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Gene therapy for cystic fibrosis: new tools 
for precision medicine
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Abstract 

The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease 
such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in 
gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all 
CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will 
provide insight into personalized therapies for CF.
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Introduction
Cystic fibrosis
Cystic fibrosis (CF) is the most common life-limiting fatal 
genetic disorder, affecting approximately 90,000 individu-
als worldwide [1]. It is an autosomal recessive disorder 
that requires mutations in the CF gene in both genetic 
alleles [2]. The CF gene encodes for a protein the cystic 
fibrosis transmembrance conductance regulator (CFTR) 
which is a protein chloride channel that belongs to the 
family of adenosine triphosphate (ATP)-binding cassette 
(ABC) transporters. It consists of two membrane-span-
ning domains (MSD1, MSD2), two nucleotide-binding 
domains (NBD1, NBD2) and the functional regulatory 
domain (R) with multiple phosphorylation consensus 
sites, which when phosphorylated, undergoes conforma-
tional change and opening of the chloride channel [3]. 
Mutations in the CF gene affecting CFTR expression, 
protein levels or function, now known as CFTR vari-
ants, affect multiple organ systems including the lung, 
pancreas, liver, gut and reproductive organs. Changes in 

chloride and bicarbonate transportation across this chan-
nel impairs epithelial cell functions including mucociliary 
transport of foreign agents out of the airways, elevated 
concentrations sweat chloride, impairment in pancreatic 
hormone regulation, and intestinal obstruction [4–6]. In 
the lungs, CFTR-mediated export of chloride and bicar-
bonate ions across the epithelium into airway surface 
liquid (ASL) plays a vital role in maintaining the ASL pH 
and airway secreted protein composition (i.e. mucins). 
Dehydration of the ASL thickens mucus secretions and 
impairs mucociliary clearance, antimicrobial enzyme 
activity and promotes a pro-inflammatory environment 
mediated by recurrent infections leading to lung damage 
[7].

Classes of CFTR variants
In 1989, CFTR was identified and localized on the long 
arm of chromosome 7 (1q.31.2), consisting of 27 exons 
spanning about 215 kb of the genomic sequence [8–11]. 
While there have been > 2000 CF mutations identified to 
date (http://​www.​genet.​sickk​ids.​on.​ca/​cftr/), over 360 are 
CF disease-causing variants (www.​cftr2.​org). Recently, 
these variants have been categorized into 7 classes based 
on CFTR protein dysfunction and/or gene expression 
[12] (Fig. 1): Class I are protein production variants that 
result in no functional CFTR protein with roughly 22% of 
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CF patients harboring at least 1 mutant allele; Class II are 
protein processing variants that create misfolded CFTR 
protein and reduced expression on the cell membrane 
to function. Approximately 88% of CF patients have at 
least 1 mutant allele and the main variant p.Phe508del 
(F508del)-CFTR caused by a mutational deletion of the 
amino acid phenylalanine at the position 508 of the pro-
tein; Class III are gating variants that impair CFTR gate 
opening and encompasses roughly 6% of CF patients; 
Class IV result in defective ion channel conduction and 
approximately 6% of CF patients harbour this variant; 
Class V are insufficient protein variants and results in a 
reduced amount of CFTR at the surface membrane cap-
turing 5% of CF patients; Class VI affects the stability of 
CFTR that causes a reduction in membrane retention 
and 5% of CF patients harbor at least one allele of this 
variant, and finally Class VII affects CFTR mRNA expres-
sion resulting in no mRNA and includes large deletions 
such as the dele2,3(21 Kb) mutation.

Advantages and disadvantages of CFTR modulator therapy
Over the past 30 years, tremendous advances in clinical 
interventions and CF research have allowed for trans-
formative advances in CF therapy. Prior to the develop-
ment of small molecules targeting the CFTR protein 
(CFTR modulators), treatment of CF was solely aimed at 

alleviating the symptoms associated with the disease [13]. 
In recent years, CFTR modulators capable of directly 
correcting the genetic defect are paving the way for a 
cure for CF [14]. Here, we briefly touch on some current 
CFTR modulators that have been approved or are cur-
rently in clinical trials.

