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Comparative analysis of anti-viral
transcriptomics reveals novel effects of
influenza immune antagonism
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Abstract

Background: Comparative analysis of genome-wide expression profiles are increasingly being used to study
virus-specific host interactions. In order to gain mechanistic insights, gene expression profiles can be combined
with information on DNA-binding sites of transcription factors to detect transcription factor activity (by analysis of
target gene sets) during viral infections. Here, we apply this approach to study mechanisms of immune antagonism
elicited by Influenza A virus (New Caledonia/20/1999) by comparing the transcriptional response with the
non-pathogenic Newcastle disease virus (NDV), which lacks human immune antagonism.

Results: Existing gene set approaches do not quantify activity in a way that can be statistically compared between
responses. We thus developed a new method for Bayesian Estimation of Transcription factor Activity (BETA) that
allows for such quantification and comparative analysis across multiple responses. BETA predicted decreased ISGF3
activity during influenza A infection of human dendritic cells (reflected in lower expression of Interferon Stimulated
Genes, ISGs). This prediction was confirmed through a combination of mathematical modeling and experiments at
different multiplicities of infection to show that ISGs were specifically blocked in infected cells. Suppression of the
transcription factor SATB1 was also predicted as a novel effect of influenza-mediated immune antagonism, and
validated experimentally.

Conclusions: Comparative analysis of genome-wide transcriptional profiles can reveal new effects of viral immune
antagonism. We have developed a computational framework (BETA) that enables quantitative comparative analysis
of transcription factor activities. This method will aid future studies to identify mechanistic differences in the
host-pathogen interactions. Application of BETA to genome-wide transcriptional profiling data from human DCs
identified SATB1 as a novel effect of influenza antagonism.

Keywords: Gene set enrichment analysis, Transcription factor activity, Mathematical modeling, Influenza
antagonism, Dendritic cells

Background
Circulating strains of influenza A virus (IAV) vary year-to-
year in their genetic composition and potential pathogen-
icity. Influenza associated deaths ranged from 3000 to
49,000 per year in the United States between 1976 and 2007
[1, 2]. The impact of IAV on the human population is influ-
enced by the periodic occurrence of IAV pandemics, such as
the one in 2009 that resulted in the deaths of more than

18,000 people worldwide [3, 4]. These pandemics are driven
by the introduction of new IAV strains for which there is no
(or minimal) pre-existing immunity. The 2009 IAV pan-
demic strain was a result of a previous triple reassortment of
bird, swine and human flu viruses further combined with a
Eurasian pig flu virus. The ability to predict the immune re-
sponsiveness to such emerging strains would greatly im-
prove our ability to respond appropriately to these threats.
The IAV genome has evolved several mechanisms to

antagonize host immune responses. NS1 and PB1-F2 are
particularly important since they directly interact with and
modulate cellular innate immune response [5–7]. For ex-
ample, NS1 binds and sequesters double-stranded RNA
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(dsRNA) produced by the virus, thereby preventing activa-
tion of host pathogen-recognition receptors (PRRs); delay-
ing the production of interferon beta (IFNβ). Mutations in
these immune antagonists have been associated with in-
creased symptoms in circulating IAV strains [8, 9]. Thus,
understanding mechanisms of IAV antagonism is critical
to be able to predict pathogenicity.
Genome-wide transcriptional profiling studies offer an

unbiased approach to investigating host immune re-
sponses, and have identified several markers associated
with severe IAV infections [8, 10–12]. Severe infections
are generally characterized by an early, sustained and ex-
cessive inflammatory response [8, 10–12]. This inflam-
matory response is regulated by NFkB, HMGA1 and
NFATC4 transcription factors [12]. In contrast, asymp-
tomatic infections are associated with the induction of
negative regulators of inflammatory signals, especially
NLRP3 and NOD2 [11, 12]. Many transcription factors,
including IRF7, STAT1 and NFkB1, are induced by all
IAV strains [13, 14]. Nevertheless, comparison across
multiple IAV strains has revealed strain-specific effects
on the rate and magnitude of the innate immune re-
sponses [15]. Many of these strain-specific effects are
likely due to differences in virally-encoded immune an-
tagonists. For example, the 2009 pandemic strain lacks
the ability to interact with the cellular pre-mRNA pro-
cessing protein CPSF30 [16] and does not code for the
virulence factor PB1-F2 [17]. Moreover, deletion of NS1
increases the number and magnitude of expression of
cellular genes implicated in the IFN, NF-κB, and other
antiviral pathways [7, 8, 18, 19]. However, reproducible
signatures of IAV antagonisms are yet to be revealed
[20]. Immune antagonism is frequently associated with
the suppression of activity (e.g., production of interferon
and interferon induced proteins, such as OAS and PKC
is suppressed by non-structural (NS1) protein of IAV)
[7]. Thus, detecting such mechanisms depends on select-
ing a good control where the activity is present. One
possibility is to compare the response to multiple strains,
while an alternate strategy uses a virus that is non-
pathogenic in humans, such as Newcastle Disease Virus
(NDV). NDV infection of humans provides an ideal sys-
tem to define the uninhibited regulatory network [21,
22]. NDV is an avian virus that is able to stimulate in-
nate immunity similar to IAV, but lacks the ability to
evade the human immune response [23]. By comparing
the activity of transcription factors between the IAV and
NDV responses, we can gain insights into the effects of
viral antagonism leading to the suppression host im-
munity. While the differences in transcription factors ac-
tivities between the IAV and NDV responses could also
be mediated by the involvement of yet unknown viral
recognition pathways, the current state of knowledge in-
dicates striking similarity in the anti-viral responses

