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Abstract

Mesenchymal stem cells (MSCs) have captured great attention in regenerative medicine for over a few decades by
virtue of their differentiation capacity, potent immunomodulatory properties, and their ability to be favorably cultured
and manipulated. Recent investigations implied that the pleiotropic effects of MSCs is not associated to their ability of
differentiation, but rather is mediated by the secretion of soluble paracrine factors. Exosomes, nanoscale extracellular
vesicles, are one of these paracrine mediators. Exosomes transfer functional cargos like miRNA and mRNA molecules,
peptides, proteins, cytokines and lipids from MSCs to the recipient cells. Exosomes participate in intercellular com-
munication events and contribute to the healing of injured or diseased tissues and organs. Studies reported that
exosomes alone are responsible for the therapeutic effects of MSCs in numerous experimental models. Therefore,
MSC-derived exosomes can be manipulated and applied to establish a novel cell-free therapeutic approach for treat-
ment of a variety of diseases including heart, kidney, liver, immune and neurological diseases, and cutaneous wound
healing. In comparison with their donor cells, MSC-derived exosomes offer more stable entities and diminished safety
risks regarding the administration of live cells, e.g. microvasculature occlusion risk. This review discusses the exosome
isolation methods invented and utilized in the clinical setting thus far and presents a summary of current information
on MSC exosomes in translational medicine.
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Background

Mesenchymal stem/stromal cells (MSCs) are multipo-
tent nonhematopoietic adult cells initially discovered by
Alexander Friedenstein while studying the bone marrow.
MSCs, possibly originated from the mesoderm, were
reported to express CD73, CD90 and CD105 plasma
membrane markers while not expressing CD14, CD34
and CD45 molecules [1, 2]. In addition to the bone
marrow, MSCs can be isolated from other adult tissues
including adipose tissue, amniotic fluid, dental pulp, pla-
centa, umbilical cord blood, Wharton’s jelly and even the
brain, kidney, liver, lung, spleen, pancreas and thymus
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[1, 3]. MSCs are known for their ability of differentia-
tion, self-renewal and colony formation [4]. The unique
capacity of MSCs to proliferate in vitro and differenti-
ate into various cellular phenotypes represented a great
opportunity for their recruitment as therapeutic agents
to heal necrotic or apoptotic cells of the connective tis-
sue. In fact, MSCs can differentiate into different lineages
of mesenchymal origin including adipocytes, endothe-
lial cells, cardiomyocytes, chondrocytes and osteoblasts
as well as numerous nonmesenchymal lineages such as
hepatocytes and neuron-like cells [5, 6]. The differentia-
tion of MSCs into functional nonmesodermal cells casted
doubt on the conventional paradigm that adult stem
cells only differentiate from their corresponding germ
layer [7]. While subsequent investigations attributed this
cross-germ line differentiation to cell fusion events or
methodology limitations [8, 9], the mechanism of tissue
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repair by MSCs particularly in nonmesodermal tissues
remained to be unraveled.

It was originally assumed that upon in vivo injection,
MSCs start to regenerate the damaged/diseased sites by
travelling to the respective locations, engraftment, and
subsequent differentiation into mature functional cells.
However, this classic hypothesis was later challenged by
findings from numerous animal and human studies per-
formed during the last decades. To our surprise, it was
demonstrated that MSCs neither engraft in large quanti-
ties nor for time spans long enough to explain the tissue
replacement process [10]. According to a more contem-
porary hypothesis, MSCs employ alternate modes of tis-
sue repair and affect their neighboring cells by inducing
cell viability, proliferation and differentiation, decreas-
ing cell apoptosis and fibrosis, stimulating extracellular
matrix remodeling, and sometimes adjusting the local
immune system responses to inhibit inflammation. These
alternate strategies involve paracrine signaling between
MSCs and the adjacent cells, which is facilitated by pro-
ducing and releasing certain trophic factors, cytokines,
chemokines and hormones, intercellular interactions
facilitated by tunneling nanotubes, and secreting extra-
cellular vesicles (EVs) like exosomes [3]. Exosomes
derived from MSCs represent biological functions simi-
lar to these cells by contributing to tissue regeneration
through enclosing and conveying active biomolecules
such as peptides, proteins and RNA species to the dis-
eased cells/tissues [11]. In this article, we overview cur-
rent available exosome isolation methods intended for
therapeutic application, and then summarize recent
important achievements regarding the therapeutic imple-
mentation of MSC-derived exosomes in regenerative
medicine in both experimental models and clinical trials.

Exosomes

Exosomes (30—150 nm in diameter) are classified as one
of the three subpopulations of EVs. The other two sub-
populations include microvesicles/shedding particles and
apoptotic bodies (both larger than 100 nm). Exosomes
are formed by sprouting as intraluminal vesicles (ILVs)
within the luminal space of late endosomes or so-called
multivesicular bodies (MVBs) [12]. The ILVs are then
secreted as exosomes once MVBs incorporate to the
cellular membrane. Exosomes were initially detected
by Rose Johnstone and colleagues in 1983 as the vesi-
cles involved in mammalian reticulocyte differentiation
and maturation [13]. Johnstone selected the term “exo-
some” because “the process seemed to be akin to reverse
endocytosis, with internal vesicular contents released in
contrast to external molecules internalized in membrane-
bound structures” [14, 15]. Exosomes are constantly pro-
duced and released by numerous haematopoietic and
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nonhaematopoietic cell types including reticulocytes, B
and T lymphocytes, platelets, mast cells, intestinal epi-
thelial cells, dendritic cells, neoplastic cell lines, and the
immune cells of the nervous system, i.e. microglia and
neurons [16—18]. Accumulating knowledge has revealed
that exosomes play significant role in a variety of cell-
to-cell interaction pathways associated with numerous
physiological and pathological functions.