CFTR modulators are classified into 4 groups (Fig. 1): 
correctors, potentiators, stabilizers and amplifiers. Small 
molecules aimed at stabilizing the misfolded protein in 
the cytosol to prevent degradation are known as correc-
tors (examples include lumacaftor (VX-809), tezacaftor 
(VX-661), and elexacaftor (VX-445) from Vertex Phar-
maceuticals and posenacaftor (PTI-801) from Proteo-
stasis). Small molecules that bind to the NBD domain 
of the CFTR channel to facilitate its opening are known 
as potentiators, (examples include ivacaftor (VX770) 
and dirocaftor (PTI-808)). Stabilizers such as cavoson-
stat (N91115 from Nivalis) rescues the protein stability 
on the plasma membrane, promotes CFTR maturation 
and is currently in phase II clinical trials. Amplifiers 
increase the amount of CFTR production and include 
nesolicaftor (PTI-428), a current candidate in phase III 
clinical trials in combination with PTI-801 and PTI-808. 
Finally, for CF-causing variants where in-frame nonsense, 
frameshift, and splicing variants that introduce a prema-
ture termination codon (PTC) into the CFTR mRNA (i.e. 

Fig. 1  Classes of CFTR variants and CFTR modulators and the impact it has in CFTR expression and processing
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W1282X and G542X), read through agents such as ELX-
02 developed by Eloxx Pharmaceuticals and Ataluren 
PTC-124 by PTC Therapeutics were designed to restore 
functional protein production by overriding PTC signals 
[15]. However, early clinical trials currently underway for 
ELX-02 and PTC-124 failed to show significant improve-
ment in FEV1 measurements in patients with at least 1 
mutant allele in a phase III clinical trial [16]. The number 
of transcripts differ considerably depending on the site 
of the PTC, the cell type and the patient’s genetic back-
ground [15, 17]. Other small molecule inhibitors of the 
nonsense mediated decay (NMD) pathway such as SMG1 
inhibitor (SMGi) can restore CFTR expression and func-
tion in cells harboring W1282X CFTR [18]. Therefore, 
combining small molecules to improve CFTR transcript 
production and/or stability with CFTR modulators may 
provide better clinical outcomes.

The approved CFTR modulator therapies ORKAMBI™ 
(a combination of VX-770 and VX-809) and SYMDEKO™ 
(a combination of VX-661 and VX-809) are combination 
treatments that has shown improved clinical benefits for 
some patients harboring F508del-CFTR. However, there 
are wide variations in responses to the drugs which sug-
gest while the drugs may be used to treat the same genetic 
defect, other factors such as environmental [19–21] and 
gene modifiers [22–25] may influence therapy response. 
A recently approved drug, TRIKAFTA™ is a combina-
tion of 2 correctors (VX445 and VX661) and 1 potentia-
tor (VX770) drugs that have shown incredible promise 
in improving lung function, sweat chloride conductance 
and lowering pulmonary exacerbations in F508del-CFTR 
individuals [26]. The short-term effectiveness of these 
modulators offer hope for restoring basic lung func-
tions. However, the efficacy of this drug in effectively cur-
ing all CF individuals harboring at least 1 F508del allele 
remains unknown. Many rare CF variants are not eligible 
for current modulator treatment as these drugs are not 
expected to work such as for Class I production variants. 
Moreover, the long-term potential side effects of modula-
tor treatment remain unclear [27] and with the costs for 
CFTR modulator therapy averaging over $300,000/year/
patient [28], many CF individuals will not receive poten-
tial life-saving therapies without financial support or 
reimbursements. Therefore, new therapy approaches are 
still needed to treat all CF.

