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Abstract

Background: The dysregulation of gut microbiota is pivotal in colorectal carcinogenesis. Meanwhile, altered gut
microbiome may affect the development of intestinal diseases through interaction with the host genes. However,
the synergy between the altered gut microbiota composition and differential expression of specific genes in
colorectal cancer (CRC) remains elusive. Thus, we integrated the data from 16S rRNA gene sequences and RNA
sequences to investigate the potential relationship between genes and gut microbes in patients with CRC.

Results: Compared with normal samples, the presence of Proteobacteria and Fusobacteria increased considerably in
CRC samples; conversely, the abundance of Firmicutes and Spirochaetes decreased markedly. In particular, the
genera Fusobacterium, Catenibacterium, and Shewanella were only detected in tumor samples. Meanwhile, a closely
interaction between Butyricimonas and Clostridium was observed in the microbiome network. Furthermore, a total
of 246 (differentially expressed genes) DEGs were identified between tumor and normal tissues. Both DEGs and
microbiota were involved in bile secretion and steroid hormone biosynthesis pathways. Finally, genes like
cytochrome P450 family 3 subfamily A member 4 (CYP3A4) and ATP binding cassette subfamily G member 2
(ABCG2) enriched in these two pathways were connected with the prognosis of CRC, and CRC patients with low
expression level of CYP3A4 and ABCG2 had longer survival time.

Conclusion: Identifying the complicated interaction between gut microbiota and the DEGs contributed to further
understand the pathogenesis of CRC, and these findings might enable better diagnosis and treatment of CRC
patients.
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Background
Colorectal cancer (CRC) is one of the primary causes of
mortality and morbidity worldwide, thus representing a
major public health issue [1]. Although heritable genetic
mutations are closely linked to some types of CRC [2],
increasing evidences indicate that diet is regarded as a
notable risk factor of CRC [3, 4]. Chan et al. revealed
© The Author(s). 2020 Open Access This artic
which permits use, sharing, adaptation, distrib
appropriate credit to the original author(s) and
changes were made. The images or other thir
licence, unless indicated otherwise in a credit
licence and your intended use is not permitte
permission directly from the copyright holder
The Creative Commons Public Domain Dedica
data made available in this article, unless othe

* Correspondence: doctormawang@126.com
1Department of Oncology, The First Affiliated Hospital of Zhengzhou
University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou 450000,
Henan, China
Full list of author information is available at the end of the article
that excessive intake of red meat and animal fat might
increase the risk of CRC [5]. It is reported that diet can
modulate the composition of gut microbiota which
serves a crucial role in maintaining intestinal homeosta-
sis and is involved in the regulation of host inflammation
and immune responses [6]. Different members of the in-
testinal microbiota can jointly regulate the host immune
and metabolic systems, subsequently producing carcino-
genic or anticancer substances [7, 8]. Lately, accumulat-
ing studies have reported the role of intestinal
microbiota in health and disease [9, 10]. Flemer et al.
proposed that the disharmony of intestinal microbiota
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might influence the pathogenesis of CRC [11]. Hence,
applying strategies to manage the composition of gut
microbiota to promote recovery of a favorable micro-
biota community may be feasible in the treatment of pa-
tients with CRC.
Additionally, it has been revealed that an altered gut