which are mainly mediated by the Rig-I signaling path-
way in both infections. Moreover, at the same MOI IAV
and NDV show similar infectivity in DCs [24, 25]. Iden-
tifying active pathways and transcription factors [13],
and then comparing these between multiple responses
could be used to identify the effect of IAV immune
antagonism.
Several computational methods have been proposed to

detect transcription factor activity from genome-wide
transcriptional profiling data [13, 26]. These methods
are based on the analysis of coordinated changes in the
expression of transcription factor target genes. These in-
clude over-representation approach such as hypergeo-
metric test, or aggregate score approach such as gene set
enrichment analysis (GSEA) [27]. These methods can be
used to identify transcription factors with significant ac-
tivity in one response that is lacking in another response
[28]. In addition to being sensitive to the cutoffs used
for statistical analysis, this approach is subject to Simp-
son’s paradox [29]. Just because two responses behave
differently from their respective controls does not imply
that they are significantly different from each other.
For example, just because a gene is significantly differ-
entially-expressed following NDV infection (vs. control),
but not IAV infection (vs. control), does not necessarily
mean the gene will be differentially expressed when com-
paring NDV and IAV directly. Furthermore, the p-values
produced by such methods cannot be directly compared
between two infections because lower p-values do not ne-
cessarily imply stronger activity. Thus, more flexible
methods are needed that allow for quantification of tran-
scription factor and pathway activities and their direct
comparison across studies.
We propose a new approach for Bayesian Estimation

of Transcription Factor Activity (BETA) that quantifies
activity (rather than simply detecting it), and allows for
direct comparison between multiple responses. Applying
BETA to compare the transcription factor activity of hu-
man dendritic cells to infection with the New Caledonia
strain of IAV with the non-pathogenic NDV response re-
veals several effects of IAV-mediated antagonism on
transcription factors, including a novel effect on SATB1,
which we have validated experimentally.

Results
BETA enables comparative analysis across time-points
and virus strains
To compare the IAV and NDV responses, transcription
factor activity (A) was defined independently for each
infection response as the log-odds ratio between the
observed frequency of TF targets among differentially-
expressed genes (π) compared with the expected TF
target frequency among a set of background genes (π̂):
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A≡ log10
π= 1−πð Þ
π̂= 1−π̂ð Þ

Thus, positive values of A indicate that TF targets are
more frequent among differentially-expressed genes than
expected (i.e., the TF is actively inducing its target-
genes), while negative values indicate they are less fre-
quent (i.e., the TF is actively suppressing its target-genes).
By analyzing the behavior of target genes, this approach
does not require that the TF gene itself be differentially
expressed. The use of log-odds ratio allows the activity
(A) to be compared between IAV and NDV responses,
and more generally between experimental condition
and time-points. In addition, the observed frequency of
TF targets (π) and the activity A are characterized by a
full probability density function (PDF) that is estimated
using a Bayesian approach as described in Additional
file 1: Text S1 and [30]. The Bayesian Estimation of
Transcription factor Activity (BETA) allows for activ-
ities to be compared across time-points, microarray
platforms and experiments since it accounts for differ-
ences in both the number of differentially-expressed
genes (e.g., from differing experimental quality), as well
as the background frequency of TF targets (e.g., because
different microarrays can measure different sets of genes).
To confirm that the activity estimated by BETA is robust

to the number of differentially expressed genes, we quanti-
fied ISGF3 activity in human dendritic cells stimulated with
IFN-β. ISGF3 (a complex of STAT1, STAT2 and IRF9) is ac-
tivated by IFN-β and leads to the up-regulation of several
hundred interferon stimulated genes (ISGs) [31]. IFN-β
stimulations of DCs for 2.5 h induce 884 genes. To quantify
ISGF3 activity when the number of DE genes vary, different

numbers of differentially expressed genes were sampled
from these 884 and the set of TF targets was determined
among them by computationally defining the genes having
TRANSFAC binding site matrix for ISGF3 (V$ISRE_01) in
the promoter region (see Materials and methods). While the
P-values produced by the hypergeometric test decrease sig-
nificantly as the number of differentially-expressed genes in-
creases, BETA activity remained constant (Fig. 1a). As a
positive control, ISGF3 activity was simulated as the in-
creased expression of ISGs (defined by Schoggins et. al. [31])
with 8 to 85 % of their pre-stimulation levels (Fig. 1b). Fig. 1b
shows that the activity estimated by BETA significantly in-
creases and the 95 % confidence intervals become tighter as
ISG expression levels increase. Thus, BETA activities are
sensitive to underlying gene expression differences and can
be used to compare experiments with differing numbers of
differentially-expressed genes (e.g., because of altered vari-
ance or differences in the number of genes being measured).