According to their molecular composition and mor-
phology, there are different populations of MVBs and
thus different populations of exosomes within a cell.
However, not all MVBs are destined for extracellular
release. For instance, it was shown that only MVBs con-
taining higher proportion of cholesterol could fuse with
the cellular membrane of B lymphocytes and secrete
exosomes [19]. More interestingly, multiple researches
have shown that exosomes secreted from the apical
and basolateral sides of polarized cells have different
molecular compositions [20]. However, the content of
exosomes partly reflects the content of their parent cells
[21]. Exosomes contain a wide variety of cytoplasmic and
membrane proteins including receptors, enzymes, tran-
scription factors, extracellular matrix proteins, nucleic
acids (mtDNA, ssDNA, dsDNA, mRNA and miRNA)
and lipids [18]. Investigations of the exosomal protein
content have revealed that some of these proteins are
restricted to certain cell/tissue types, but others are com-
mon among all exosomes. While cell adhesion molecules
(CAMs), integrins, tetraspanins and major histocompati-
bility complex (MHC) I/II proteins are common amongst
all exosomes, a number of fusion and transferring pro-
teins like Rab2, Rab7, annexins, flotillin, heat shock and
cytoskeleton proteins, and MVB-generating proteins like
Alix (ALG2-interacting protein X) are considered non-
specific exosomal proteins [22, 23].

Unlike proteins, exosomal lipid content is usually con-
served and cell type-specific. Lipids play pivotal roles
in forming and protecting exosomal structure, vesicle
biogenesis and regulation of homeostasis in their target
cells [24]. For instance, enhanced concentrations of lyso-
bisphosphatidic acid in the inner phospholipid layer of
MVB membrane in cooperation with Alix enable inward
sprouting of MVBs and thereby exosome formation [25].
Exosomes also regulate the homeostasis of their target
cells by altering their lipid composition particularly in
cholesterol and sphingomyelin [25].

Methods of exosome isolation for therapeutic application

In the following section, we will discuss the two most
frequently utilized methods, i.e. ultracentrifugation
(UC)-based techniques and ultrafiltration (UF), for isola-
tion of exosomes for therapeutic application. Schematic
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representation of the isolation methods is depicted
in Fig. 1 and both methods are compared in detail in
Table 1.

Ultracentrifugation-based techniques

When a suspension is centrifuged, its constituents will be
separated on the basis of their physical features such as
size, shape and density, the exerted centrifugal force, and
the viscosity of the solvent. In ultracentrifugation (UC),
extremely high centrifugal forces (up to 1,000,000 g) are
applied to particulate components of a sample. UC meth-
ods are generally divided into analytical and preparative
techniques. In the field of exosome isolation, prepara-
tive UC methods are considered the gold standard and
account for approximately 56% of all methods employed
by researchers [26]. In the following section, we will
discuss two types of common preparative UC-based
approaches for isolation of exosomes.

Differential ultracentrifugation The successive steps of
centrifugation and debris removal is referred to as dif-
ferential ultracentrifugation (DUC), which is the first and
still most frequent method implemented for isolation of
EVs. Prior to isolation, sample is cleaned from large bio-
components and protease inhibitors are used to prevent
degradation of exosomal proteins [27]. DUC consists of
two to three successive low-speed (500 g) centrifugation
steps to pellet out cells, microvesicles and other parti-
cles of the extracellular matrix. Further purification is
then performed by 0.22 microfiltration and elimination
of apoptotic bodies through centrifugation at 10,000 g.
Finally, exosomes are retrieved by UC at approximately
100,000—120,000 g for 60—120 min and subsequent wash-
ing in a proper medium like phosphate buffered saline
(PBS) [28]. Since the size and density of most EVs and
other cellular components overlap to some extent, DUC
does not yield pure exosomes, but rather results in an
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enrichment of exosomes. In fact, the final preparation is
somewhat low in exosome recovery and often includes
other particles such as serum lipoparticles [29]. If the
secretory autophagy pathway is induced, lipid droplets
originated from autophagosomes can also be co-isolated
with exosomes [30]. The presence of large quantities of
cholesteryl ester or triacylglycerol in the final preparation
is defined as an index of impurity which is caused by lipo-
proteins or lipid droplets [31]. Therefore, it was proposed
that the outcome of the 100,000 g pellet should be con-
sidered “small EVs’, not ‘exosomes’ [32]. In an attempt to
increase the exosomal yield obtained by DUC, UC dura-
tion was increased to 4 h which led to serious physical
damage to the exosomes, not to mention the higher con-
tamination levels of soluble proteins [33]. DUC is labori-
ous and time-consuming, however, it is generally appli-
cable to large sample volumes [34], making its scalability
feasible for clinical purposes [29]. Another drawback of
DUC method is that its outcome is restricted by rotor
capacity. Nevertheless, DUC technique requires little
methodological expertise and almost no sample pretreat-
ment [33]. Additionally, DUC is cost-effective over time
and is widely utilized for isolation of exosomes in the clin-
ical setting [35—-38].

