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Abstract

Background: Dysfunction in brain network dynamics has been found to correlate with many psychiatric disorders.
However, there is limited research regarding resting electroencephalogram (EEG) brain network and its association
with cognitive process for patients with methamphetamine use disorder (MUD). This study aimed at using EEG
microstate analysis to determine whether brain network dynamics in patients with MUD differ from those of
healthy controls (HC).

Methods: A total of 55 MUD patients and 27 matched healthy controls were included for analysis. The resting brain
activity was recorded by 64-channel electroencephalography. EEG microstate parameters and intracerebral current
sources of each EEG microstate were compared between the two groups. Generalized linear regression model was
used to explore the correlation between significant microstates with drug history and cognitive functions.

Results: MUD patients showed lower mean durations of the microstate classes A and B, and a higher global
explained variance of the microstate class C. Besides, MUD patients presented with different current density power
in microstates A, B, and C relative to the HC. The generalized linear model showed that MA use frequency is
negatively correlated with the MMD of class A. Further, the generalized linear model showed that MA use
frequency, scores of Two-back task, and the error rate of MA word are correlated with the MMD and GEV of class B,
respectively.

Conclusions: Intracranial current source densities of resting EEG microstates are disrupted in MUD patients, hence
causing temporal changes in microstate topographies, which are correlated with attention bias and history of drug
use.

Keywords: Methamphetamine use disorder, EEG microstate, Brain network dynamics, sLORETA, Drug use history,
Attention bias
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Background
Drug dependence is a severe medical and public health
challenge globally. Methamphetamine (MA), one of the
amphetamine-type stimulants, induces toxic effects on
the brain, such as oxidative stress, mitochondrial tox-
icity, excitotoxicity and neuroinflammation [1]. Overall,
these effects disrupt the structure and functioning of the
brain. Previous studies reported that abuse of MA is as-
sociated with extensive cognitive impairment, encom-
passing the executive function, working memory,
problem-solving, and attention deficit [2, 3]. It has been
shown that these impairments are correlated to brain
imaging changes in MA-dependent patients [2, 4]. Some
of the brain regions damaged by MA include the dorsal
prefrontal cortex, medial prefrontal cortex, anterior cin-
gulate cortex, striatum, and insula. Notably, magnetic
resonance imaging (MRI) can effectively diagnose and
evaluate cognitive impairment in MA dependent pa-
tients. Besides, the typical characteristics of drug use his-
tory are also closely associated with cognitive
impairment and structural changes of the brain of MA
dependent patients [5–7].
Information processing by the brain is associated with

the temporal and spatial dynamics of the whole brain
resting network [8, 9]. Coordination and integration of
multiple brain regions is an essential basis of under-
standing cognitive function [10, 11]. Studies have indi-
cated that the spatial-temporal characteristics of brain
networks are beneficial in defining and understanding
the elements of cognitive impairment [12–14]. However,
most previous studies on cognitive function in MA-
dependent patients have focused on the behavioural
changes and alterations in the spatial structure of the
brain. Meanwhile, only a few have explored the temporal
characteristics of cognitive processing [7, 15, 16]. There-
fore, there is a dearth of information on cognitive im-
pairment in patients with substance use disorder, such
as methamphetamine use disorder (MUD).
In recent years, EEG microstate methods are increas-

ingly being used to study the spatial and temporal rest-
ing state dynamics of brain networks [17]. Resting state
EEG displays as periods of potential topographies and
shows quasi-stable configurations called functional mi-
crostates [18]. Functionally, EEG microstates represent
the momentary local states and may indicate spontan-
eous fluctuations in activity in large scale brain networks
[19]. Also, EEG microstates reflect basic brain activity in
spontaneous and event-related EEG researches [20, 21].
Most studies have clustered EEG microstate topograph-
ies into four standard microstate maps, and these cat-
egories represent significant brain configuration
networks [17]. The various microstates are associated
with different types of cognitive processes [22–26], sug-
gesting that microstates might effectively analyze