Transcription factors antagonized by IAV during the early
response (≤6 hpi)
To detect the effects of IAV antagonism on host immun-
ity, TF activities were compared between the responses
to IAV and NDV. Since NDV infection activates innate
viral sensing pathways, but does not encode any known
human immune antagonists, any differences between
these responses suggest modulation of the immune
response by IAV. As a first step, BETA was used to
define the set of TFs with significant activity in either
infection (IAV or NDV). The statistical significance of
the BETA activity from zero was determined using
Equation 7 in [30]. TF target gene sets were created
based on the presence of a TRANSFAC-defined

Fig. 1 BETA is robust to the number of differentially-expressed genes, but sensitive to gene expression changes: (a) Comparison of transcriptional
profiles from DCs stimulated with Interferon-β for 2.5 h and unstimulated DCs identified 884 differentially-expressed genes. Varying numbers of
genes (x-axis) were randomly sampled from this set. For each of these cases, ISGF3 activity was measured by BETA (left y-axis and empty triangles)
and hypergeometric test P values (right y-axis and empty circles) (b) Starting from the transcriptional profile of un-stimulated DCs, ISGF3 activity
was simulated by computationally increasing the expression levels of ISGs, defined by Schoggins et. al. [31], from 8 to 85 % above their baseline
values (x-axis). ISGF3 activity was then measured by BETA (y-axis, with grey area indicating 95 % confidence intervals) using a gene set based on
the V$ISRE_01 matrix from TRANSFAC. P-values ISGF3 activity are 3.00e-1, 2.12e-13 and 1.07e-13
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binding site in the promoter region (see Materials and
methods). When considering genes up-regulated dur-
ing the first 6 hpi (Fig. 2, upper panel), significant
BETA activity was found for 101 TFs, with 11 of these
TFs also differentially-expressed at the mRNA level
(Fig. 2, and Additional file 1: Text S2). However, many
of the differentially expressed TFs were down-
regulated with minimal changes over time, in contrast
to the up-regulated TFs, which showed significant
changes in their activities. Strong activity was detected
for many factors with well-characterized involvement
in antiviral responses, including of ISGF3, NFKB1,
CREB and STAT-family TFs [13, 14]. All of these fac-
tors displayed significant activity following both IAV
and NDV infections. In fact, when using BETA activity

and mRNA differential-expression as criteria, no TFs
were found to be specific for the IAV or NDV re-
sponses. However, taking advantage of the ability to
quantitatively compare BETA activities across re-
sponses rather than simple presence/absence, several
of these TFs were found to have significantly different
levels of activity between the two infections (Fig. 3a).
In each case, the absolute activity following IAV infec-
tion was suppressed. Seven TF target gene sets with
positive activity in both responses had significantly
lower activity following IAV infection. All of these sets
were defined by IRF/ISRE binding sites, which have
highly related motifs that are difficult to differentiate.
The remaining seven TF target gene sets, including
SOX10 and NFE2L1 targets, had negative activity and

Fig. 2 Transcription factor activities following IAV and NDV infections. The number of up-regulated genes was determined by comparing
expression at each time-point post-infection with pre-infection levels (upper bar plots). Up-regulated TFs are indicated by the white portion of
each bar. BETA was then used to quantify TF activity (lower heatmap) in NDV and IAV infections based on gene sets defined by TRANSFAC
matrices (rows). Coloring indicates weak (yellow) to strong (blue) TF activity
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were less suppressed following IAV infection. Negative
BETA activity could indicate that these TFs have re-
pressive roles as a normal part of the immune re-
sponse. However, none were found to have significant
activity among down-regulated genes, and they were
not investigated further. Several of the active TFs pre-
dicted by BETA were also identified using other exist-
ing methods (hypergeometric test, GSEA and
QuSAGE), but a comparative analysis indicated that
BETA has better power (Additional file 1: Text S3).
Overall, these results suggest that the interferon re-
sponse is a target of IAV immune antagonism for the
NC strain of IAV, as has previously been shown for
other strains [14]. This antagonism was strongest in
the early phase of the response, but could be detected
at later time-points as well (Fig. 3b).