Density gradient ultracentrifugation In density gradi-
ent ultracentrifugation (DGUC), a density gradient is
usually constructed using iodoxinol, CsCl, or sucrose in
a centrifuge tube before the separation takes place [39].
DGUC was reported to efficiently separate exosomes
from soluble cellular components and protein aggregates,
and resulted in the purest exosome recovery in compari-
son with DUC and precipitation-based techniques [40].
DGUC methods generally include rate-zonal ultracentrif-
ugation and isopycnic ultracentrifugation. Several inves-
tigations have combined DGUC methods with DUC and
reported that the purity of the separated exosomes were

(See figure on next page.)

Fig. 1 Schematic representation of most frequently utilized exosome isolation methods for therapeutic purpose. a Differential ultracentrifugation
(DUQ): Sample is subjected to 2-3 steps of low-speed (500 g) centrifugation to pellet out cells, microvesicles (MVs), extracellular matrix (ECM)
components, and cellular debris. The supernatant is then centrifuged at 10,000 g for removal of apoptotic bodies (ABs) and contaminating
proteins. Finally, exosomes are retrievd by a long (60-120 min) ultracentrifugation (UC) step at 100,000-200,000 g and subsequent washing of
the pellet in PBS; b rate-zonal ultracentrifugation (RZUC): RZUC is a type of density gradient UC (DGUC) where sample is placed at the surface of

a gradient density medium such as sucrose, and following a step of UC at 100,000 g, sample components migrate through the gradient density
and separate according to their size and shape; c isopycnic ultracentrifugation (IPUC): IPUC is another type of DGUC that separates particles based
on their density. Sample is usually mixed with a self-generating gradient substance such as CsCl, and is then subjected to a long UC step. In the
end, distributed components form bands, so-called the isopycnic position, where the buoyant density of the collected particles matches with

the gradient density of the surrounding solution. The banded exosomes can be retrieved from the density zone between 1.10 and 1.21 g/mL by
fractionation; d sequential filtration (SF): Sample is first subjected to a 100-nm dead-end (normal) filteration process to separate cells and larger
particles. Then, contaminating proteins are excluded via tangential flow filtration using a 500-kDa MWCO membrane. Lastly, the filtrate is once more
passed through a track-etch membrane filter (with pore size of 100 nm) at very low pressure in order to inhibit passing of flexible nonexosomal EVs
into the filtrate while allowing for passage of exosomes
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drastically improved. However, the gradient construction
in this strategy was extremely time-consuming and fur-
ther precaution was required to inhibit the gradient dam-
age during acceleration and deceleration step [28]. DGUC
usually leads to a relatively low exosomal yield and is not
capable of discriminating different populations of EVs
[32], which generally limits its application to large-scale

exosome preparation for clinical purposes [41]. Neverthe-
less, several studies have successfully combined sucrose/
deuterium oxide (D,0) DGUC with UC for isolation of
exosomes for clinical use [42, 43].

Rate-zonal ultracentrifugation: In rate-zonal ultracen-
trifugation (RZUC), the sample is located in a thin zone
at the surface of a shallow gradient density medium,
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Table 1 Comparison of two most frequently utilized exosome isolation methods for clinical utility

DUC

UF

Mechanism of exosome separation

Recovery I
Purity H
Specificity I
Sample volume I
Efficiency I
Time H
Cost L
Complexity I
Functionality of exosomes I
Scalability I
Advanced equipment I
References [

Physical features of exosomes (size, shape and density), the exerted
centrifugal force, and the viscosity of the solvent

Particle size and MWCO
of the utilized filter
membrane

H
L
L
H
[

H
I

L
I

H
L

[118-121]

L low, I intermediate, H high

Recovery: exosomal yield; purity: the ability of isolating exosomes with minimum contamination; specificity: the ability to separate exosomes from nonexosomal
content; sample volume: the required amount of starting material; efficiency: sample processing with high quality; time: the ability to isolate exosomes in a short
amount of time; cost: the required amount of money; complexity: the need for training before use; functionality of exosomes: the use of isolated exosomes for
downstream functional analysis without changing their efficacy; scalability: the ability to isolate exosomes from large sample volumes without overly increasing time,
cost, or personnel required; advanced equipment: the need for expensive equipment and device

which possesses a lower density than that of any of the
sample particles [41]. Then the intended centrifugal force
is exercised and the sample components start to travel
through the gradient density, which gradually grows from
the top to the bottom of the tube, and the particles are
finally separated into various zones of the tube. Since the
sample particles are denser than the gradient medium,
RZUC separates components primarily based on their
size and shape rather than by density [44]. The larger
components and also the more spherically symmetrical
particles migrate more rapidly through the gradient [44].
The duration of the centrifugation phase is of significant
importance, and if not properly optimized, all particles
will finally copellet at the bottom of the tube since they
are all denser than the gradient [28]. To avoid exosome
sedimentation, a high-density cushion is typically applied
to layer the bottom of the centrifuge tube [41]. The capac-
ity of RZUC is limited due to small loading region of the
centrifuge tube which presents an obstacle for large-scale
exosome preparations of clinical relevance [44].

