed and accuracy, DotAligner can

be used to generate larger (dis)similarity matrices for
cluster analysis than other pairwise structure alignment
algorithms, or at least produce themwith reasonable com-
putational power. In addition to its speed, the strength of
DotAligner lies in its capacity to accurately score struc-
turally homologous RNA sequences and the suboptimal
structural landscape of RNAs, reducing several dimen-
sions of information into a single discriminative numeric
value. Our results show that this can be sufficient to
extract structurally and functionally related sequences
from a large amount of noisy input. It is an ideal appli-
cation for screening high-throughput sequencing data –
such as RNA immunoprecipitation data – for common
structural motifs.
The algorithm generates pairwise alignments that differ

qualitatively to reference structural alignments at lower
ranges of sequence identity, but it performs better than
more complex algorithms within ranges of sequence sim-
ilarity that substantially overlap those of functionally
related RNAs, as presented in Rfam. This could be a
consequence of refining the runtime parameters through
testing on independently and stochastically sampled Rfam
sequences. It is not impossible that other algorithms could
undergo comparable parameter optimisation. However,
the significantly higher computational complexity of other
related tools compared to our method makes it fairly
difficult (and resource intensive) to perform such brute-
force parameter optimisation.
High-throughput CLIPseq data pose a challenge for the

detection of consensus motifs since several molecules that
are in close physical proximity to the target molecule
can co-precipitate together. Consequently, other RNA
sequences that do not directly bind to the target pro-
tein may be present. We have shown that our method is,
nonetheless, suitable for such noisy biological data. For

example, the UPF1 cluster we describe may be an exam-
ple of an indirect binding event, as UPF1 directly interacts
with STAU1, a double-stranded RNA-binding protein that
has been reported to target ALU sequences [44]. Other
clusters identified in our eCLIP analysis have sequences
from more than one target protein clustered together,
which raises the possibility that a common RNA structure
motif may be bound by different proteins, either as part of
a quaternary complex or as a common, competing binding
target. We privilege this hypothesis over one of spurious
false-positive clustering given our benchmark results and
the observation that very few clusters were observed when
analysing less stringently filtered eCLIP peaks (data not
shown).
DotAligner has several variables that can influence the

clustering results and speed depending on the type of
input data. The most influential variables are the weight
between sequence and structure similarity, and the explo-
ration depth of suboptimal alignments in the stochastic
backtracking. We have shown that stochastic sampling of
suboptimal string alignments improves the alignment of
RNA dot plots. However, the performance increase does
not outweigh the increase in runtime associated with sam-
pling suboptimal sequence alignments. Our Rfam cluster-
ing benchmark using a binary classification strategy has
shown that the best trade-off between alignment accuracy
and speed comes with the abandonment of sampling, as
supported by the de novo structures identified from the
ENCODE eCLIP data. Future optimisation of DotAligner
parameters will likely increase its usability. For example,
dynamic parameters could be implemented that adjust the
degree of sampling diversity and number of samples based
on the sequence identity obtained from step 1 of DotAl-
igner. This could tune the algorithm’s performance based
on the nature of the input, potentially improving DotAl-
igner’s performance across all ranges of sequence identity.
Another potential enhancement could be achieved in the
stochastic sampling by considering only elements of the
ensemble with probabilities larger than a threshold. By
doing so, we could (1) reduce the number of useless sam-
ples, (2) guarantee that cells of high probability are passed
(suboptimal structures) and (3) leave time/samples to
explore the ensemble space (slightly modified alignments
by limiting sample diversity) around these suboptimals.
Another great challenge lies in the accurate depiction of

RNA structure motif boundaries. Whereas global struc-
tures may stabilise the RNA molecule, local structural
domains are often sufficient for recognition by RNA bind-
ing proteins. A strategy to find optimal local alignments
would be desirable for this. DotAligner can search for
semi-local alignments by introducing penalty-free gaps at
the sequence extremities (note, LocaRNA also supports
this functionality). In this study, we did not investigate
the optimisation of these local pairwise similarity scores,
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because they may miss parts of the functional units
(RNA structure) and, hence, hinder the search for optimal
clusters. Instead, we circumvented this issue by over-
lapping eCLIP peaks to evolutionarily conserved RNA
secondary structure predictions with well-characterised
flanking helices supported by base pair covariation [6].
While preparing this manuscript, a complementary and
comprehensive data set of evolutionarily conserved RNA
secondary structures was published [45]. Its application
could further increase the number of eCLIP peaks with
accurate structural motif boundaries. Alternatively, RNA
structure boundaries can be refined by, for example,
using alternative strategies, such as computational bound-
ary refinement with LocaRNA-P [46] or improving the
biological data with enzymatic probing with the double-
stranded RNase T1 endoribonuclease.