Interferon stimulated genes are specifically suppressed in
IAV-infected cells
Significant ISGF3 activity was observed during both IAV
and NDV responses (P < 0.05). However, quantitative dif-
ferences were apparent when comparing the strength of
this activity between the two viruses. This raises an
important question: if IAV blocks the interferon re-
sponse (as BETA predicts), why are so many ISGs, such
as MX1, still differentially-expressed? To explain this ob-
servation, we hypothesized that IAV was indeed blocking
ISG expression in infected cells, but that ISGs were still
being expressed in non-infected cells. Since the DCs
were infected with IAV at an MOI of 1, it is expected
that approximately 63 % of cells would not be infected.
This hypothesis predicts that the lower ISGF3 activity

observed following IAV infection results from significant
heterogeneity in the underlying population being mea-
sured (with the microarray data reflecting the population
average).
To better understand how the observed gene expres-

sion patterns could be affected by underlying population
heterogeneity, we developed a dynamic model of ISG in-
duction. In this model, gene transcription increases as a
function of the amount of interferon (due to autocrine
and paracrine signaling), and interferon levels are ap-
proximated by the observed expression of IFNB1 mRNA
(see Materials and methods for details). Three extreme
cases were considered: (1) a gene was expressed by both
infected and non-infected cells, (2) a gene was expressed
only by infected cells, and (3) a gene was expressed only
by non-infected cells. In each of these cases, we simu-
lated gene expression over 8 h and following infection
with MOI = 0.5, 1 and 2, corresponding to 39, 63 and
86 % of cells being infected based on the Poisson distri-
bution, respectively. For genes that are expressed by all
cells (case 1), the model predicts that the temporal ex-
pression profile will be independent of the MOI. For
genes that are expressed only by infected cells (case 2),
the model predicts that increasing MOI will lead to
higher expression levels, but later induction times
(Fig. 4a). Finally, for genes that are expressed only by
non-infected cells (case 3), the model predicts that in-
creasing MOI will lead to earlier and lower expression
levels (Fig. 4b). The parameter estimation protocol (see
Materials and methods section) was evaluated by recal-
ling the parameter values in the simulated data. We
found that recall of all parameters was good as estimated

Fig. 3 Transcription factors suppressed by IAV within 6 h post-infection. a BETA was used to identify transcription factor matrices with significantly
different activity within 6 h following IAV infection (triangles) compared to NDV infection (squares) (q < 0.1). Only TFs that are also differentially-
expressed at the mRNA level are shown. b ISGF3 activity (y-axis) was calculated by BETA using the V$ISRE_01 matrix following IAV
infection (triangles) and NDV infection (squares). The grey area indicates the 95 % confidence interval for activity, with the dashed line
representing the absence of transcriptional activity
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by normalized root mean squared error (NRMSE)
(NRMSE values are 0.12 for ki/ku/kb, 0.18 for n, 0.05 for
d and 0.14 for k) (Additional file 2: Figure S2). Thus,
qualitatively different behaviors were predicted depend-
ing on which type(s) of cells are expressing the gene.
To test the prediction that the ISG expression ob-

served following IAV infection was predominantly com-
ing from non-infected cells, DCs were infected with IAV
at three multiplicities of infections (MOIs): 0.5, 1 and 2.
Consistent with expectations based on the Poisson
distribution, the number of infected cells was 25, 60 and
83 % for MOIs of 0.5, 1 and 2, respectively. Gene expres-
sion was measured for IFNA and two ISGs (MX1 and
IP10). The expression pattern of IFNA served as a posi-
tive control, since it should be expressed only by in-
fected cells. As predicted by the model (case 2), peak
IFNA levels were positively correlated with MOI, but
negatively correlated with the time of initial induction
(Fig. 4a right panel). In contrast, MX1 and IP10 expres-
sion decreased with increasing MOI. This behavior is
consistent with expression from non-infected cells (case

3) and indicates that infected cells contribute little, if
anything, to the observed expression profiles. Moreover,
IP10 was expressed earlier at higher MOIs, suggesting
that higher number of infected cells drive earlier expres-
sion of some ISGs. This time of activation of IP10 was
more sensitive to the number of infected cells than
MX1. Such sensitivity to the number of infected cells
could arise from differential bindingof IRF9, a hypothesis
which is not further explored here. Thus, ISGs were
expressed mainly by non-infected cells following IAV in-
fection, consistent with the hypothesis that IAV antago-
nizes the type I interferon response specifically in
infected cells.

SATB1 is antagonized by IAV
To identify additional effects of IAV antagonism, BETA
was used to compare TF activities between IAV and
NDV infection during the later response (6-10 h post-
infection). Factors identified during this time period
could be involved in dendritic cell maturation and inter-
actions with T cells. This analysis identified 16 TFs,