Isopycnic ultracentrifugation: Isopycnic ultracentrifu-
gation (IPUC) (also known as buoyant DUC or equi-
librium DGUC) recruits the concept of buoyancy for
separating particles based on their density. The sample
density should be between the lowest and highest den-
sity range of the gradient [45]. In IPUC, the sample is
located in a dense medium at the bottom of the gradient
or uniformly mixed with a self-generating gradient sub-
stance such as CsCl [41]. Following a long high-speed

centrifugation, a steep density gradient is created in the
centrifuge tube [46]. As components distribute, they
form bands (so-called the isopycnic position) where the
buoyant density of the collected particles matches with
the gradient density of the surrounding solution. The
separation of exosomes into a distinct region merely
depends on their density difference from all other com-
ponents if a sufficient time of centrifugation is applied
[41]. The banded exosomes are retrieved from the density
zone between 1.10 and 1.21 g/mL by fractionation, which
is performed either by removing certain amounts of frac-
tions from the top of the tube or by draining particles
with a long-needle syringe. The concentrated exosome
aliquot is then subjected to a short UC at ~100,000 g and
resuspended in PBS for further analysis [41]. IPUC is a
very precise technique with the ability of differentiating
exosomes from other vesicles like apoptotic bodies and
microvesicles as well as soluble proteins [28]. However, it
is not generally applicable to clinical-scale exosome prep-
arations [46].

Ultrafiltration

As is the case with any other conventional membrane
filtration, ultrafiltration (UF) separates exosomes on the
basis of their size and molecular weight cut-off (MWCO)
of the utilized membrane filter. MWCO is an arbitrary
unit representative of membrane pore size, which is uti-
lized for characterizing UF membranes. UF membranes
were initially used to purify biological fluids for retaining
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macromolecules particularly peptides and globular pro-
teins. Since biological macromolecules are described by
their molecular weight, the ability of UF membranes to
retain these macromolecules is defined by their molecu-
lar weight. MWCO is described as the molecular weight
where 90% of the macromolecular component is rejected
by the membrane. Exosomes larger than pores of the
membrane are held by it and smaller components are
transited through the membrane. One major drawback
of UF is the trapping and clogging of exosomes on mem-
brane filter. Thus, they cannot be recovered for down-
stream analysis [39]. However, the isolation efficiency can
be improved by starting the process with large MWCO
membranes and then shifting to smaller ones [39]. UF
is simpler and faster than UC, does not involve any spe-
cial equipment, and can be easily scaled up and applied
to the clinical field of exosomes [36, 47]. However, UF
may sometimes result in exosomal damage because of
the implemented shear force, which can be minimized
through careful regulation of the pressure exerted on the
membrane [33].

Sequential filtration (SF) is a UF technique used for
isolation of exosomes by successive steps of filtration.
First, the biosample is loaded on a 100-nm filter, which
sieves out cells and large rigid cellular components and
debris by dead-end (normal) filtration. Although their
diameter is larger than 100 nm, different EV populations
pass through this filter since they are flexible and soft
[48]. The remaining contaminants like soluble proteins
are then eliminated by tangential flow filtration using a
500-kDa MWCO membrane and the biosample is further
concentrated. The filtrate is once more passed through
a membrane filter, so-called track-etch membrane, with
defined pore sizes (100 nm) at very low pressure in order
to inhibit passing of flexible nonexosomal EVs into the
filtrate while allowing for passage of exosomes. SF is one
of the most efficient methods which is performed within
a day. The process is automation-friendly and due to low
manipulation forces, results in intact high-purity func-
tional exosomes. Additionally, SF is capable of isolating
exosomes from large sample volumes (up to 1 L) [34],
which has been implemented in clinical trials [49].

Application of mesenchymal stem cell-derived exosomes
in regenerative medicine

The therapeutic effects of MSC exosomes in preclinical
studies are depicted in Fig. 2 and the details are summa-
rized in Table 2.