Conclusion
An efficient pairwise RNA sequence alignment heuris-
tic, which intrinsically considers suboptimal base pair-
ings, accurately discriminates between distinct structured
RNA families. When combined with a noise-tolerant
density-based clustering algorithm, this approach iden-
tifies known and novel RNA structure motifs from a
set of input sequences without a priori knowledge. The
resulting RNA structure motifs are subsequently used to
identify homologues in the human genome, improving the
annotation of lncRNAs and increasing the repertoire of
functional genetic elements.

Methods
Benchmarking and parameter optimisation
The DotAligner algorithm implements several parame-
ters that first need to be tuned before it can be applied
to biological sequence analysis. All combinations of core
parameters were tested on the 8976 pairwise RNA struc-
ture alignments curated in the BRAliBase 2.1 reference
data set [35]. We first tested all combinations of the fol-
lowing parameters: k and t from 0 to 1 in increments of
0.1; o and e from 0.2 to 1 in increments of 0.2. For each
set of parameter combinations, the number of alignments
producing identical structural topologies to the refer-
ence alignment was determined using RNAdistance, SCI,
a robust measure of RNA structural alignment integrity
[38] based on the minimum free energy (MFE), and the
Matthews correlation coefficient (MCC) of predicted and
reference RNA secondary structure were also calculated
for all resulting alignments:

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

�SCI = SCIpredicted/SCIreference.

Here, true positives (TP) is the number of representa-
tives from the dominant Rfam family in a cluster. False
positives (FP) is the number of non-dominant Rfam fam-
ily representatives in a cluster, or the number of clusters
where there is no dominant Rfam family (i.e. equally
represented families), or the number of clusters where
the dominant sequence is a negative control. False nega-
tives (FN) is the number of Rfam sequences that fail to
cluster. True negatives (TN) is the number of negative
control sequences that fail to cluster. Moreover, SCI =
MFEconsensus/MFEsingle.
The baseline parameters were then selected via a prod-

uct rank of these two metrics and subjected to refinement
using a binary classification approach, described in the
next section.

Binary classification of RNA secondary structure families
Further refinement of the optimal parameters was per-
formed using a binary classifier for two sets of 200
stochastically sampled Rfam entries with published struc-
tures: (i) a low pairwise sequence identity (PSI) set and
(ii) a high PSI set, where any two sequences from the
same family share between 0–55% and 56–95% PSI,
respectively (Fig. 3a, b). The Java implementation of
this algorithm, derived from [6], can be found in Addi-
tional file 1. Further investigation of the impact of local
sequence similarity on algorithmic performance was done
by sampling all seed alignments of Rfam version 12.3
via three replicates of our stochastic sampling procedure.
The sequences were then stripped of gaps and pseudo-
knots (not present in the preliminary Rfam version 12.0
alignments), and realigned with a variant of Needleman–
Wunsch enabling free end gaps. The samplingswere limited
to five ranges of sequence identity, as presented in Fig. 3c.
A binary classification matrix was then constructed,