microbiome may affect the development of intestinal
diseases through interaction with the innate immune
system and other host genes [12]. Huang and colleagues
demonstrated that the possible pathogenic flora of
colitis-related cancer was connected with the C-X-C
motif receptor 2 (CXCR2) signaling axis during cancer
progression [13]. Imhann et al. showed that the inter-
action between host genetics and intestinal microbiota
was the basis of the occurrence and clinical manifesta-
tions of inflammatory bowel disease [14]. Moreover, en-
teric microbiota dysbiosis and genetic abnormalities led
to disruption of the intestinal barrier, thus triggering
early kidney injury in mice [15]. Furthermore, a large
number of studies have shown that dysbiosis of micro-
biota contributes to cancer susceptibility by affecting
multiple pathways. A previous study indicated that gut
microbes induced epithelial-to-mesenchymal transitions
through various signaling pathways, such as Wnt- and
TGF β-signaling pathway, resulting in invasion and me-
tastasis of CRC cells [16]. These findings emphasize that
these specific pathways can influence the development
of cancer through altering gene expression and micro-
biota composition [17]. However, pathways that involved
in the altered microbiota composition and differential
gene expression in CRC have not been well identified.
Meanwhile, specific genes that may disrupt the gut mi-
crobial composition and ultimately cause CRC remain
not well recognized.
With the development of biological information tech-

nology, high-throughput sequencing has been widely
employed to investigate the pathogenesis of cancer.
Meanwhile, multi-omics (metagenomics, transcripto-
mics, and proteomics) are rapidly expanding our know-
ledge of the gut microbiota in health and disease.
Thompson et al. explored the correlation between the
gut bacterial groups and host genes expression in pa-
tients with breast cancer by using RNA sequencing data
and 16S ribosomal sequencing data [18]. However, a glo-
bal investigation of the association of tumor gene ex-
pression with tumor metagenomics in CRC has not been
well described. The obtainment, analysis, and compari-
son of multi-omics data are challenging tasks. Some ac-
tual difficulties must be considered. For example,
samples collection, as well as RNA and DNA extraction
are challenging; in addition, sequencing costs and run
times of metagenomics and transcriptomics analyses are
substantially higher and longer than single sequencing
analysis. Thus, we used the sequencing data from public
databases for analysis. Normally, multi-omics studies
should analyze the sequencing results from tumors and
matched normal tissues that were from same patients
[19, 20]. Unfortunately, analyzing the sequencing data of
the same patients were difficult due to our data came
from two databases. Therefore, we made an initial ex-
ploration of the relationship between microbial compos-
ition and gene expression. In the present study, the data
of 16S rRNA sequencing and mRNA sequencing were
downloaded, followed by identification of the signifi-
cantly altered gut microbiota and differentially expressed
genes (DEGs) between CRC sample and normal sample.
In addition, Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment pathway analysis of differential
OUT and DEGs was respectively performed, followed by
integration to identify the co-enrichment pathways. Fi-
nally, survival analysis of DEGs involved in co-
enrichment pathways was further conducted. This study
described the relationship between intestinal flora and
gene expression in patients with CRC, and provided
valuable information for diagnosis and treatment of
CRC.

Results
Rarefaction curve and diversity analysis
Rarefaction curves of most samples tend to be flat, sug-
gesting that the amount and depth of sequencing data
were reasonable (Fig. 1a). The principal component
analysis (PCA) plot showed differences in the gut micro-
biota composition between CRC and normal samples
(Fig. 1b). In addition, we calculated the alpha diversity
indices to estimate the diversity of gut microbiota. In the
normal samples, the alpha diversity indices were 5.4, 0.9,
149.4, and 18.6 for Shannon, Simpson, chao1, and PD_
whole_tree, while these indices for tumor samples were
5.5, 0.9, 147.7, and 18.5. No differences were observed
among these four indicators between the two groups.
Thus, the alpha diversity results revealed that there was
no significant difference between the normal samples
and tumor samples (Fig. 1c).