Cardiovascular diseases

The cardioprotective effects of exosomes secreted from
MSCs was investigated in a rat myocardial infarction (MI)
model using vesicles from human bone marrow-derived
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MSCs (hBM-MSCs). Intramyocardial injection of
exosomes was reported to improve cardiac indices such as
cardiac systolic and diastolic performances and blood flow
[50]. MSC exosomes were also able to exert therapeu-
tic effects by reducing vascular remodeling and hypoxic
pulmonary hypertension in mice. These outcomes were
mediated by inactivation of signal transducer and acti-
vator of transcription 3 (STAT3) pathway and upregula-
tion of miR-204 in the lung cells [51]. Exosomes released
from genetically modified rat BM-MSCs overexpressing
CXCR4 (Exo“®*) were reported to enhance the levels of
insulin-like growth factor la (IGFla) and pAkt, inhibit
caspase 3, and promote vascular endothelial growth factor
(VEGF) upregulation and tubulogenesis in cultured car-
diomyocytes. Moreover, when Exo“®-pretreated MSC-
sheet was engrafted into the damaged myocardium of a
rat MI model, the infarct size remarkably decreased and
angiogenesis was triggered [52]. In another study, BM-
MSC exosomes promoted tube formation by endothelial
cells as well as T cell inhibition, reduction of the infarct
size, and recovery of cardiac systolic and diastolic per-
formances [53, 54]. Investigation of the role of exosomal
miRNA molecules demonstrated that miR-22-enriched
exosomes were notably successful in decreasing the
infarct size and cardiac fibrosis in a murine post-MI
model via targeting MECP2 (methyl-CpG-binding protein
2) [55]. BM-MSC exosomes carrying miR-221 exhibited
anti-apoptotic and cardioprotective effects by downregu-
lating PUMA (p53 upregulated modulator of apoptosis)
expression in vitro [56]. Another work performed by the
same team revealed that exosomal miR-19a could reduce
the infarct size and restore cardiac function through
downregulating phosphatase and tensin homolog (PTEN)
and triggering the Akt and ERK signaling pathways in an
acute MI rat model [57]. Additionally, exosomal miR-210
were shown to promote angiogenesis and retain cardiac
function both ex vivo and in vivo [58]. In an attempt to
explore the cardioprotective effects of endometrium-
derived MSC exosomes, exosome-mediated shuttling of
miR-21 was attributed to the suppression of PTEN, stimu-
lation of Akt, and upregulation of Bcl-2 and VEGE. As a
result, cardiac function was restored and the infarct size
was diminished [59]. Notable results were also found by
Zhang et al. when cardiac stem cells were preconditioned
with BM-MSC exosomes and administered to a rat model
of MI [60]. Here, cardiac fibrosis was reduced and survival
and capillary density were drastically improved.

Kidney diseases

In order to investigate the renoprotective effects of
BM-MSC exosomes, Bruno et al. found that exosomal
mRNAs encoding CDC6, CDK8 and CCNB1 along with
exosomal hepatocyte growth factor (HGF) and IGF1
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mediated cell cycle entry and subsequent proliferation
of tubular epithelial cells while blocking apoptosis [61].
The renoprotective effects of AD-MSC exosomes over-
expressing glial cell line-derived neurotrophic factor
(GDNF) was investigated on renal injury using a ure-
teral obstruction murine model. Here, exosomes could
decrease peritubular capillary rarefaction and renal fibro-
sis. Moreover, they stimulated angiogenesis, cell migra-
tion, sirtuin 1 signaling pathway as well as conferring
apoptosis resistance [62]. In a rat model of ischemia-rep-
erfusion injury (IRI), BM-MSC exosome administration
was associated with improved tubular epithelial cell pro-
liferation and survival [63], most probably via exosomal
miRNA and mRNA molecules mediating renoprotective
signaling pathways [64]. Exosomes released form kidney-
derived MSCs were also recently reported to induce angi-
ogenesis in the renal tissue by harboring pro-angiogenic
mRNA molecules encoding basic fibroblast growth factor
(bFGF), IGF1 and VEGF [65]. In another study on a rat
model of renal IRI, adipocyte-derived MSC (AD-MSC)
exosomes reduced the levels of creatinine and blood urea

nitrogen (BUN) and improved renal function via down-
regulating pro-inflammatory cytokines and Smad3 and
TGE fibrotic proteins as well as enhancing anti-apop-
totic proteins and angiogenic biomarkers [66]. In a gen-
tamycin-induced AKI model, administration of BM-MSC
exosomes remarkably reduced inflammation by upregu-
lating IL10 and downregulating TNFa and IL6 expression
[67]. In an attempt to explore the antioxidant effects of
MSC exosomes in the kidney tissue, it was revealed that
exosomes derived from human Wharton’s jelly MSCs
(hWJ-MSCs) could repress NADPH oxidase (NOX) and
reactive oxygen species [68] while triggering Nrf2/antiox-
idant response element [69], which led to improved renal
function and apoptosis inhibition. In a cisplatin-induced
AKI model, hWJ-MSC exosomes were reported to stimu-
late autophagy by upregulating autophagy-related genes
such as ATG5, ATG-7, and LC3B [70]. Exosomes released
by hW]-MSCs were also reported to successfully decrease
BUN and creatinine levels, necrosis of proximal kidney
tubules, and production of tubular protein casts through
anti-oxidative and anti-apoptosis pathways [71]. Further
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studies have shown that when BM-MSC exosomes were
co-incubated with cisplatin-injured proximal tubular epi-
thelial cells, they were capable of promoting cell prolif-
eration by conveying IGF1 receptor mRNA [72].