cognitive deficits resulting from a mental disorder and
addiction. Britz and colleagues used simultaneous EEG-
fMRI techniques to explore the correlation between mi-
crostates and distinct fMRI resting-state networks [22].
Previous research showed that the four microstates
marked A, B, C, and D correspond to resting-state net-
works that had previously been identified to be associ-
ated with phonological processing, the optical network,
the saliency network, and attention, respectively [22].
Besides, these four microstate classes are correlated with
the various aspects of the default mode network [27],
which play an important cognitive role in psychiatric
diseases [28]. Notably, studies focusing on the associ-
ation between resting-state EEG and cognition impair-
ment in MUD patients mainly use the frequency and
entropy analysis methods. The results of these studies
suggested an important relationship between EEG sig-
nals and cognitive function [29–32]. The micro-state
analysis method is beneficial in extracting the temporal
information of EEG signals.
The findings of previous studies on several psychiatric

and neurological disorders suggest that aberrant EEG
microstates reflect abnormal information processing
capabilities during the cognitive process [17, 21, 33–35].
However, the temporal dynamics of the brain networks
in drug users have not been analyzed using the resting
EEG microstate method. The present study, therefore,
used this method to study the association between dis-
rupted brain dynamic networks and cognitive function
of MA users and the potential effect of drug use history.
Through this, it is possible to provide novel strategies
for understanding the dynamics of cognitive function
disruption in MA-dependent patients and other drug
users.
Therefore, this study aimed at investigating the resting

state EEG microstates in MA-dependent patients. Since
structural alterations have been identified using other
brain imaging methods (i.e. MRI and PET), we hypothe-
sized that relative to controls, a disrupted resting state
EEG microstate may develop in MA-dependent patients.
Besides, these disruptions could be associated with cog-
nitive impairment and the characteristics of drug use
history.

Methods
Participants
This study is a part of a larger project investigating the
objective marker system for diagnosis of MUD and re-
lapse warning among MA users in China. We recruited
57 participants with MUD from two compulsory re-
habilitation centers in Shanghai and Yunnan provinces,
China. All patients in the rehabilitation centers from
June 2017 to August 2018 were invited to participate in
the study. The recruitment criteria included: (1)
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minimum age of 18 years; (2) met the requirements of the
fifth edition of the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5) for MUD; (3) used MA in the
three months before recruitment in the study (4) normal
vision and hearing, or within the normal range after cor-
rection (5) right-handed. The exclusion criteria were (1)
diagnosis of other substance use disorders or other axes I
psychiatric disorders; (2) history of head injury, neuro-
logical disorders, or loss of consciousness; (3) patients on
any antidepressant or/and antipsychotic medication.
An additional 30 healthy controls (HC) were recruited

from the local community through advertisement and
word-of-mouth. The recruitment was conducted be-
tween June 2017 and November 2018, after which HC
were matched with the MA groups by gender and age.
Regarding the choice of matching variables, previous
studies have shown that age significantly affects resting
EEG signals and cognitive function [36]. Besides, previ-
ous studies have suggested that EEG signals and cogni-
tive functions differ between males and females [37], so
both age and gender were used as matching variables in
this study. The enrollment of HC was done simultan-
eously with that of patients, so the matching process was
part of recruitment. For HC, the exclusion criteria in-
cluded (1) current substance abuse or dependence; (2)
history of substance dependence other than nicotine; (3)
a current or previous mental illness (or/and treatment);
(4) history of head injury, neurological disorders, or loss
of consciousness; (5) without normal vision or hearing,
or out of range after correction; (6) left-handed. The
study protocol was implemented in compliance with the
principles of the Declaration of Helsinki and approved
by the Ethical Committee of the Shanghai Mental Health
Center. Informed consent was signed by all subjects be-
fore participation in this research.

Measures
Socio-demographic variables
After obtaining informed consent, trained research assis-
tants at the Shanghai Mental Health Center used a Chinese
version of the Addiction Severity Index (ASI-C) to collect
baseline information from the subjects. The information
was collected via face to face interviews in a private envir-
onment to avoid disturbance from others. Patients in the
baseline study were interviewed after detoxification. The
variables used included basic demographic characteristics
(age, gender), history of MA use (accumulated years of MA
use, frequency, and quantities of daily use), and alcohol use
history. The psychometric properties of ASI-C have been
validated in previous studies [38].