Gene therapy approaches for CF
Gene therapy offers great hope for the treatment of 
genetic diseases/disorders. By replacing the genetic 
mutation with a “correct version” of the CFTR gene, this 
method offers a potentially permanent cure. Indeed, 
since the discovery of the CF gene, many studies have 
attempted to correct the CFTR mutations through gene 

therapy approaches. While gene correction showed lim-
ited success in both cell and animal models [29–31], ther-
apy for patients had proven to be more difficult. In-vitro 
studies have suggested that not all cells need to express 
normal CFTR to effect normal epithelial functions. In a 
mixing experiment where normal cells were mixed with 
CF mutant cells, only 6–10% of the epithelium needed 
to contain epithelial cells expressing normal CFTR to 
restore chloride transport similar to normal epithelia 
[32]. Conversely, in a gene targeting study, up to 25% gene 
correction could restore mucus transport in homozygous 
F508del human airway epithelial cells [33]. The num-
ber of cells harboring wild-type CFTR that is needed 
to translate into clinical benefit in patience remains 
unknown. However, theoretically correcting a stem cell 
population within the airways may provide a renewable 
and long-term source of endogenous cells capable of 
renewing the damaged epithelia with cells that express 
wild-type CFTR. Yet surprisingly, with the exception of a 
Phase I and II clinical trial for MRT5005 [https://​www.​cff.​
org/​Trials/​Pipel​ine/​detai​ls/​10157/​MRT50​05], a drug that 
delivers CFTR-encoded mRNA to the lungs (RESTORE-
CF), there are no other clinical trials for CF gene therapy. 
This may largely be due to several reasons: 1. The need 
for repeated delivery due to the inability to target stem/
progenitor cells of the airways to sustain expression dur-
ing cell turnover, 2. Suboptimal delivery or low efficiency 
of targeting of the donor plasmid/gene to the CF airways 
due to the highly inflammatory microenvironment, 3. 
The inability to deliver large DNA fragments of the CFTR 
gene effectively with current delivery methods, 4. Con-
cerns of off-target safety that can result in insertional 
mutagenesis, and 5. Immune barriers limiting effective 
delivery of viral vectors. In this review, we briefly touch 
on some of the more recent genetic approaches that can 
rejuvenate CF gene therapy and touch on new cell and 
animal models that are enabling the testing of current 
gene targeting strategies and providing insight into per-
sonalized approaches for CF therapy.

Gene editing approaches
Gene editing tools can provide new gene therapy strate-
gies to achieve permanent correction. Here we list a few 
editing tools used to date to test the efficacy of genetic 
correction for CF in-vitro.

Zinc Finger Nucleases (ZFNs) and transcription 
activator‑like effector nucleases (TALEN)
Early developments of gene editing approaches included 
use of artificial restriction enzymes, Zinc Finger Nucle-
ases (ZFNs) and transcription activator-like effec-
tor nucleases (TALEN) [34, 35], (Table  1; Fig.  2). These 
gene modification tools enabled precise genome editing 

https://www.cff.org/Trials/Pipeline/details/10157/MRT5005
https://www.cff.org/Trials/Pipeline/details/10157/MRT5005
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through targeted nucleases cleavages and renewed hope 
for gene therapy. ZFNs are composed of specific pairs of 
oligos attached to a FokI restriction enzyme that facili-
tate a precise double-strand break (DSB) at the target 
site [36]. TALENs are composed of TALE repeats that 
bind and recognize extended DNA sequences and are 
also attached with a FoKI restriction enzyme to create a 
DSB [37, 38]. In both instances, the DSB induces DNA 

repair mechanisms by either non homologous end join-
ing (NHEJ), or homology-directed repair (HDR) [39, 40]. 
Neither ZFN and TALENs technology have been used in 
CF gene therapies and in the advent of CRISPR-Cas sys-
tems, gene editing using the latter tool is more flexible 
making it the editing tool of choice for many research-
ers. The specific requirement of a pair of ZFNs reduces 
the number of target sites that can be identified for gene 

Fig. 2  Graphics of gene editing technologies
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correction. Moreover, the low binding affinity of the ZFN 
creates undesirable off-target mutations in the genome 
[41]. TALEN has shown less off-target and better binding 
affinity than ZFN, however, the size for cDNA encoding a 
TALEN (3 kb) can be an issue for delivery into cells with 
a limited cargo size [42].