Liver diseases

Exosomes secreted by MSCs were also utilized in numer-
ous studies for exploring their therapeutic effects in
liver diseases. Transplantation of hWJ-MSC exosomes
in a carbon tetrachloride (CCl,)-induced liver injury
(LI) murine model was shown to limit liver fibrosis (LF)
and protect hepatocytes by suppressing epithelial-to-
mesenchymal transition and inactivating the transform-
ing growth factor Bl (TGEP1)/SMAD2 pathway [73].
Hepatoprotective effects of exosomes isolated from
human embryonic stem cell-derived MSCs (hESC-MSCs)
were explored in an in vitro model of acetaminophen/
H,0,-induced LI and a murine model of CCl,-induced
acute LI, and it was revealed that these exosomes con-
tributed to tissue regeneration through upregulating the
expression of PCNA and Cyclin D1 cell cycle regulators
and anti-apoptotic Bcl-xL gene [74]. In a separate study
using a mouse model of CCl,-induced LF, it was revealed
that exosomes released by chorionic plate-derived MSCs
harbored miR-125b that demonstrated hepatoprotec-
tive effect by blocking Smo production and thus inacti-
vating Hedgehog signaling route [75]. Furthermore, it
was revealed that AD-MSC exosomes shuttle miR-122
to hepatic stellate cells (HSCs) and regulate the expres-
sion of miR-122 target genes including IGFIR, Cyclin G1
(CCNG1) and prolyl-4-hydroxylase al (P4HA1), which
affect cell proliferation and collagen maturation in HSCs
[76]. The application of BM-MSC exosomes in a conca-
navalin A-induced LI (a case of immune-induced LI)
could decrease the serum levels of alanine aminotrans-
ferase (ALT) and pro-inflammatory cytokines while
enhancing the expression of anti-inflammatory cytokines
and regulatory T cell (Treg) activity [77]. In another work,
a single administration of hWJ-MSC exosomes harboring
glutathione peroxidase 1 (GPX1), a vital human anti-oxi-
dant, in a murine acute LI model could treat the disease
via clearing hydrogen peroxide and relieving oxidative
stress and cell death [78]. Exosomal Y-RNA-1 molecules
were demonstrated to recover LI and increase survival
by adjusting peripheral inflammatory responses and trig-
gering anti-apoptosis effects in a lethal murine model of
D-galactosamine/TNFa-induced liver failure [79].

Neurological diseases

Exosomes released from BM-MSCs were reported to
exhibit therapeutic effects as they recover post-ischemic
neurological injuries, enhance angioneurogenesis, and
represent long-term neuroprotective functions in a
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murine stroke model [80]. When BM-MSC exosomes
were administered intravenously to a rat stroke model,
neurovascular plasticity was promoted and axonal den-
sity and synaptophysin-positive regions were improved
in the ischemic margin zone of striatum and cortex [81].
Further investigations regarding BM-MSC exosomes
showed that they contain miR-133b, which contributes to
neurite remodeling and consequent stroke recovery upon
delivery to astrocytes and neurons [82]. Additionally, it
was revealed that these exosomes carry the miR-17-92
cluster, which mediates neurogenesis, neural remod-
eling and oligodendrogenesis in the ischemic bound-
ary region [83]. Here, it was further demonstrated that
miR-17-92 cluster-enriched exosomes have the potential
of inhibiting PTEN (a confirmed target gene of miR-17-
92 cluster) and consequently activating the downstream
proteins, protein kinase B (mechanistic target of rapa-
mycin) and glycogen synthase kinase 3f. In a laboratory
model of inflammation-induced preterm brain injury,
BM-MSC exosomes were reported to impede neural
degeneration, microgliosis and inhibit reactive astroglio-
sis [84]. In another study, a reduction of the neurologi-
cal sequelae and recovery of brain function was shown
upon injection of BM-MSC exosomes [85]. While explor-
ing the neuroprotective effects of BM-MSC exosomes
in traumatic brain injury (TBI), researchers found that
exosomes resulted in the promotion of angiogenesis and
neuronal growth rate along with reduction of inflam-
mation in lesion boundary zone and dentate gyrus after
TBI [86]. In a separate TBI study, exosomes isolated from
bone-derived MSCs (B-MSCs) exhibited neuroprotec-
tive effects by reducing the lesion size and recovering
neurobehavioral performance. These outcomes were
mediated by suppressing the expression of pro-apoptotic
Bcl-2-associated X protein, TNFa and IL1{, upregulation
of anti-apoptotic protein B-cell lymphoma 2, and modu-
lating microglia/macrophage polarization [87]. In spinal
cord injuries (SCIs), intravenously-delivered exosomes
were shown to regulate macrophage functions by tar-
geting M2-type macrophages in the injured sites [88].
Intravenous injection of BM-MSC exosomes was also
reported to diminish the proportion of SCI-induced Al
astrocytes, the percentage of p65 positive nuclei in astro-
cytes, and the expression of IL1a, IL1p and TNFa. These
mechanisms were ascribed to nuclear translocation of
the NF-xB p65 [89]. Similar results were reported when
systemic administration of BM-MSC exosomes showed
anti-inflammatory responses in the damaged cord tissue
and improved locomotor activity via disorganization of
astrocytes and microglia [90]. Exosomes isolated from
hypoxia-preconditioned BM-MSCs could rescue synaptic
dysfunction and promote anti-inflammatory effects in an
APP/PS1 murine model of Alzheimer’s disease (AD) [91].
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In another study of AD, it was shown that AD-MSCs
secrete exosomes containing an abundance of neprilysin,
the most utilized enzyme for degradation of B-amyloid
peptides in the brain tissue. The levels of secreted and
intracellular B-amyloid peptides were decreased when
these exosomes were transferred into neuroblastoma
cells [92]. In a separate study, exosomes released from
dental pulp MSCs (DP-MSCs) were reported to res-
cue dopaminergic neurons from apoptosis via inducing
6-hydroxy-dopamine in a 3D culture [93].