CogState battery
CogState Battery is a computerized cognitive tool de-
signed to assess cognitive function, and consists of Two

Back Task (TWOB, working memory), International
Shopping List Task (ISL, verbal learning and memory),
the Groton Maze Learning Task (GML, problem solving/
error monitoring), Social Emotional Cognition Task (SEC,
social cognition), and Continuous Paired Association
Learning Task (CPAL, spatial working memory). Detailed
procedures and rules of the above paradigms have been
provided in past research [39]. In these five tasks, the ISL
score is the total correct response, the TWOB and SEC
scores are the rates of accurate answers, while the GML
and CPAL sores are the total error numbers. Good reli-
ability and validity of the CogState Battery (Chinese ver-
sion) were verified previously [39].

Stroop task
Attention bias was assessed by the MA Addiction Stroop
Task [40]. Two target words ((“ICE” means “MA” and
“SKATING” is the nickname for how Chinese drug users
refer to taking MA)) and two neutral words ((“MESSY
GRASS” and “RESOLVE”)) were involved in this paradigm.
The subjects were asked to press the buttons accord-

ing to the color of the words presented (red, green, yel-
low, and blue), and ignore the meaning of the words.
Each of the four words was presented eight times and
was shown on the screen for 3000ms each time. The
word appeared randomly during the test, and the same
word was set not to appear three times consecutively.
This task included 64 MA-related word trials and 64
neutral word trials. Two outcomes were measured for
this task: (1) Reaction time, which was obtained from
button presses of the dominant hand on four color-
marked buttons; (2) Errors, calculated as a ratio of the
number of wrong color pressed by the subjects to the
total number of trials recorded. More detailed informa-
tion about this paradigm can be found in previous arti-
cles published by colleagues in our laboratory [40]. All
assessments were done following the standardized in-
structions handbook by a trained researcher. The fix-
ation cross and words were displayed on black
background 75 cm from the eyes.

EEG recording and processing
The scalp EEG data were recorded from a high-density
64-channel sintered Ag/AgCl electrode cap (BrainCap;
Asiacut, Germany). Two vertical electrooculography
(EOG) electrodes were positioned above and below the
right eye, and the other two horizontal EOG electrodes
were placed on the outer canthi of both eyes. The
reference electrode was located at the tip of the nose,
while the ground electrode was placed on the fore-
head. The EEG was sampled continuously at a sam-
pling frequency of 1000 Hz, and all impedances were
kept below 5 kΩ. EEG was recorded in the eyes-
closed resting state for 5–6 min.
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EEG data were bandpass filtered at 0.1–70 Hz and eye
movement artifacts were removed using independent
component analysis. Manual screening for other artifacts
was then conducted. In accordance with the steps de-
tailed in previous research [18, 19], data were subse-
quently segmented into artifact-free 2 s epochs before
microstate analysis, digitally band passed at 2–20 Hz and
down-sampled to 250 Hz. The first 20 artifact-free
epochs of each study participant were after re-referenced
to the average reference and used for the analysis of
resting EEG microstates. EEG data were processed using
EEGLAB 13.0b [41] in MATLAB2013b (The Math-
Works, Inc., Natick, US).

Microstate analysis
EEG epochs were transformed into global scalp sequences
of momentary potential map distributions to analyze EEG
microstates. We used the standard strategies for analysis
of microstates described in previous researches [42–44].
The fitted microstate class topographies were computed
using a modified version of the k-means spatial cluster
analysis based on previous studies [19, 45]. Original top-
ographies were clustered into four microstate classes ac-
cording to the findings of a large normative study in
healthy populations [19]. We then performed a two-steps
k-means clustering analysis. At the individual level (first-
step), global field power peaks of each participant were
submitted for k-means clustering analysis, and four micro-
state classes were obtained per individual, which is con-
sistent with previous studies [46–48]. In the second step,
also known as the group-level, the dominant topographies
across all individuals and groups were clustered to obtain
four mean microstate classes for each group. Fitting of mi-
crostates was then conducted to calculate the related pa-
rameters, including mean microstate duration (MMD),
the ratio of total time covered (RTT), global explained
variance (GEV), and occurrence of each microstate in each
participant. The MMD indicates the mean times of each
microstate class, RTT indicates the mean ratio of total
time covered by each of the four microstates, while GEV
quantifies the extent to which each of the four microstates
describes the data. Microstate analysis was performed
using the free academic software Cartool (https://sites.
google.com/ site/cartoolcommunity/) [49].