CRISPR gene editing
In 2013, a new gene-editing tool used by bacteria to 
fend off bacteriophages by called clustered regularly 
interspaced short palindromic repeats (CRISPR) and 
it’s enzyme CRISPR associated protein 9 (Cas9) [43] 
was shown to be useful in editing the genomes of cul-
tured mammalian cells [44]. The precise editing of the 
CRISPR-Cas9 system along with the versatile use of the 
system to silence genes by removing part of the gene or 
substituting the gene with desired ones has made the 
CRISPR-Cas9 system the preferred editing tool for gene 
editing. Moreover, the relative ease in designing a spe-
cific target site and low cost allows efficient gene editing 
to be done within a relatively short period of time [45]. 
The CRISPR-Cas9 is composed of two main modules: 
the guide RNA (gRNA), and the Cas9 protein enzyme. 
The gRNA is designed to recognize a specific sequence 
motif near the target site and recruits the Cas9 protein to 
cut and create a double-stranded DNA break (DSB). The 
cell’s natural DNA repair mechanisms are then activated 
to repair the cleaved DNA through NHEJ or HDR [39, 
40]. NHEJ directly ligates the broken ends, and can create 
“indels” or insertion or deletions of genes effectively cre-
ating mutants [46]. However, with a repair template, the 
HDR response will enable homologous recombination. 
This method is useful for introducing a desired gene (or 
a wild-type version of a gene). However, the frequency of 
HDR is very low [47] and therefore efficiency of “repair-
ing” or replacing a mutant gene remains a challenge.

(i) Base editing: The CRIPSR-Cas9 system’s classical 
reliance on introducing DSBs poses an efficiency problem 
since undesirable random insertions or deletions (indels) 
occur more often at DNA cleavage sites than HDR. Base 
editing was thus pioneered to increase the efficiency of 
the CRISPR-Cas9 system by circumventing the need for 
DSBs altogether, allowing for the direct conversion of a 
DNA base to another without DSBs at a target locus [48]. 
Cytosine base editors (CBEs) facilitate the permanent 
conversion of C-G to T-A base pairs, while adenine base 
editors (ABEs) enzymatically convert A-T base pairs into 
G-C base pairs [49]. In the contexts of CF, base editing 
could then be an attractive new tool in treating CF, since 
many CFTR variants could be rescued with a single base 
pair change. Accordingly, Geurts et al. recently provided 
support to the efficacy and feasibility of utilizing such 
base editing tools safely within human cells to potentially 

treat CF with two respective ABEs [50]. A caveat of base 
editing is the limitation of only 4 possible base-to-base 
conversions and is too large for certain gene delivery 
vectors.

(ii) Prime editing: Prime editing has recently become 
an attractive advancement in the CRISPR toolbox [51]. 
This gene editing technology makes it possible to edit a 
specified DNA sequence, of variable lengths at a target 
site, with a fusion complex composed of a catalytically 
impaired Cas9 protein and an engineered reverse tran-
scriptase [51]. A prime editing guide RNA (pegRNA) 
encodes the desired gene edit and directs the fusion com-
plex to the target site [51]. As a possible gene replacement 
therapeutic technology, prime editing is very promising 
in the context of CF, given the most common CFTR vari-
ant (CFTR-F508del) has been repaired by prime editing 
in patient-derived intestinal organoids [52]. However, 
prime editing did result in varying degrees of target-
ing efficiency and undesired off-target mutations were 
also observed [52]. Nevertheless, since the CFTR gene is 
large, and a complete replacement of a mutant gene with 
wild-type CFTR would likely be inefficient, prime edit-
ing is leading method to address the vast number of CF 
disease-causing variants.

Gene delivery
There are several gene delivery methods to introduce a 
therapeutic gene or gene targeting. Both non-viral and 
viral delivery vectors have been tested in CF gene therapy 
research.

(i) Non-viral vectors: Non-viral vectors were developed 
as a strategy to deliver the CFTR gene. These non-inte-
grating gene delivery methods do not disrupt the host 
genome and thus the risk of causing mutagenesis are low. 
Non-viral vectors are not restricted in the cargo load ena-
bling larger donor DNA fragments to be used for gene 
repair. However, the efficacy of gene delivery is compara-
tively lower than viral methods. To enhance gene transfer 
into the nucleus, a cationic lipid is used to formulate the 
plasmid DNA [53] complexed with CFTR enhanced chlo-
ride transport by 20% in CF patients compared to non-
CF levels [54]. Using a nebulized cationic lipid pGM169/
GL67A to deliver the donor DNA, up to 3.7% increase in 
CFTR function in the lungs of CF patients was observed 
[55, 56]. The drawback of the cationic liposome-mediated 
approach is the need for repeated delivery as transient 
expression of CFTR did not have a lasting effect [57]. 
Despite these efforts, non-viral based methods of gene 
delivery cannot permanently restore lung functions.