Wound healing

Exosomes secreted from hWJ-MSCs contribute to
wound healing process via transferring Wnt4 and acti-
vating [-catenin, which leads to angiogenesis in vivo
[94]. Exosomal miRNAs including miR-21, -23a, -125b,
and -145 from hWJ-MSCs were reported to impede
scar formation and myofibroblast accumulation through
TGFP2/SMAD2 pathway blockade and reduction of col-
lagen deposition [95]. MSC exosomes were also able to
trigger the expression of angiogenesis-related biomol-
ecules and increase microvessel density and blood per-
fusion in the ischemic limbs of a murine model [96].
Wounds treated with hWJ-MSC exosomes demonstrated
rapid in vivo re-epithelialization as well as upregulating
the expression of collagen I, PCNA and CK19. Further-
more, these exosomes harbored Wnt4 that contributed
to B-catenin nuclear translocation and promotion of
skin cell propagation and migration [97]. MSC exosomes
were also reported to ameliorate burn-induced inflam-
mation in cutaneous wound healing. For example, hWJ-
MSC exosomes exhibited anti-inflammatory effects via
reducing mRNA levels of pro-inflammatory cytokines
such as IL1p and TNFa while increasing IL10 levels [98].
In another study, it was shown that AD-MSC exosomes
were enriched in miR-125a that acted as a pro-angio-
genic factor by downregulating the angiogenic inhibitor
delta-like 4 (DLL4) expression and modulating the gen-
eration of endothelial tip cells [99]. Transplantation of
exosomes derived from human induced pluripotent stem
cell-derived mesenchymal stem cells (hiPSC-MSCs) to
the wound sites in a rat model led to rapid re-epithelial-
ization, promoted collagen maturity, and decreased the
scar size. Additionally, these vesicles triggered cell pro-
liferation and migration and increased the secretion of
type L III collagen and elastin in a dose-dependent man-
ner in vitro [100]. Exosomal miR-181c contributed to the
suppression of TLR4 signaling route. Here, exosomes
derived from BM-MSCs could dose-dependently pro-
mote fibroblast propagation and migration, tube forma-
tion, trigger Akt, ERK, and STAT3 signaling pathways,
and upregulate HGF, IGF1, nerve growth factor (NGF)
and stromal cell-derived factor 1 (SDF1) expression [101].

Page 15 of 21

Other diseases

In the lung, exosomes isolated from WJ-MSCs dem-
onstrated remarkable therapeutic effects by relieving
bronchopulmonary dysplasia, hyperoxia-associated inf-
lammation, fibrosis, pulmonary hypertension and pul-
monary vascular remodeling through adjusting the
phenotype of lung macrophages [102]. In a murine atopic
dermatitis model, AD-MSC exosomes could decrease the
levels of eosinophils, IgE, CD86" and CD206™ cells, and
the infiltrated mast cells [103]. Exosomal miR-494 con-
tributed to muscle regeneration via improving angiogen-
esis and myogenesis [104]. Study of BM-MSC exosomes
in an experimental autoimmune encephalomyelitis
model of multiple sclerosis revealed that they were capa-
ble of downregulating pro-inflammatory cytokines and
inducing Tregs [105].

Mesenchymal stem cell-derived exosomes in clinical trials
Preclinical data have proven the safety of exosome
therapy and scalability of their isolation methods from
MSC:s for clinical application. However, the use of MSC
exosomes in clinical setting is limited due to the lack of
established cell culture conditions and optimal proto-
cols for production, isolation and storage of exosomes,
optimal therapeutic dose and administration schedule,
and reliable potency assays to evaluate the efficacy of
exosome therapy [106—108]. There are numerous stud-
ies investigating the efficiency of MSC exosomes in the
clinical settings. Although most of the clinical trials
are in the recruitment and active phases, some of them
have completed without publishing their results. Korde-
las et al. tested the therapeutic effects of BM-MSCs in
patients with steroid refractory graft-versus-host dis-
ease and found that the secretion of IL1B, TNFa, and
IFNy by PBMCs were remarkably reduced following the
third exosome application [109]. In line with the ame-
liorated pro-inflammatory response of the PBMCs, the
disease symptoms improved significantly shortly after
the MSC exosome therapy started. In another study,
Nassar et al. showed that the application of UC-MSC
exosomes led to overall improvement in renal function in
patients suffering from grade III-IV chronic kidney dis-
ease [110]. Here, exosome therapy resulted in remarkable
improvement of plasma creatinine level, estimated glo-
merular filtration rate, blood urea and urinary albumin
creatinine ratio. Furthermore, serum levels of IL10 and
TGEP1 were increased while serum levels of TNFa were
decreased. There are also other ongoing trials performed
to determine the safety and effectiveness of human MSC
exosomes in treatment of tissue injuries which are sum-
marized in Table 3.
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Table 3 Mesenchymal stem cell-derived exosomes in clinical trials (https://www.clinicaltrials.gov/)