where sequences x and y have a score of 1 if they belong to
the same Rfam family, or a score of 0 if they do not. The
similarity matrix resulting from all-vs-all pairwise com-
parisons with DotAligner was tested for accuracy using
the AUC of the receiving operator characteristic, as cal-
culated by the R package pROC [47]. A more restricted
range of parameter values was then tested on both data
sets. A ranked sum for both data sets of the AUC was
performed to determine the default runtime parameters
for DotAligner, namely θ = 0.5, κ = 0.3, go = 1 and
gext = 0.05 (Additional file 2: Table S4). Parameter θ (or
-t in the command line) is the weight of sequence simi-
larity compared to the similarity of unpaired probabilities,
κ (or -k) is the weight between sequence-based similarity
and dot plot similarity, go (or -go) is the gap open-
ing penalty and gext (-go) is the gap extension penalty.
Sampling-specific parameters s (number of samples) and
T (measure of sampling diversity) had minimal impact in
the refined parameter optimisation from sampled Rfam
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clans, although the parameters can increase alignment
scores in low and medium pairwise sequence identity
ranges (Additional file 2: Figures S1 and S2A). We also
show that, on average, the alignment score saturates after
1000 samples of the stochastic backtracking for T = 0.25
(Additional file 2: Figure S2B). CARNA version 1.2.5 was
run with parameters --write-structure --noLP
--time-limit=120000. LocaRNA version 1.7.13 was
run with parameter --noLP. FoldAlign version 2.1.1
was run with and without parameter -global. Default
parameters were used for pmcomp, downloaded from
https://www.tbi.univie.ac.at/RNA/PMcomp/, and RNA-
paln version 2.3.5. The custom implementation of
Needleman–Wunsch can be found in the GitHub repos-
itory associated with this work, as can the benchmark
implementation scripts.

Clustering RNA structures with randomised controls
OPTICS benchmarking was performed by
stochastically sampling the collection of Rfam
12.0 seed alignments using the Java program
GenerateRfamsubsets.java (see Additional file 1)
with three ranges of pairwise sequence identity: 1–55%,
56–75% and 75–95%, a minimum of five representative
sequences per family, and sizes ranging between 70 and
170 nt. The resulting 580 unique sequences were then
shuffled while controlling their dinucleotide content with
the easel program included in the Infernal (v1.1.2)
software package [48] with option -k 2. The 1160
sequences were submitted to all-vs-all pairwise compar-
isons with DotAligner and the scores were inverted and
normalised (min=1, max=0) into a dissimilarity matrix,
which was then imported into the R statistical program-
ming language, converted into a ‘dist’ object without
transformation, and subjected to OPTICS clustering as
implemented in the dbscan CRAN repository with a
range of parameters (see Fig. 4a, b).
Other tested RNA clustering approaches were Graph-

Clust and NoFold. We ran GraphClust version 0.7.6 inside
the Docker image provided with RNAscClust with default
parameters. NoFold version 1.0.1 uses 1973 Rfam CMs
by default as empirical feature space. For the NoFold (all
CMs) variant, we ran the program with default parame-
ters, whereas for the NoFold (filtered) variant, we reduced
the feature space to 1902 CMs by removing Rfam families
from our benchmark set.
The following clustering performancemetrics were used:

Sensitivity (recall) = TP/(TP + FN),
Specificity = TN/(TN + FP),

False positive rate = 1 − Specificity,
Precision = TP/(TP + FP),
Accuracy = (TP + TN)/(TP + TN + FP + FN).

Clustering of protein-bound evolutionarily conserved
RNAseq reads
The genomic coordinates of ENCODE eCLIP peaks were
downloaded in bed format from the April 2016 release
via the ENCODE portal (https://www.encodeproject.org/
search). The resulting 5,040,096 peaks were filtered to
keep only those with ≥eightfold enrichment over the total
input background and an associated P value ≤ 10−4.
Furthermore, peaks were merged if they overlapped by
more than 50 nt to avoid over-representing the same
sequence (Additional file 1). The remaining peaks were
subsequently filtered by retaining only those that have
a same-strand overlap with any evolutionarily conserved
structure predictions from [6]. Finally, the associated
genomic sequences were extracted into a fasta file, which
was supplemented with 100 reference RNA structures
from 11 Rfam families (see Additional file 2: Table S3).
Merging, overlap and sequence extraction operations
were performed with Bedtools version v2.26.0.
The normalised similarity matrix resulting from all-

vs-all pairwise comparisons with DotAligner was then
subjected to clustering with the dbscan 1.1-1 R package
from Michael Hahsler (https://github.com/mhahsler/
dbscan) using the command opticsXi( optics(D,
eps=1, minPts=4, search="dist"), xi =
0.006, minimum=T). The sequences for each cluster
were then extracted and submitted to multiple struc-
ture alignment with mLocaRNA version 1.9.1 using
parameters --probabilistic --iterations=10
--consistency-transformation --noLP.

Additional files

Additional file 1: Supplementary methods describing the DotAligner
implementation in detail, RNA structure clustering and eCLIP data
processing methodologies. (PDF 602 kb)

Additional file 2: Supplementary tables and figures with descriptions.
(PDF 3890 kb)
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