Statistical analysis
The Student’s T-test or the Chi-square test was used to
test for differences in baseline characteristics between
patients with MUD and HC. Data with non-
homogenous variance and/ or not normally distributed
were analyzed using non-parametric tests. Two-way
Analysis of Variance, performing with microstate class
as within-subject factors and the subject group as be-
tween factor, was used to compare each microstate-

related measurement. Two-tailed Student’s T-test was
then used to compare significant results from each
group. All microstate related parameters of each micro-
state were tested four times. The corrected T-test alpha
value was set to 0.0125 based on the Bonferroni correc-
tion method, and the generalized linear regression model
was used to explore the correlation between significant
microstate related parameters and other factors (i.e. drug
history, CogState Battery and Addiction Stroop Task).
We then investigated the intracerebral current sources

of each microstate classes which best differentiated the
groups in microstate-related parameters using standard-
ized low-resolution brain electromagnetic tomography
(sLORETA) [50]. The intracerebral current sources were
calculated from the individual microstate templates of
each class for all MA-dependent patients and HC. Elec-
trode coordinates were transferred to 6239 cubic voxels
corresponding to cortical grey matter and hippocampi in
the sLORETA inverse solution space. Differences between
the two groups were assessed by voxel-by-voxel unpaired
sample log of F-ratio-tests for each microstate class. The
statistical non-parametric mapping randomization test was
used to correct critical probability threshold values for mul-
tiple comparisons. A total of 5000 permutations were used
to determine the significance of each randomization test.
Source analysis was performed using the sLORETA soft-
ware (http://www.uzh.ch/keyinst/loreta.htm).

Results
Description of member characteristics
Five individuals (including 2 MA-dependent users and 3
HC) who had more than five bad channels were ex-
cluded in the subsequent analysis. To assess the sample
size, we performed a power analysis using the micro-
states MMD difference between the two groups. The
analysis results revealed that our sample size has a
power of 0.82, suggesting reliability of the subsequent
results. Table 1 summarizes the demographic character-
istics and performance of each cognitive task (Cogstate
Battery and Stroop Task) for both MA and HC samples.
There were no significant differences in gender (t = 0.00,
p = 0.96) and mean age (t = 0.53, p = 0.59) between MA-
dependent patients and HC.

Resting state EEG microstates
The topography classes observed in this study were simi-
lar to four classes reported in the previous literatures,
and were labeled microstate A, B, C, and D accordingly
(Fig. 1) [18, 19, 51]. The four microstate topographies
included one with a right anterior-left posterior orienta-
tion (microstate A), one with a left anterior- right pos-
terior orientation (microstate B), one with a central
anterior-posterior orientation (microstate C), and one
with a fronto-central extreme location (microstate D).
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The microstate parameters of the four microstate
classes are summarized in Table 2. No significant
group effects were identified in the four microstate
parameters, but a significant interaction between the
groups and microstate classes were observed for GEV
(F = 3.99, p = 0.01), MMD (F = 2.67, p = 0.05), and
RTT (F = 3.31, p = 0.02). Subsequent analysis indicated
significantly lower MMD (t = − 2.77, corrected p =
0.03) in microstate class A of MA patients relative to
HC. For microstate B, we found a significantly lower
MMD (t = − 3.30, corrected p = 0.01) and GEV (t = −
3.19, corrected p = 0.01) in MA patients relative to
HC. In contrast, microstate class C presented with
significantly higher GEV (t = 2.61, corrected p = 0.04)
in MA patients compared to HC.

EEG microstate source differences
Analysis of current density power by sLORETA showed
significant differences in microstates A, B, and C be-
tween MA patients and HC. For microstate A, supra-
threshold cortical voxels (Threshold: Log-F = 0.70, p =
0.05) displayed increased activation of current density
power in the inferior parietal lobule, precentral gyrus,
middle frontal gyrus, middle temporal gyrus, superior
temporal gyrus, superior parietal lobule, supramarginal
gyrus, and insula (Table S1 and Fig. S1 in the Supple-
ment). For microstate B, suprathreshold cortical voxels
(Threshold: Log-F = 0.76, p = 0.05) displayed increased
activation in the regions of the inferior parietal lobule,
middle occipital gyrus, inferior frontal gyrus, cuneus,
precuneus, superior occipital gyrus, supramarginal gyrus,

Table 1 Baseline characteristics of participants

MA patients
(n = 55)