Organ Condition/disease

Trial ID/Ref

Phase

Status

Source
of exosomes

Dose/frequency/route Location

Lung Healthy

SARS-CoV-2 pneu-
monia

Bronchopulmonary
dysplasia

Skin Dystrophic epider-

molysis bullosa

Chronic ulcer

Brain Acute ischemic stroke

Alzheimer’s disease

Eye Macular holes

Dry eye

NCT04313647

NCT04276987

NCT04491240

NCT03857841

NCT04173650

NCT04134676

NCT03384433

NCT04388982

NCT03437759 Early phase |

NCT04213248

|

Recruiting

Completed

Enrolling by invitation

Recruiting

Not yet recruiting

Completed

Completed

Not yet recruiting

Recruiting

Recruiting

AD-MSC

AD-MSC

MSC

BM-MSC

BM-MSC

WIJ-MSC

BM-MSC

AD-MSC

UC-MSC

UC-MSC

1x level: 2.0 x 108/3 ml China
2% level: 4.0 x 10%/3 ml

4x level: 8.0 x 108/3 ml

6x level: 120 x 10%/3 ml

8x level: 16.0 x 108/3 ml

10x level: 20.0 x 108/3 ml

All experiments: once;
aerosol inhalation

20x10%3 ml
Once a day during 5 days

China

Aerosol inhalation

Procedure 1: Russia

0.5-2x 10'%3 ml

Procedure 2:
0.5-2x10'%3 ml

All experiments: twice a day
during 10 days; inhalation

20 pmol phospholid/kg

60 pmol phospholid/kg

200 pmol phospholid/kg

All experiments: intravenous
injection

AGLE-102 exosomes USA

Once a day during 60 days

Applied topically to the

entire body
Conditioned medium gel Indonesia
Every week for 2 weeks

Applied topically to the
wound

200 g total protein of miR-  Iran
124-loaded exosomes
One month after attack

Stereotactic guidance

Low dosage group: 5 pug China

exosome/1 ml

Mild dosage group: 10 ug
exosome/1 ml

High dosage group: 20 ug
exosome/1 ml

All experiments: twice a
week during 12 weeks;
nasal drip

20-50 pg exosome/10 pl China

Single dose

Directly injected around
macular hole area

10 ug exosome/drop China

4 times a day during 14 days

Eye drops
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Organ Condition/disease Trial ID/Ref  Phase

Status

Source Dose/frequency/route Location

of exosomes

Other
organs/
tissues

Multiple organ failure

Diabetes mellitus NCT02138331 I, Il

type 1

Osteoarthritis NCT04223622 |

Graft-versus-host
disease

Chronic kidney [110] I1, 1l

disease

NCT04356300 Not applicable Not yet recruiting

Unknown

Not yet recruiting

Concluded

Concluded

UC-MSC 150 mg exosome China

Once a day during 14 days
Intravenous injection

UC-MSC First dose: Intravenous injec-  Egypt
tion of exosomes isolated
from the supernatant
produced from 1.22—

151 x 10° MSCs/kg

Second dose: 7 days after
the first dose; intravenous
injection of MVs isolated
from the supernatant
produced from the same
dose of MSCs utilized in
the first injection

AD-MSC Osteochondral explants Italy
from arthroplasty
patients treated with
AD-MSC secretome (either
complete conditioned

medium or EVs)

BM-MSC 1.3-35 x 10"%exosome/unit; Germany
0.5-1.6 mg/unit (The yield
of an EV fraction isolated
from supernatants of
4% 10" MSCs was defined

as one unit.)
First dose: a tenth of a unit

Second dose: 2 days
after the first dose, unit
amounts were progres-
sively enhanced and
administered every
2-3 days until 4 doses

UC-MSC 100 pg of total EV protein/

kg

2 doses (1 week apart)

Egypt

First dose: intravenous
injection

Second dose: infused into
the renal artery

Concluding remarks

Exosomes secreted by MSCs are now being extensively
exploited to develop novel regenerative strategies for
numerous diseases since they convey most of the thera-
peutic properties of MSCs. Exosomes offer a possibility
of cell-free therapy, which minimizes safety concerns
regarding the administration of viable cells. In many
cases, the regenerative effect of MSC exosomes has
been ascribed to their anti-inflammatory function in

the recipient cells. Exploiting these immunomodulatory
effects allows for the use of MSC-derived exosomes to
treat different inflammatory and autoimmune diseases.
The function of exosomes can be readily adjusted via
preconditioning of MSC culture, for instance by addi-
tion of chemical factors or cytokines, exerting hypoxic
conditions, and introducing gene modifications such
as the CRISPR/Cas9 technology [111]. However, details
about the functional mechanisms of exosomes in MSCs
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and their target cells continue to be elucidated. Moreo-
ver, there are still a few unresolved concerns before
bringing MSC-derived exosomes into the clinical setting.
Standards and guidelines should be established for vesi-
cle size, purity, expression of certain surface biomarkers
(e.g. CDY, CD63, CD81), and acceptable contamination
levels for identification and quality control of the iso-
lated exosomes. It was confirmed that the physiological
state of MSCs influence the therapeutic efficiency of iso-
lated exosomes [108]. This issue can be partly resolved
by MSC preconditioning or extracting exosomes from
induced pluripotent stem cells or embryonic stem cells
[112] in order to diminish the lot-to-lot variation regard-
ing primary naive MSCs. In summary, findings from vari-
ous research works imply that MSC-derived exosomes
possess promising therapeutic capacity for treatment of
a variety of diseases. Efforts directed toward determin-
ing standards on the therapy efficacy and safety issues
will speed up clinical implementation of MSC-derived
exosomes as regenerative agents.
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