Fig. 4 Model-based analysis of genes at different multiplicities of infection (MOI). a An ODE model (equation 1) was used to predict the dynamics
of genes expressed by infected cells (left plot) at different MOIs (individual lines). The same model was then fit to experimentally measured IFNA
expression profiles (right plot) at different MOIs. Best fit parameter values were (ki = 1.6, n = 1.14, d = 0.62 and H = 0.99). b An ODE model (equation 2)
was used to predict the dynamics of genes expressed by non-infected cells (left plot) at different MOIs. The same model was then fit to experimentally
measured MX1 (middle plot) and IP10 (right plot) expression profiles. Best fit parameter values for MX1 were ki = 1.4, n = 4.1, d = 0.73 and
H = 0.07, and for IP10 were ki = 1.18, n = 4.4, d = 0.56 and H = 0.08. In all plots, lines indicate model results and triangles show experimentally measured
values for MOI = 0.5 (empty triangles and continuous lines), MOI = 1 (grey triangles and dashed lines) and MOI = 2 (black triangles and
dash-dot lines)
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including FOXO3 and NFAT, as potential targets of IAV
antagonism (Fig. 5). Two of these TFs (SATB1 and FOSL1)
also showed significantly lower mRNA expression levels fol-
lowing IAV infection compared with NDV infection (Fig. 5).
SATB1 was particularly interesting because of its known in-
volvement in T cell development [32–35]. BETA predicted
that SATB1 activity was significantly suppressed at 10 h
post-infection with IAV (Fig. 6a). This suppression impacted
the maximum fold-changes achieved by virtually all SATB1
target genes (Fig. 6b). To validate the prediction that IAV in-
fection antagonizes SATB1 activity, ChIP-PCR was carried
out to quantify SATB1 binding at 8 and 10 h post-infection
with IAV or NDV. Four SATB1 targets were chosen based
on the computationally-predicted presence of a SATB1
binding site in the promoter region and significant
differential-expression when comparing the NDV and IAV
responses. In all four cases, lower binding of SATB1 was ob-
served following IAV infection compared to NDV infection
(Fig. 7a). Significant differences in SATB1 nuclear transloca-
tion were also observed (Fig. 7b). Interestingly, these mea-
surements suggested higher levels of SATB1 in the nucleus
following IAV infection. This could be a result of a feedback
regulation mechanism induced by failure to induce SATB1
target genes. Taken together, these results suggest that IAV
inhibits SATB1 activity, and that this inhibition is mediated

through blocking of SATB1 binding to the promoters of its
target genes.

Discussion
Differences in genome-wide expression patterns are fre-
quently used to compare virus-host interactions. Compari-
sons across a range hosts have revealed immune pathways
involved in the detection and destruction of viruses, while
comparisons across viruses have elucidated a diverse array
of mechanisms used by viruses to antagonize host immun-
ity. Mechanisms of viral antagonism include modulating
antigen presentation, apoptosis of infected cells, cytokine-
mediated signaling, and Fc dependent immune activation
[20]. Influenza is a fast evolving virus, and has developed
multiple ways of antagonizing anti-viral responses [20]. For
example, IAV virus protein PB1-F2 suppresses the activation
of IL-6 and IL-1β through the modulation of NFkB [36, 37].
The function of these antagonists can vary between IAV
strains, and impacts pathogenicity [38, 39]. Previous work
has compared wild-type IAV strains with genetically altered
versions where potential antagonists, such as NS1, are
knocked out or genetically altered [19]. While such compar-
isons can identify mechanisms directly related to individual
antagonists, they do not provide a global view of virus-host
interaction and some mechanisms may be masked through

Fig. 5 mRNA expression profiles for transcription factors modulated by IAV at late time points (>6 hpi). Log2 fold changes across time (columns)
for transcription factors (rows) with significantly different BETA activities (q < 0.05) in IAV infection compared to NDV infection. Coloring indicates
small (white) to large (blue) fold changes with respect to unstimulated expression levels
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redundancy. Here, we propose to use NDV, a non-
pathogenic virus, as a control to identify the genome-wide
effects of IAV immune antagonism. Influenza and NDV are
both negative sense RNA myxoviruses and in birds, which
are their natural hosts, their clinical symptoms are similar.
NDV and IAV both activate anti-viral responses mediated
by Rig-I and IPS-1 [40]. However, NDV does not encode
any known human immune antagonists, and thus can be
used as a baseline to identify pathways and transcription fac-
tors whose activity is “missing” during IAV infections.
Viruses can modulate host responses through multiple

mechanisms [20]. In order to gain mechanistic insight, we
sought to use differential regulatory patterns of genome-
wide expression profiles to identify candidate transcrip-
tional activity differences. Similar to many previous studies,
transcription factor activity was assessed by analyzing the
behavior of putative target genes [26]. Existing methods,

such as GSEA [27] are focused on detecting activity, and
their main output consists of P-values indicating whether
the factor is active. However, focusing on P-values limits
the ability to carry out post-hoc comparative studies, since
lower P-values do not necessarily imply higher activity.
BETA enables easy comparison across experiments and
time-points by quantifying transcription factor activity ra-
ther than simply detecting it. Hence, BETA can detect
quantitative differences in TF activity between NDV and
IAV responses. The estimation of full PDFs by BETA has
significant advantages over single P-values. P values reflect
the certainty of differential-activity, not its strength, and are
sensitive to both the number of differentially-expressed
genes, as well as the overall number of genes measured.
BETA is robust to the number of differentially expressed
genes in different experiments, while maintaining sensitivity
to response-specific gene expression changes. BETA also