Taxonomic composition
A total of 13 different phyla were detected from these
two groups. The results are shown in Fig. 2a and b. At
the phylum level, the microbiota of the tumor and con-
trol samples shared 12 phyla, and the members of Thau-
marchaeota were only identified in the control group. In
addition, four dominant phyla were detected among all
the samples, including Firmicutes (50.7% in normal
group and 46.5% in tumor group), Proteobacteria (15.9%
in normal group and 21.7% in tumor group), Bacterio-
detes (21.5% in normal group and 22.4% in tumor
group), and Actinobacteria (4.3% in normal group and
4.1% in tumor group). Compared with the normal group,



Fig. 1 Alpha and beta diversity of CRC and normal samples. (a Rarefaction curves of all samples sequenced, indicating the number of OTUs
observed with different sequencing depths. b PCA plot. c Boxplots showing alpha diversity in CRC and normal samples using different metrics
(Shannon, Simpson, Chao1, and PD_whole_tree indices))
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the relative abundance of Firmicutes, Spirochaetes, and
Euryarchaeota in tumor group was decreased, while the
abundance of Fusobacteria, Proteobacteria, and Bacteroi-
detes was increased. Meanwhile, the gut microbiota of
the two groups shared 24 genera. The results demon-
strated that the level of Bacteroides was advantaged
across two groups (Fig. 2c and d). Specifically, four dom-
inant genera, including Bacteroides (18.7%), Blautia
(6.6%), Prevotella (5.2%), and Parabacteroides (4.9%),
were observed in normal group. Meanwhile, the abun-
dance of Bacteroides (19.6%), Fusobacterium (6.7%), and
Blautia (6.2%) was higher in the tumor group compared
with normal group. Notably, Fusobacterium (6.7%),
Catenibacterium (2.5%), and Shewanella (2.0%) were
specifically detected in the tumor samples.

Differentially enriched operational taxonomic units (OTU)
and pathway enrichment analysis
A total of 66 differentially enriched OTUs were identi-
fied between CRC samples and normal samples, includ-
ing 22 up-regulated and 44 down-regulated OTUs. The
differential OTUs were visualized by using volcano plot
and hierarchical clustering (Fig. 3a and b). There was
significant difference between tumor and normal



Fig. 2 Differential microbiota distribution at phylum (a, b) and genus (c, d) level between normal and tumor samples
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samples. The results indicated that the abundance of
Actinobacteria and Fusobacteria in tumor samples was
significantly higher than that in normal samples. Com-
pared with normal samples, the relative abundance of
Firmicutes and Proteobacteria was observably lower in
tumor samples. Meanwhile, the differential OTUs were
significantly involved in 67 pathways (Fig. 3c). The re-
sults implicated that these OTUs mainly participated in
CRC, MAPK signaling pathway, and p53 signaling
pathway.
Network analysis of microbiome
Network analysis of differential OTUs to reveal the rela-
tionship among microbes. The network composed of 38
nodes and 55 edges was constructed to describe the
complex relationships of microbiome (Fig. 4). The 35
genera were from eight bacterial phyla, including 24 gen-
era from Firmicutes (57.55%), one genus from Crenarch-
aeota (10.40%), two genera from Bacteroidetes (10.39%),
two genera from Actinobacteria (8.87%), six genera from
Proteobacteria (6.52%), one genus from Cyanobacteria
(5.21%), one genus from Euryarchaeota (1.03%), and one
genus from Spirochaetes (0.03%). Bacteria from Bacter-
oides, Phascolarctobacterium, and Delftia showed inter-
action with seven, six, and four genera, respectively.
Specially, for the genera related to CRC, Butyricimonas
showed closely connection with Clostridium.
DEG identification and pathway enrichment analysis
A total of 246 DEGs (222 up-regulated and 24 down-
regulated genes) were screened between tumor and nor-
mal samples. By comparing with the normal group, we
found that apolipoprotein B (APOB) and carbonic anhy-
drase 1 (CA1) were significantly up-regulated, whereas
angiopoietin like 5 (ANGPTL5) and shisa family member
7 (SHISA7) were down-regulated in the tumor samples.
Furthermore, up-regulated DEGs were significantly
enriched in 22 KEGG pathways (Fig. 5a), such as genes
involved in chemical carcinogenesis, drug metabolism-
cytochrome P450, and bile secretion. The down-
regulated DEGs were closely involved in mineral absorp-
tion (Fig. 5b).