(ii) Viral vectors: To improve efficacy of targeting the 
cells, several viral based delivery methods have been 
tested to including adenovirus (Ad), adeno-associated 
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virus (AAV), and retroviral vector in pre-clinical and 
clinical trials to deliver the corrected CFTR gene.

Adenovirus (Ad)
Based vectors were once the preferred delivery vectors 
for gene delivery [58, 59]. Mutational deletion of viral 
replication genes and host immune cell evasion genes 
early region 1 and 3 (E1/E3) respectively, removed the 
ability of the virus to self-replicate making these viral vec-
tors attractive for gene therapy. However, leaky expres-
sion of viral genes from E1 deleted vectors, in addition 
to capsid proteins, could elicit host immune responses 
to the Ad vectors [60–62]. The first clinical trial (in 1993) 
for CF gene therapy using an adenovirus vector failed to 
restore CFTR expression in CF patient’s nasal epithelia 
[63, 64]. This led to the identification and testing of other 
adenovirus serotypes 2 and 5 in CF clinical trials which 
resulted in transient restoration of chloride transport in 
the nasal and bronchial epithelium [65, 66]. However, 
evidence of a pro-inflammatory response was found with 
these Ad vectors which required repeated administration 
for effective gene delivery [63, 65]. Even so, the trials have 
only demonstrated limited clinical benefits in CF patients 
[66].

Adeno‑associated virus
AAV-based vectors have been tested as another gene 
delivery tool. With the ability to transduce terminally 
differentiated and non-dividing cells, AAV can also per-
sist longer in-vivo [67] compared to its Ad counterpart. 
Transient immunosuppression can improve re-admin-
istration of AAV vectors in mouse lungs up to 8 months 
[68]. In 1998, the first successful human clinical trial 
with repeated delivery of AAV2-CFTR into the maxil-
lary sinuses [69] demonstrated restoration of CFTR func-
tion without noticeable toxicity or an elevated immune 
response after 2 weeks of delivery. However, other clini-
cal trial studies performed years later failed to show suffi-
cient CFTR functional correction by AAV-CFTR [70, 71]. 
One caveat of the AAV vectors is the limited target gene 
size (less than 4.6 kb) that can be inserted into the viral 
vector for efficient expression.

Helper‑dependent adenoviruses (Hd‑Ad)
To avoid the harmful immune response of Ad, the 
Helper-dependent Adenovirus (Hd-Ad) was developed 
[72]. Deletion of all viral coding sequences allows Hd-Ad 
to deliver large DNA cargo (to 37  kb) without eliciting 
host immune responses [73, 74]. One unique feature of 
the Hd-Ad vectors is that they can be used to deliver both 
a gene editing endonuclease system and donor DNA in 
a single vector to achieve site-specific gene integration 
without expressing the endonuclease following gene 

correction [75–77]. Gene correction using Hd-Ad in 
CF mouse and pig airway basal cells can restore CFTR 
function similar to levels observed in normal wild-type 
cells as measured by fluorescence imaging plate reader 
(FLiPR) assay [30, 72, 78–81]. HD-Ad vectors have also 
been shown to be effective in correcting the CFTR gene 
in the lungs of CF knockout mice [82]. However, a major 
challenge remains for in-vivo gene therapy as the abil-
ity to sustain therapeutic effects is lost due to airway cell 
turnover. Therefore, targeting a stem cell compartment 
within the airways has become an attractive goal for per-
manent CF gene correction.