Fig. 7 SATB1 binding and translocation are differentially modulated by IAV infection. a ChIP-PCR was used to measure SATB1 binding to four
predicted target genes (PRDM1, HVEP2, PERP and ZEB1) at 8 and 10 h after infection with IAV (solid triangles) and NDV (open squares). b SATB1
nuclear translocation following infection with IAV (black solid triangles) and NDV (open squares)

Fig. 6 Prediction of SATB1 as a target of IAV antagonism. a BETA was used to quantify the activity of SATB1 (V$SATB1_01 matrix) following
infection with IAV (solid triangles) and NDV (open squares). Grey areas indicate 95 % confidence intervals for activity with overlapping intervals
shown in a darker shade. The horizontal dashed line at 0 represents the absence of transcriptional activity. b The maximum log2 fold change over
12 h post-infection was determined for all SATB1 target genes (points) following IAV (y-axis) and NDV infections (x-axis). The solid line indicates
equal fold changes
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allows comparison between different platforms by using a
normalization factor based on the marginal probability of
the number of differentially expressed genes. Other
methods, such as QuSAGE [41] can also quantify gene set
activity, but we found that BETA has better power for de-
tecting transcription factor activity (Additional file 1: Text
S3). BETA can also be used to quantify the activity of gene
sets based on pathways or functional relationships, and de-
tails of comparison of BETA with other methods have been
provided in the Additional file 1: Text S3. Thus, BETA
should aid future studies seeking to identify differences be-
tween the responses to different IAV strains (e.g., compar-
ing seasonal and pandemic strains), and can be employed
with other gene set definitions (e.g., pathways from Reac-
tome [42, 43], or functional groups from the Gene Ontol-
ogy [44]).
Genome-wide transcriptional profiles provide a global

view of host responses. However, it is important to re-
member that such measurements are population aver-
ages, and can be greatly impacted by heterogeneity.
Although our experiments use a single cell type, virus
infection itself produces two major subpopulations with
unique responses. Virally-infected cells (expected to
be ~63 % of the population at an MOI of one) activate
pathways associated with virus recognition and up-
regulate interferon. Interferon induces an anti-viral state
in non-infected cells restricting spread of the virus and
resulting in significant transcriptional changes in non-
infected cells [45]. Other cytokines such as TNF released
by infected cells contribute to these transcriptional
changes through paracrine signaling. Infected cells can
also respond to these cytokines, but their response may
be modulated by viral antagonism. Our results show
how this population heterogeneity can potentially mask
important effects. ISG activity was detected following
both infection with IAV and NDV. From this simple ob-
servation, one might conclude that the IAV strain of IAV
does not effectively antagonize the interferon response.
However, comparison with the NDV response using
BETA revealed that the interferon response was signifi-
cantly reduced following IAV infection. Using a combin-
ation of mathematical modeling and experiments at
different MOIs, we demonstrated that the observed ex-
pression of ISGs is mainly coming from non-infected
cells. Thus, the IAV strain does effectively antagonize
the interferon response, but specifically in infected cells.
While future experiments might be designed to separ-
ately profile infected and non-infected cells, these can be
difficult to recognize [46].
The ability of BETA to quantitatively compare gene set

activities was critical for carrying out a comparative ana-
lysis of transcription factor activities following IAV and
NDV infection. This analysis revealed several effects of
IAV immune antagonism, including the previously

identified transcription factor NFATC4, which is associ-
ated with the inflammatory response during symptom-
atic IAV infections [11]. Additional effects predicted by
BETA should be followed-up with detailed mechanistic
studies. For example, IAV infection was predicted to
suppress SATB1 activity in dendritic cells. Significantly,
SATB1 was recently shown to be induced downstream
of IRF7 in DCs [47]. Here, we experimentally confirmed
that IAV infection modulates SATB1 nuclear transloca-
tion and DNA binding to target genes. The role of
SATB1 in thymocytes and Th2 cells has been described,
and it will be interesting to see if this factor has a similar
function in DCs. Depending on the adaptor with which
SATB1 co-operates it can have a role as an inducer or a
suppressor of gene expression. For instance, SATB1 in-
duces c-Maf [48]. During NDV infections of dendritic
cells SATB1 induces expression of its putative target
genes, such as PRDM1. This expression is suppressed
during IAV infections; which is presumably due to re-
duced binding of SATB1 as observed during ChIP-PCR
experiments. Interestingly, higher nuclear translocation
of SATB1 observed during IAV infections suggests that
IAV inhibits binding of SATB1 to the promoter. This is
consistent with the role of SATB1 as a molecular
adaptor for several other proteins that work to pack
DNA into an inactive state. Thus, by addressing the
computational problem of comparative analysis of tran-
scription factor activities, we identified novel effects of
IAV mediated antagonism.
Similar to other enrichment methods, such as QuSAGE