Integrated analysis
We integrated the pathways enriched by DEGs and
OTUs, two overlapping pathways were obtained, namely,
bile secretion and steroid hormone biosynthesis. These
two pathways could affect CRC not only at transcrip-
tome levels, but also at the intestinal microbiota level
(Fig. 5c). Additionally, a total of 11 up-regulated DEGs,
including aquaporin 8 (AQP8), carbonic anhydrase 2
(CA2), solute carrier family 4 member 4 (SLC4A4), ATP
binding cassette subfamily G member 2 (ABCG2), cyto-
chrome P450 family 3 subfamily A member 4 (CYP3A4),
ATPase Na+/K+ Transporting subunit alpha 2
(ATP1A2), ATP binding cassette subfamily B Member
11 (ABCB11), hydroxy-delta-5-steroid dehydrogenase, 3
beta- And steroid delta-isomerase 2 (HSD3B2), UDP



Fig. 3 Identification of the different OTUs and KEGG pathway enrichment. (a The volcano plot of different OTUs. b The heat map of different
OTUs. Green represents low expression, and red indicates high expression. c KEGG pathways enrichment analysis. Red refers to high expression,
while green refers to low expression)
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glucuronosyltransferase family 1 member A8 (UGT1A8),
UDP glucuronosyltransferase family 2 member B10
(UGT2B10), and UDP glucuronosyltransferase family 1
member A3 (UGT1A3), were significantly involved in
these two pathways.
Survival analysis
Survival analysis of above DEGs was performed using
Kaplan-Meier (K-M) method. Among these candidate
genes, three genes, including SLC4A4, CYP3A4, and
ABCG2, were significantly related to the prognostic of
CRC. As shown in Fig. 6, CRC patients with low expres-
sion level of CYP3A4 and ABCG2 had longer survival
time.



Fig. 4 Networks of the bacterial OTUs. Nodes correspond to OTUs and node size corresponds to their relative abundance
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Discussion
Genes are known to regulate the pathogenesis of CRC
and are associated with the survival outcomes of pa-
tients. In addition, host genes can also regulate the
growth of microbiota, influencing the composition of the
Fig. 5 KEGG pathways enrichment analysis. (a KEGG pathways analysis of D
regulated DEGs. c Venn diagrams of the KEGG pathways between the diffe
intestinal microbial community [21]. Thus, we investi-
gated the association between mRNA expression and
microbiome composition in CRC tissues. In this study,
we found that the abundance of Proteobacteria and
Fusobacteria increased in the tumor samples, whereas
EGs up-regulated in CRC. b KEGG pathways analysis of down-
rent OTUs and DEGs)



Fig. 6 The Kaplan-Meier curves for CYP3A4 (a) and ABCG2 (b)
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that of Firmicutes decreased. Fusobacterium, Catenibac-
terium, and Shewanella were specifically detected in the
tumor tissues. Additionally, two co-enrichment path-
ways, including bile secretion and steroid hormone bio-
synthesis, were associated with both DEGs and
differential OTU in CRC. Furthermore, CRC patients
with low expression level of CYP3A4 and ABCG2 had
longer survival time.
The tumor microenvironment of CRC is a complex