Retroviruses and lentiviruses
Retroviral and lentiviral vectors have been used for gene 
delivery methods as early as the late 1990s. Retroviruses 
harboring human CFTR gene transduced into rabbit 
tracheal epithelial cells showed persistent expression in 
the airways for up to 3 weeks. However, the transduced 
capacity by retroviruses were low and transduction 
occurred only in wounded areas [83]. Lentiviral vectors 
have been effective in delivering CFTR transgene into the 
airway epithelium [84] with potential to target the lung 
stem cell population for sustained and persistent CFTR 
expression [85]. While both retroviruses and lentiviruses 
can efficiently target host cells and integrate into the host 
genome, there remains significant concerns over their use 
as a delivery vector for gene therapy. The host immune 
responses remain a significant barrier in efficacious 
delivery of exogenous genetic materials by viral meth-
ods. In the context of CF airway disease, the proinflam-
matory milieu of the diseased airways compounded by 
the mucosal obstructions poses a challenge for any gene 
delivery methods. Second, there are concerns of inser-
tional mutagenesis, epigenetic silencing, and secondary 
impact of altered expression levels derived by using viral 
promoters to drive the un-regulated expression of the 
transgene [86, 87].

Therefore, while new gene editing approaches may 
increase the targeting efficiency of gene correction, pre-
cise and efficient delivery of the genetic tools to the right 
cell type for permanent gene correction remains a barrier 
to clinical use. To study this, new animal and advanced 
stem cell-based models may enable research into cell 
delivery and targeting strategies.

Animal models of CF
Animal models of CF are valuable tools that may be uti-
lized to further understand disease pathogenesis and test 
new therapeutics. There are two fundamental issues that 
remain to be resolved before gene therapy can become 
viable for patients, and animal models provide a relevant 
platform through which these obstacles may be safely 
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addressed. First, in-vivo efficiencies of gene targeting 
need to achieve a level that will translate to therapeutic 
outcome. Second, the efficacy of gene targeting must out-
weigh concerns of off-target mutagenesis from the gene 
editing tools. Animal models have traditionally been use-
ful models to understand basic mechanisms of disease 
pathogenesis. Recent animal models for CF, especially 
those harboring human CF variants offer opportunities 
to test new emerging CFTR modulators for which these 
modulators are designed to specifically target the specific 
functional outcome. Here we briefly touch on several of 
these animal models and their use in CF therapy discov-
ery (Fig. 3).

(i) Mouse model: With a 78% amino acid sequence 
conservation between mouse and human CFTR 
(hCFTR) [88], the use of mice for disease modelling 
comes as no surprise when also considering practical 
factors like costs, breeding time, and ease of mainte-
nance. However, CF mouse models only exhibit mild 
pancreatic disease [89, 90] if any, present variable 
gallbladder abnormalities [90–92], and liver patholo-
gies are largely only observed in mice studied later in 
life [89]. While new humanized mouse models have 
become available, and can be used to study CFTR 
modulator efficacies, they possess a major limitation in 

harboring ~ 6 copies of the hCFTR gene [93–95]. There-
fore, it remains unclear how effective these humanized 
models are for gene therapy testing but may be a good 
model for CFTR modulator testing.

(ii) Rat model: CF rat models present similar pheno-
types with CF mice. Like the CF mice, the rat models do 
not recapitulate spontaneous lung infection or pancre-
atic and liver disease [96, 97] though some models have 
displayed exocrine pancreas histopathology [98]. Never-
theless, rats possess a 76% amino acid sequence identity 
to hCFTR [99] and have submucosal glands in the large 
airways [97, 100]. Rat models have also provided the 
groundwork for exploring new genetic advancements in 
CF modelling, like the generation of the first G542X CF 
nonsense mutation rat model with CRISPR-Cas9 [101], 
and a new F508del rat models that may be invaluable in 
the development of therapeutics [97].

(iii) Rabbit model: Rabbit models of CF are rather new 
to the field [102, 103] thus the relevance to human CF 
disease remains to be seen. However, rabbits present as 
a very promising model for the study of lung diseases 
in general, due to their airway anatomy and inflamma-
tory responses [104]. Further, there is a 92% amino acid 
sequence conservation between rabbit and human CFTR 
[88]. A caveat of the rabbit model is they lack submucosal 

Fig. 3  CF animal models compared to human disease phenotypes
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glands within their airways [100, 104] which contain 
CFTR-expressing cells in human airways.