HC
(n = 27)

t value/χ2 df p

Male gender 67.3% 66.7% 0.00 0.96

Mean age (SD) 29.56 ± 4.90 30.24 ± 6.55 −0.53 80 0.59

Education years 8.81 ± 2.43 9.48 ± 2.34 −1.19 80 0.24

Drug use history

Alcohol co-usea 52.7% 52.4% 0.01 0.94

Accumulated years of MA use (SD) 5.00 ± 3.47 –

MA use frequency

Every day 32.7% –

3–5 days per week 56.4% –

1 day per week 10.9% –

1 day per month 0 –

MA use disorderc

mild 0 –

moderate 16.4% –

severe 83.6% –

MA use dose (SD), gram 0.68 ± 0.48 –

Stroop task

Reaction time of MA word 755.86 ± 79.62 738.22 ± 113.17 0.82 80 0.42

Reaction time of neutral word 747.76 ± 80.44 740.73 ± 113.75 0.32 80 0.75

Error rate of MA word 0.08 ± 0.08 0.03 ± 0.02 3.19 80 0.00**

Error rate of neutral word 0.07 ± 0.08 0.03 ± 0.03 2.51 80 0.01*

Cogstate Battery

TWOB (accuracy rate) 1.01 ± 0.22 1.03 ± 0.22 −0.38 80 0.70

GML (total error) 60.84 ± 19.10 47.81 ± 28.01 2.48 80 0.02*

ISL (total correct) 20.56 ± 5.23 23.10 ± 5.87 −2.00 80 0.05

SEC (accuracy rate) 0.92 ± 0.21 0.98 ± 0.24 −1.16 80 0.25

CPAL (total error) 92.08 ± 51.10 52.86 ± 49.84 3.29 80 0.00**
aUse alcohol in the past 30 days before recruited
bUse tobacco in the past 30 days before recruited
cSeverity was diagnosed through DSM-5
Abbreviations: MA, methamphetamine; HC, healthy controls; SD, standard deviation
*p<0.05; **p<0.01
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and angular gyrus among others (Table S2 and Fig. S2 in
the Supplement). For microstate C, increased activations
(Threshold: Log-F = 0.80, p = 0.05) were observed within
the inferior frontal gyrus, inferior temporal gyrus, cingu-
late gyrus, posterior cingulate, and the parahippocampal
gyrus among others, as shown in Table S3 and Fig. S3.

Relationships between microstate parameters and other
factors
A generalized linear model of class A indicated a nega-
tive correlation between MA use frequency (β = − 0.18,
95%CI = -0.74 to − 0.06, p = 0.02) and MMD. In Class B,
a generalized linear model also indicated that MA use

Fig. 1 Topographical microstate maps. The figure shows spatial configuration of the four microstate classes (a–d). Upper row: microstate
configurations of healthy controls. Lower rows: microstate configurations of patients with methamphetamine use disorder. Different colors
represent the different polarities. The maps are presented as seen from above angle