community of cancer cells, noncancerous cells, and di-
verse microbiota [22]. The imbalance of gut microbiota
may contribute to carcinogenesis. Aleksandar et al. re-
ported that Fusobacterium were enriched in carcinomas,
whereas the abundance of Firmicutes significantly de-
creased in tumors [23], which was consistent with our
findings. Specifically, Fusobacterium was markedly
enriched in the tumor tissues. A previous study sug-
gested that Fusobacterium expressed the virulence factor
FadA and activated the WNT signaling pathways, thus
promoting growth of CRC [24]. Fusobacterium has been
shown to inhibit immune responses of CRC tumors [25].
Meanwhile, Fusobacterium species are also known to in-
duce host proinflammatory responses and possess viru-
lence [26]. Our findings were supported by the above
reports, and highlighted that the clinical relevance of
Fusobacterium in the development of CRC should be ad-
dressed in further studies. In this study, we found She-
wanella was another genus particularly enriched in the
tumor tissues. Shewanella was revealed to cause pul-
monary and blood infections [27], and it could raise
purulent pericarditis with greenish pericardial effusion
[28]. Wang et al. suggested that increased Shewanella
algae was a biomarker of colorectal adenoma [17]. How-
ever, its role in CRC tumor progression was not well-
defined, further detailed studies were required to verify
our findings. Interestingly, a closely interaction between
Butyricimonas and Clostridium was observed in the
microbiome network. Wu et al. confirmed that Butyrici-
monas was only detected in CRC group from mouse
model [29]. Meanwhile, Clostridium was a risk factor for
the development of CRC [30]. A previous study sug-
gested that transplanting Clostridium symbiosum to
germ-free nutrition-deficient mice might promote pro-
tein synthesis in local gut epithelium, which might be
considered as potential supporter to the development of
carcinogenesis [31]. Additionally, Clostridium symbio-
sum was a promising biomarker for early and noninva-
sive detection of CRC [32]. Taken together, we
hypothesized that this relationship might play a pivotal
role in the pathogenesis of CRC, and these two micro-
biotas could be utilized as predictors of CRC diagnosis.
Two pathways were significantly enriched in both

DEGs and OTUs, namely, bile secretion and steroid hor-
mone biosynthesis pathways. Moreover, genes like
CYP3A4 and ABCG2 were involved in these two path-
ways and were also associated with the prognosis of
CRC. CYP3A4 encodes a member of the cytochrome
P450 superfamily of enzyme [33]. A recent study dem-
onstrated that the genotoxicity of the carcinogen was in-
fluenced by cytochrome P450 enzyme system, and
CYP3A was highly expressed in colonic tissue [34].
Zhang et al. pointed out that CYP3A4 might be recog-
nized as an anti-cancer target, indicating it could be
used as a potential molecular marker for predicting and
treating CRC [21]. Additionally, CYP3A was involved in
the metabolism of carcinogen and was associated with
inactivation of anticancer drugs [35]. A prior study im-
plicated that the CYP3A mRNA transcripts were present
in the human colorectal epithelium and CRC cell lines
[36]. Similarly, we also showed that CYP3A4 served an
important role in the development of CRC. Furthermore,
a study about the relationship between cytochrome P450
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and CRC indicated that several P450s were the inde-
pendent markers of CRC prognosis [34], which were
consistent with our results. Pathway enrichment analysis
revealed that CYP3A4 was involved in steroid hormone
biosynthesis pathway. The association between steroid
hormone biosynthesis pathway and cancer development
has been confirmed. A study on gastric cancer (GC) sug-
gested that steroid hormone biosynthesis pathway and
their receptors expressions could be altered by genetic
variations, thereby contributing to susceptibility to GC
[37]. Steroid hormones also played a central role in the
progression of prostate cancer, and conversion of ad-
renal androgen precursors and other steroid-producing
pathways might contribute to tumor progression and re-
sistance to therapy [32]. Therefore, we speculated that
CYP3A4 might serve important role in the pathogenesis
of CRC via affecting steroid hormone biosynthesis path-
way, as well as it might be regarded as a prognostic bio-
marker and a therapeutic target for CRC.
ABCG2 is a member of the superfamily of ATP-