[41] and GSEA [27], BETA is dependent on the quality of
gene set definitions. Frequently, a large overlap between
gene-sets makes it difficult to identify the true causal path-
way or TF. However, combining enrichment results with
other relevant information, such as TF mRNA levels, fold
changes and location of the binding site (e.g., distance to
the transcription start site), facilitate the selection of the
most promising candidates for follow-up studies. Gene-
sets could also include false positives; this is especially
likely for computationally identified TF targets, which are
known to have low specificity. Nevertheless, we find that
BETA performs well in practice compared to other over-
representation analysis and functional scoring methods
(Additional file 1: Text S3). The statistical model under-
lying BETA is based on the binomial distribution, and thus
assumes a fixed probability that each differentially
expressed gene is a transcription factor target. For this
reason, BETA should not be used for small gene set sizes.

Conclusions
We have developed a computational framework (BETA)
that enables quantitative comparative analysis of transcrip-
tion factor activities. The source code is freely available at
clip.med.yale.edu/beta. This method will aid future studies
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to identify mechanistic differences in the host-pathogen in-
teractions. Application of BETA to genome-wide transcrip-
tional profiling data, from human DCs identified SATB1 as
a novel effect of IAV antagonism.

Materials and methods
Differentiation of DCs
All human research protocols for this work were reviewed
and approved by the IRB of the Mount Sinai School of
Medicine. Monocyte-derived DCs were obtained from
healthy anonymous human blood donations obtained
from New York Blood Center, following a standard proto-
col described elsewhere [49]. No information on age, sex
or ethnicity from these donors is available. These dona-
tions are considered scientific samples and not human
subjects according to the IRB guidelines. Briefly, human
peripheral blood mononuclear cells (PBMCs) were iso-
lated from buffy coats by Ficoll density gradient centrifu-
gation and positive immunomagnetic purification for
CD14 followed by a 5 day incubation with 500 U/ml
hGM-CSF (Preprotech, Rocky Hill NJ) and 1000 U/ml
hIL-4 (Preprotech, Rocky Hill NJ) All experiments were
replicated using cells obtained from different donors.

IFNB stimulation microarray experiments
Total RNA was purified from 2.5 × 106 DCs per time
sample using RNeasyMicro (Qiagen, Valencia, CA) with
DNase treatment. RNA was eluted from columns using
water and quantified by spectrophotometry. Quality con-
trol of RNAs was performed using the Agilent Bioanaly-
zer (Agilent, Santa Clara, CA). Total RNA from cells
treated with 2000U/ml IFNB or control were harvested
at 2.5 h. Naive DCs served as negative control. Three
biological replicates were performed and RNA was reverse
transcribed using T7-oligo(dT)24 to yield double-stranded
cDNA. cRNA was transcribed and biotinylated from
cDNA templates. cRNA was hybridized at 58C for 14 h to
Affymetrix HU133plus2 Gene Chip Arrays (Affymetrix,
Santa Clara, CA) by the Mount Sinai Microarray Shared
Resource Facility. Details can be found at http://support.il
lumina.com/content/dam/illumina-support/documents/
myillumina/3466bf71-78bd-4842-8bfc-393a45d11874/w
ggex_direct_hybridization_assay_guide_11322355_a.pdf.
All microarrays studied in this paper have been deposited
in the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/
geo) with the series accession number GSE54970.

IAV and NDV expression microarray used to identify
mechanisms of IAV antagonoism
Raw expression data of IAV and NDV infections was ob-
tained from our previous work (GEO IDs GSE41067 and
GSE18791, for IAV and NDV, respectively) [13, 14].
Briefly, pellets of monocyte derived dendritic cells were
resuspended with IAV (New Caledonia/20/1999) and

NDV stocks at multiplicity of infection of 1 and 0.5, re-
spectively. RNA was collected at seven common time
points: pre-infection and 2, 4, 6, 8, 10, and 12 h post-
infection. The IAV samples were hybridized to
HumanHT-12 v4 Expression BeadChip Kit (Illumina San
Diego, CA) and NDV samples were hybridized to Affy-
metrix HU133plus2 Gene Chip Arrays (Affymetrix,
Santa Clara, CA). Illumina arrays were log-transformed
and quantile normalized by using Lumi package. Affy-
metrix arrays were normalized using GCRMA from sim-
pleaffy package. Differential expression was defined for
probes at each infection time-point using three criteria:
(1) a minimum expression intensity of 7 or 5 for at least
one time point for the Illumina and Affymetrix plat-
forms, respectively, (2) an absolute fold-change of at
least two relative to the pre-infection time-point, (3) a
significant change in expression by LIMMA (BioCon-
ductor implementation) after correction for multiple hy-
pothesis testing by false discovery rate (q < 0.05).
Previously described criterias were used for the back-
ground set of genes [13, 14]. All analysis was performed
using the BioConductor software package in R [50].