Table 2 Microstate parameter results summary

MA patients HC t-
value

df p-
value

Corrected
p-value

Mean SD Mean SD

Map A

MMD 37.42 2.56 39.54 4.37 −2.77 80 0.01** 0.03*

RTT 0.18 0.05 0.21 0.07 −2.23 80 0.03 0.11

GEV 0.11 0.05 0.13 0.07 −1.49 80 0.14

Occurrences 4.79 0.98 5.08 1.27 −1.14 80 0.26

Map B

MMD 37.97 2.91 40.29 3.15 −3.30 80 0.00** 0.01**

RTT 0.19 0.05 0.21 0.04 −1.81 80 0.07

GEV 0.11 0.04 0.14 0.04 −3.19 80 0.00** 0.01**

Occurrences 4.91 0.92 5.29 0.71 −1.89 80 0.06

Map C

MMD 46.83 5.53 45.05 2.99 1.56 80 0.12

RTT 0.30 0.07 0.27 0.05 1.99 80 0.05 0.20

GEV 0.26 0.09 0.21 0.06 2.61 80 0.01* 0.04*

Occurrences 6.29 1.00 5.88 0.85 1.83 80 0.07

Map D

MMD 47.16 8.14 46.10 8.58 0.54 80 0.59

RTT 0.29 0.09 0.26 0.10 1.36 80 0.18

GEV 0.23 0.10 0.21 0.12 0.80 80 0.43

Occurrences 5.92 1.22 5.50 1.25 1.45 80 0.15
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frequency (β = − 0.57, 95%CI = -0.96 to − 0.19, p = 0.00),
scores of Two-back task (β = 0.45, 95%CI = 0.12 to 0.77,
p = 0.01), an error rate of MA word (β = − 5.35, 95%CI =
-8.52 to − 2.17, p = 0.00) were correlated with MMD. In
class B also, we found that the MA use frequency (β = −
0.11, 95%CI = -0.17 to − 0.06, p = 0.00), scores of Two-
back task (β = 0.06, 95%CI = 0.01 to 0.11, p = 0.01), and
the error rate of MA word (β = − 0.58, 95%CI = -1.05 to −
0.10, p = 0.02) were correlated with GEV. None of other
variables, including drug history, CogState Battery, and
Addiction Stroop Task were found correlated with the
MMD of class A, MMD of class B, or GEV of class B.
Also, no correlation was observed between the GEV of

class C and drug history, CogState Battery, and Addic-
tion Stroop Task.

Discussion
To the best of our knowledge, this is the first study to
investigate the resting state EEG microstate abnormality
in drug abuse patients. Also, the present study is the first
to explore the correlation between the alterations in
brain resting network and cognitive functions (i.e. Cog-
State Battery and Addiction Stroop Task), along with
drug use history (i.e. accumulated years of MA use, fre-
quency of MA use, daily dosage, and severity of MA use
disorder). Here, we found that the temporal microstate
profiles of MA-dependent patients are different from
those of HC, and these microstate deviations could be
explained by changes in intracranial current source
densities. Moreover, our findings suggest that MA use
frequency is associated with changes in microstates A
and B, while variations in Addiction Stroop Task are
correlated with changes in microstate B.

Microstate
Microstates reflect the dynamic synchronization of neur-
onal functional networks. Relative to HC, we found that
MA-dependent patients have altered microstates A, B,
and C, but microstate D is comparable between the two
groups. Although results on brain network studies of
MA users are difficult to compare directly due to the dif-
ferent techniques and analytical methods adopted, the
findings of several previous studies are consistent with
our results. As Ahmadlou and his colleagues reported,
chronic MA abusers exhibited disrupted Small-World
brain network and global network deficit at the gamma
band [52]. Functional Magnetic Resonance Imaging also
revealed abnormal functional connectivity, which corre-
lates with psychotic symptoms of MA patients [53].
Therefore, our results on brain networks partially concur
with those of previous studies.
The various microstate parameters provide informa-

tion about the underlying neural generators [21]. For in-
stance, MMD is indicative of the stability of a microstate

and its underlying neural assemblies [54, 55]. Relative to
HC, we found that the MMD of MA-dependent patients
is significantly shorter for microstates A and B. In con-
trast, microstates C and D were not significantly differ-
ent between the two groups. This result suggests that
MA-dependent patients have underlying instability in
microstates A and B, but are more stable in microstates
C and D. Similarly, patients with schizophrenia have re-
duced MMD in microstates A and B [56, 57], suggesting
an electrophysiological similarity in the mechanism of
schizophrenia and MA-induced psychosis [58–60]. GEV
reflects the time covered in each microstate class and its
underlying neural generators [21]. Relative to HC, we
found that the GEV of patients with MA use disorder
exhibited higher in microstate C, but lower for micro-
state B. Notably, patients with obsessive-compulsive dis-
order also have abnormalities in these two microstate
classes [61]; that is, the occurrence of these microstates
was significantly different from those of HC. Previous
studies have also suggested similarities in the manifest-
ation of visual and salience network networks in patients
with obsessive-compulsive disorder and addiction [62–
67]. Therefore, abnormalities in these brain networks
may partly explain the alteration in the parameters in
microstates B and C in these two populations [22].