binding cassette (ABC) transporter protein, which can
induce drug resistance and treatment failure in tumor
tissues [38]. Liu et al. suggested that ABCG2 was highly
expressed in CRC and it might be involved in progres-
sion and metastasis of advanced malignancy cancer [39],
which was in line with our finding. Meanwhile, higher
ABCG2 mRNA expression also represented an unfavor-
able prognostic factor of esophageal squamous cell car-
cinoma [40]. Thus, we speculated that ABCG2 might be
regarded as a prognostic marker of CRC. In this analysis,
we observed that ABCG2 was involved in bile secretion
pathway. ABCG2 is a hepatobiliary efflux transporter
and is involved in the biliary excretion of sulfate conju-
gates [41] and troglitazone sulfate of therapeutics [42].
Genes such as urothelial cancer associated 1 (UCA1)
which participated in bile secretion pathway were over-
expressed in hepatocellular carcinoma (HCC) tissues
[43]. Additionally, bile acids role as tumor promoters
have been confirmed by extensive experiments [44, 45].
From the above, ABCG2 might play role in the patho-
genesis of CRC via bile secretion pathway. Although the
mechanism of ABCG2 in CRC progression remained un-
clear, the importance of ABCG2 in CRC should not be
underestimated.
Taken together, our study highlighted that changes in

gene expression and microbiota composition were linked
to the specific pathways. We showed that differential ex-
pression of genes might cause the alteration of the bile
secretion and steroid hormone biosynthesis in CRC tis-
sues, thereby changing the abundance and composition
of intestinal microbiota and eventually might trigger the
occurrence of cancer. Our results have to be interpreted
in light of some limitation. In this analysis, CRC related
data were obtained from two different databases and it
was not from matched samples. An integrated study
based on multi-omics data from the same patient will be
our focus in the future. In addition, our study was based
on bioinformatics analyses of the datasets from public
databases, and further experimental studies and clinic
trial must be conducted to validate and strengthen our
results.

Conclusion
By integrating the results of microbiome and transcrip-
tome, we revealed a potential relationship between the
genes and gut microbes in patients with CRC, and
gained better insight into the pathogenesis and prognosis
of CRC. Our study might provide a new perspective for
the diagnosis and treatment of CRC, and these genes
and microbiota might serve as potential diagnostic
markers and therapeutic targets for CRC.

Methods
Data resource
The intestinal microbiota data with the number
SRP158779 (http://www.ncbi.nlm.nih.gov/sra/SRP15
8779) were retrieved from the NCBI Sequence Read
Archive (SRA) database. This dataset contained 38 sam-
ples from 19 patients, including 19 CRC tumors samples
and 19 paired non-neoplastic tissues. DNA was ex-
tracted and purified using the QIAgen DNA extraction
kit. The library was generated based on the V3-V4
region of the 16S rRNA, and then was sequenced on an
Illumina HiSeq 2000 platform by using paired-end se-
quencing. In addition, the mRNA sequencing data (level
3, raw counts) and clinical characteristics of CRC were
downloaded from The Cancer Genome Atlas (TCGA)
database (http://firebrowse.org/) for a total of 422 sam-
ples (371 CRC tumors and 51 normal samples).

OTU cluster and taxonomy classification
The raw data were converted to fastq format using
fastq-dump software (parameter: split-3). Raw data con-
taining low-quality reads that could affect the results of
following analysis. Thus, quality control was carried out
to obtain high-quality clean reads. Quantitative Insights
Into Microbial Ecology (QIIME) (version 1.4.0) [25] soft-
ware was employed to perform further analysis. Primar-
ily, the paired-end reads were assigned to samples based
on their unique barcodes, and then the amplified
primers were excised and chimera sequences were re-
moved. Additionally, the clean reads were used for diver-
sity analysis and taxonomic composition based on the
Greengenes database (release 13.5, http://greengenes.sec-
ondgenome.com/) [46]. Filtered sequences were clus-
tered into OTUs at 97% similarity using UCLUST
(version 1.2.22q, http://www.drive5.com/usearch/) [47].
Thereafter, the sequence with the highest abundance in
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http://www.drive5.com/usearch/
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each OTU was selected as the representative sequence
of this OTU. Ultimately, based on the number of se-
quences included in each OTU, the OTU table abun-
dance in each sample was constructed. In addition,
taxonomic assignments of OTUs that reached 97% simi-
larity level were performed using RDP classifier (https://
sourceforge.net/projects/rdp-classifier/) [48] by compar-
ing with the Greengene database (Release 13.5, http://
greengenes.secondgenome.com/) [49].