(iv) Ferret model: Due to the highly conserved anatomy 
between human and ferret lungs [105, 106], ferret CF 
models accurately mirror the key disease phenotypes of 
CF, including those unable to be recapitulated in other 
models [107–109] With a sequence homology of 92% 
with hCFTR [88], and an abundance of submucosal 
glands throughout their airways [110], ferrets are an 
attractive translational model of CF [111]. A caveat of 
the ferret model is the costs associated with maintain-
ing these animal colonies and current CF ferret models 
require CFTR modulators to survive, making long-term 
study of the disease pathogenesis difficult.

(v) Pig model: Pig models share a 92% amino acid 
sequence identity with hCFTR [88], and arguably offer 
the highest translational potential for CF research due 
to their comparable genetics, physiology, and anatomy 
to humans [112–114]. However, porcine CF models pre-
sent an even larger practical and cost challenge than fer-
rets. Their sheer size, while beneficially comparable to 
humans, calls for much consideration regarding labor 

costs and maintenance. For testing new drugs, the pig 
model can become astronomically expensive. Neverthe-
less, CF pig models recapitulate all key CF disease phe-
notypes, though notably with more severe manifestations 
than in humans [113–117].

Cell models for studying CF disease pathogenesis 
and therapy.
(i) Current gold-standard lung cell models: Cell models 
have played instrumental roles in understanding the 
biophysical properties of CFTR, the mechanistic cause 
of the defects and evaluating novel therapeutic strate-
gies (Fig.  4). Human primary epithelial cell lines have 
been the main tool for assessing ion channel functions 
and for drug development [118–121]. While recent 
improvements in culture conditions have improved 
the expansion potential of primary cells, this expansive 
ability is limited [122] and primary cells enter senes-
cence shortly in culture. To circumvent this, immor-
talized epithelial cell lines, such as A549, BEAS-2B, 
Calu-3 and 16HBE14o, are commonly used to study 
drug transport, metabolism, and epithelial integrity 

Fig. 4  Cell models to study CF disease and therapies. For gene editing approaches, green “✓” indicates research data supporting the use of these 
approaches in the cell models for CF gene correction. Red “X” indicates no information available. For advantages/limitations section, green “✓” 
indicates possible and red “X” indicates not possible
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[123–127]. However, these immortalized cell lines are 
derived from lung tumour cells or have been trans-
formed, and thus do not show original lung cell char-
acteristics or reflect the repertoire of epithelial cell 
types found in the native lungs. Primary nasal cells are 
an alternative cell type to study CF airway disease due 
to the ease of generating nasal epithelial cultures from 
patients. The pros of these cells are the relative ease of 
obtaining samples from patients and they can be sam-
pled several times (if needed). Studies have suggested 
nasal epithelial cells are a good surrogate of airway 
bronchial epithelial cells [128, 129]. However, like pri-
mary bronchial cells, the ability to expand these cells in 
culture for sufficient use without re-sampling remains 
a problem. In addition, sampling variability can impact 
CFTR protein expression and function of the epithe-
lium. Recently, lung stem cells isolated from bron-
choalveolar lavage fluid can generate renewable airway 
organoids for multiple passages in cultures [130]. It 
remains to be seen whether a method of airway orga-
noid generation can be achieved from individuals with 
airway diseases for disease modeling. Nonetheless, gen-
eration of a renewable source of patient-specific lung 
airway cells is a key enabler for identifying patient-spe-
cific therapies for lung diseases.

(ii) Human pluripotent stem cell (PSC) models for per-
sonalized medicine: Human embryonic stem (hES) cells 
were discovered in 1998 and hold enormous promise 
to repair disease and regenerate tissues [131]. With the 
ability to self-renew and differentiate into cells of all 
three embryonic germ layers endoderm, ectoderm and 
mesoderm, hES became an intriguing source of cells for 
regenerative medicine. However, research in the use of 
hES for regeneration faced paucity due to the growing 
ethical concerns associated with the use of “embry-
onic/fetal” tissue. In 2006, the first discovery of induced 
pluripotent stem cells (iPSC) was made and revealed 
these cells shared similar characteristics to mouse 
ES [132]. By 2007, the first human iPSC was made by 
introducing four transcription factors associated with 
pluripotency to fibroblasts [133]. Since this discovery, 
therapeutic applications of human iPSC have led to > 65 
market competitors offering iPSC-based products. 
Indeed, iPSC are a great source of cells for patient-spe-
cific disease modeling, drug discovery and personalized 
regenerative medicine. Biobanks of iPSC from indi-
viduals with various genetic mutations have become a 
useful resource for disease modeling. The Hospital for 
Sick Children in Toronto has now acquired over 100 
CF patient cells harboring various CFTR variants and 
generated iPSC from each individual including some 
gene-corrected isogenic iPSC lines for benchmark-
ing patient-specific “normal” responses [134]. This will 

undoubtedly enable research in modelling CF organ 
and patient-specific disease and therapy discoveries.