Spatial configuration of microstate classes and the
relationship between parameters
The findings of researches that combined resting state
EEG and fMRI suggested that EEG microstate classes
mirror various large-scale resting-state networks, and
thus reflected the specific functional state of the mental
process [22, 68]. For instance, Microstate A, which is
closely associated with blood oxygen level-dependent
(BOLD) activation of bilateral superior temporal and
parietal cortex, was suggested to reflect the sensorimotor
or auditory network [22, 69]. We conducted the sLOR-
ETA analysis to interpret the changes in microstate class
A in MA-dependent patients and observed hyper-
activation of the superior temporal and parietal area in
these patients, relative to HC. Besides, we found that the
microstate MMD of MA dependent patients was shorter
than that of HC. Interestingly, we found that the MMD
of microstate A was negatively correlated with the MA
use frequency. Previous studies have reported that MA
abuse impairs sensorimotor cortical plasticity and causes
deficits in behavioural performance [70, 71]. The fre-
quency of MA use was found to be associated with the
volume of cortical gray matter [72]. Daumann and col-
league suggested that lifetime use of MA is negatively
correlated with individual gray matter [73]. Ruan and
colleague also indicated that accumulated years of MA
use are negatively correlated with the thickness of gray
matter in the right superior temporal cortex [5]. These
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findings indicate that the aberrance of parameters of mi-
crostate A may reliably indicate the severity of MA use.
As one of the specific predictors of relapse, attention

bias was assessed by the MA Addiction Stroop Task. We
found that attention bias is correlated with aberrant
temporal functioning of microstate B. The microstate B
was found associated with negative BOLD activation in
the striate and extrastriate cortex [22]. Similar to our
findings, a previous study reported that the MMD of mi-
crostate B is significantly lower in patients with mild
spastic diplegia [74]. Besides, patients with moderate
spastic diplegia display various visual categorization im-
pairments and attention deficits [75, 76]. Collectively,
microstate class B may play an essential role in visual
perception and attention. Therefore, the risk of attention
bias in MA-dependent patients can be assessed by meas-
urement of microstate B. Besides, the present study also
demonstrated that MA use frequency is correlated with
changes in the GEV and MMD of microstate B. Previous
studies have shown that drug use history is associated
with deficits in brain structure and cognitive impairment
in MA-dependent patients [5, 16]. sLORETA analysis of
microstate B further suggested that regions related to
visual processing (including middle occipital gyrus,
cuneus, superior occipital gyrus, and the precuneus) are
hyperactive in patients with MA use disorder. Therefore,
it is reasonable to conclude that the microstate B may
be an explanation of cue-reactivity in MA-dependent pa-
tients. Interestingly, we also identified a positive correl-
ation between working memory performance and the
GEV of microstate B. It has been suggested that the
parahippocampal gyrus and fusiform gyrus (specific
brain area of visual network) transmit information rele-
vant to the visual cue. Notably, their spatial activation
patterns during selective maintenance of the cue-related
picture type match those during the processing of visual
working memory [77]. Therefore, abnormalities in mi-
crostate B also partially explain the severity of working
memory deficits in patients with MA use disorder.
Nevertheless, aberrant levels of microstate parameters
do not indicate variations in the function of the corre-
sponding brain region [57, 78]. Whether the behavioral
performance is regulated by the balance between differ-
ent EEG microstates and whether the performance is re-
lated to a single microstate parameter within a
reasonable range are subjects of future research.

Limitations and strengths
There are some limitations to this study. Although the
study participants were recruited from two regions, our
sample size was relatively small. Therefore, future stud-
ies should use a larger sample size to increase the statis-
tical power and the robustness of the research, and
hence generate more reliable results for clinical

applications. Second, although we screened all the pos-
sible patients in the two rehabilitation centers, our study
population may not represent the characteristics of the
MA patients at all various treatment states and different
abstinence periods. Another shortcoming is that we did
not simultaneously record MRI data, which provides a
more direct picture of the activities in the brain regions.
Therefore, we could not determine the correlation be-
tween EEG microstates and the activity of distinct brain
areas. In addition, due to the cross-sectional nature of
our study, the conclusion that the aberrance observed in
the microstates resulted from MA dependence should be
made with more caution. As such, a longitudinal study
should be done to verify our findings. The strengths of
this study are as follows. Firstly, the gender and age of
our patient group and the HC were sufficiently matched,
and therefore no significant differences between the
groups. Secondly, the low-cost and noninvasive EEG re-
cording used to detect the high time resolution network
dynamics of the brain is reliable; hence the results are
applicable in clinical practice.

Conclusions
Our study reveals that the microstate topographies were
aberrant in patients with MUD. In general, the present
study is the first to explain changes in the microstates of
drug dependence patients and its correlation with rele-
vant clinical features. Therefore, we provide preliminary
evidence for exploring whether EEG microstates could
be significant indicators of cognitive disruption in
substance-dependent patients.
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