Alpha and beta diversity analysis
Abundance and diversity of microbial communities
could be reflected by alpha diversity. The Shannon,
Simpson, Chao1, and PD_whole_tree indices were calcu-
lated to estimate alpha diversity. Concretely, the Shan-
non and Simpson indices were used to represent the
community diversity, and chao 1 indicated the commu-
nity richness, as well as PD_whole_tree symbolized the
phylogenetic diversity. All the statistical analyses were
performed using the R phyloseq package [50]. Addition-
ally, the rarefaction curve was plotted to reveal whether
the amount of sequencing data was reasonable. Beta di-
versity analysis could examine the similarity of commu-
nity structure among different samples. In the present
study, beta diversity was calculated by the QIIME soft-
ware and cluster analysis was conducted by PCA; there-
after, RGL package in R software was applied to visualize
the results.

Screening of differentially OTU
The OTU data were preprocessed by using trimmed
mean of M values (TMM) method from edgeR package
in R software [51]. Subsequently, the differential analysis
was carried out using the quasi-likelihood (QL) F-test
from edgeR package. P value < 0.05 was considered as
statistically significant.

Network analysis of microbiome
In order to further explore the relationship among
differential OTUs, a reciprocal interaction network
among microbiome was constructed. Based on the
differential OTUs, the correlation coefficient matrix
between OTUs was calculated by using R with igraph
(version 1.2.2) and psych (version 1.8.4) packages.
The pairs with both p value < 0.05 and |r| > 0.6 were
selected to construct network, and was visualized by
using Cytoscape (version 2.8).

Prediction of the function of differential OTUs
Phylogenetic investigation of communities by recon-
struction of unobserved states (PICRUSt) is a computa-
tional approach to predict the function of bacteria
according to the obtained 16S rRNA gene sequences. In
this study, PICRUSt program was used to predict the
functional profile of the microbial communities. The
main procedures were displayed as following: 1) based
on the full-length sequence of 16S rRNA gene of the
measured microbial genome, the genetic functional pro-
files of their common ancestors of differential OTUs
were predicted; 2) the functional profiles of other un-
tested species in the Greengenes 16S rRNA gene full-
length sequence database were deduced, and then the
genetic function prediction spectrum of the entire
lineage of archaea and bacteria domain was constructed;
and 3) the composition of the sequenced bacteria was
mapped into the KEGG database to predict the meta-
bolic function of the microbiota. EdgeR was used to
identify the bacteria associated pathways, and p value <
0.05 was considered as statistically significant.

Identification of DEGs and pathway enrichment analysis
The raw reads of the TCGA dataset were transformed
on the base (count + 1) logarithm for further analysis.
Subsequently, the data were normalized and analyzed by
edgeR, and DEGs were selected with |logFC| > 1.5 and
false discovery rate (FDR) < 0.05.
The pathway enrichment analysis of DEGs was carried

out by using clusterProfiler [30] of R package. There-
after, gene count ≥2 and p value < 0.05 were set as the
cut-off criterion.

Integration of amplicon and transcriptome
To explore the relationship between differential OTUs
and DEGs, the functional prediction of differential OTUs
and DEGs was integrated. The same or similar pathways
that shared between the two sets of data were selected,
and the obtained pathways were regarded as CRC-
related functions affected by intestinal microbiota.

Survival analysis
The prognosis outcomes of CRC patients, including
overall survival (OS) and survival status, were obtained
from TCGA database. The survival analysis of genes in-
volved in obtained pathways was performed. All samples
were divided into high and low expression groups ac-
cording to the median expression level of genes. The
Kaplan–Meier survival curves were plotted and statis-
tical significance was assessed using the log-rank tests.
P < 0.05 was set as the cut-off criteria for statistical
significance.
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