Differentiation of human iPSC into multiple tissue cell 
types has now been achieved albeit with varying efficien-
cies. Most directed differentiation methods use a step-
wise approach of activating and/or inhibiting pathways 
known to affect developmental growth in animal models, 
especially the mouse. Indeed, we and others have iden-
tified key developmental pathways required to generate 
lung epithelial cells from human iPSC [135–138]. More-
over, airway and intestinal cells derived from homozy-
gous F508del CF iPSC model CF phenotype (lack of 
CFTR membrane expression) can be used to screen for 
CFTR small molecule correctors [136, 139, 140]. We 
have shown that CF iPSC-derived airway cells are ame-
nable to high throughput CFTR functional screens—a 
step towards using these cells for personalized medicine 
[139–143]. Recently, we have improved the generation 
of lung cells from human PSC and demonstrate the util-
ity of capturing CFTR expression and function in the 
differentiated cells modeling development [136, 144]. 
Understanding the impact of mutant CFTR during devel-
opment remains poorly understood and these new PSC 
models will advance our understanding of the prenatal 
origins of disease mechanisms.

Another benefit of using iPSC models is the ability to 
determine both patient and tissue-specific responses. 
This is important as CFTR expression and activity levels 
differ in different tissues. Correction of CF mutations 
have been tested in iPSC, however the efficacy of these 
gene-editing strategies in-vivo remains to be seen [141–
143]. Ultimately, establishing predictive patient and tis-
sue specific models to predict patient outcome is key to 
advancing precision medicine.

New models, new gene editing tools, new targets?
One of the biggest challenges in generating treatment 
strategies for CF is the sheer number of CF-causing 
variants. Even among patients with the same variant, 
there are vast differences in severity of symptoms and 
responses to treatments. To date, treatment options for 
CF are mutation-dependent, and no viable options exist 
to universally address all CF patients. Though recent 
advancements in gene editing have fostered hope for per-
sonalized treatments, this is neither viable nor practical 
for treating all CF.

Recently, Kemaladewi et  al. demonstrated a novel 
mutant-independent therapeutic approach to treat con-
genital muscular dystrophy type 1A (MDC1A) [145]. 
Using CRISPR, the feasibility of treating inherited dis-
eases by looking beyond the singular disease-causing 
gene, and instead targeting compensatory modifier 
genes, was illustrated. In the context of CF, ion channels 
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aside from CFTR have been implicated in CF disease 
severity and responses to modulator therapy. Therefore, 
targeting other ion channels known to also affect CF dis-
ease severity such as the sodium channel ENaC [146] or 
alternative ion channels TMEM16A (ANO1 [147, 148]) 
and SLC26A9 [149, 150] may need to be assessed to find 
effective therapies for all individuals with CF.

Conclusion
Since the discovery of the CF gene over 30 years ago, it 
has become apparent that finding an effective therapy to 
treat all CF remains a challenge. While the discoveries of 
new small molecule modulators have greatly advanced 
treatment for some CF, the effectiveness of these lifesav-
ing drugs have not been universally effective and rather 
limited to specific classes of mutations. Rare CFTR vari-
ants remain uncured. Now, with recent advances in new 
gene editing tools coupled with both iPSC-derived tis-
sue models and new animal models, new precise gene 
targeting methods to treat CF disease will emerge and 
lead to potential effective personalized therapies. Clas-
sical approaches of targeting the disease-causing variant 
may also be replaced or coupled with mutation-agnostic 
approaches to treat complex CF phenotypes and with 
improved pre-clinical models, this can now be tested. 
With new advancements in gene editing technologies 
coupled with advanced cell models to test gene engineer-
ing approaches, this will lead to rapid developments of 
new therapies for all CF.
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