Transcription factor target identification
Using the UCSC Genome Bioinformatics site, we down-
loaded the transcription start site data (TSS) for all human
RefSeq genes, defined by the January 2010 refGene table
[51]. The region +/-2Kb around each TSS was identified
within a genome-wide multiple alignment of 45 vertebrate
species to the human genome [52], also available through
the UCSC Genome Bioinformatics site. In order to identify
putative transcription factor binding sites, the human se-
quences, along with aligned regions from mouse, were
masked for repetitive elements using RepeatMasker [53]
and then analyzed using the TRANSFAC MATCH [54] al-
gorithm with a cutoff, as defined within the database, chosen
to minimize the sum of false positives and false negatives.
The analysis was performed for all high quality vertebrate
transcription factor matrices in the 2011.1 release of
TRANSFAC [55], and putative binding sites were consid-
ered to be evolutionarily conserved if matches were also
found at the aligned positions in the mouse sequences and
had no gaps present in the multiple alignment between the
species being compared. Each TRANSFAC matrix was
linked to a set of gene symbols describing potential binding
factors using annotations present in the “Binding Factor”
field of the database. Only vertebrate TRANSFAC matrices
that could be linked to a HGNC gene symbol, either directly
or through an alias listed in NCBI gene, were included.

Virus preparation and viral infection
The Newcastle disease virus (rNDV/B1) was generated
in Prof. Peter Palese’s laboratory [21]. Influenza A/New
Caledonia/20/1999, (H1N1) was obtained from Prof.
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Adolfo Garcia-Sastre’s laboratory [56]. For infection,
virus stocks were diluted in serum free medium and pel-
leted DCs were resuspended into it at a multiplicity of
infection of 0.5, 1 and 2. DCs from donors were infected
in triplicate with the influenza strain A/New Caledonia/
20/1999 or Newcastle disease virus for 10 min in RPMI
medium at 37 °C. After infection cells were centrifuged
to remove the viral inoculation media, and resuspended
in culture medium. Infectivity of cells were measured
after 8 h by NP staining. Cells were fixed with parafor-
maldehyde, permebealized with methanol, washed thrice
with staining buffer and then stained with antibody
against NP for 2 h. IFNA, MX1 and IP10 expression was
measured by PCR. Samples were fixed with 1 % (PFA) at
0 (control), 2, 4, 6, 8 and 10 h post-infection for trans-
location and CHIP-PCR assays.

Assessment of SATB1 translocation
Permeabilized infected DCs were stained with monoclo-
nal antibodies for the transcription factor SATB1
(Abcam) and a nuclear stain Hoechst 33342 (Sigma).
Cells were imaged with the imaging flow cytometer
(Amnis). Pearson correlation coefficient was computed
over the masked portion of image pixel intensities of the
nuclear stain and the transcription factor. Nuclear trans-
location was assessed using the log2 transformed and
control-normalized value of the computed Pearson cor-
relation coefficient.

Chromatin Immunoprecipitation (ChIP)-PCR
DNA bound proteins were cross linked to DNA by ex-
posing cells to 1 % PFA for 10 min at RT. Cross linking
was quenched with 0.25 M glycine. Cell nuclei were ex-
tracted and lysed with 3 different buffers used in a se-
quential order. Buffers contained 50 mM HEPES-KOH,
140 mM NaC, 1 mM EDTA, 10 % glycerol, 0.5 % NP-40,
0.25 % Triton X-100 (Buffer 1); 200 mM NaCl, 1 mM
EDTA 0.5 mM EGTA, 10 mM Tris pH 8.0 (Buffer 2);
1 mM EDTA, 0.5 mM EGTA, 10 mM Tris pH 8.0,
100 mM NaCl, 0.1 % Na-Deoxylcholate and 2.5 mL
N-lauroyl sarcosines. Chromatin was sheared 8 times for
30 s with 30 s breaks at 4C in Buffer 3 with a CHIP
grade sonicator (Diagenode). Chromatin immunoprecip-
itation and subsequental DNA extraction was performed
with the Auto Transcription ChIP kit and Auto IPure kit
using the SX-8G IP-Star® Compact Automated System
(all Diagenode) following the manufacturers protocol.
The extent of SATB1 bound DNA was measured by
PCR comparing the eluate of the chromatin immunopre-
cipitated sample to its corresponding input sample.

Model development
To better understand how the observed gene expression
patterns could be affected by underlying population

heterogeneity, we developed a dynamic model of ISG in-
duction. The model describes expression kinetics of two
genes, Gi and Gu, that are expressed by infected and
non-infected cells respectively as:

dGi

dt
¼ ki 1 ‐ e‐MOI

� � Bn

Bn þ Hn − diGi ð1Þ

dGu

dt
¼ kue

‐MOI Bn

Bn þHn −duGu ð2Þ

where MOI indicates the multiplicity of infection used
for dendritic cell infections, ki and ku are the rates of ex-
pression of genes Gi and Gu, respectively, while di and
du are the rates at which gene Gi and Gu are degraded,
respectively. B is the level of Interferon-β, whose values
are interpolated from the normalized IFNB1 gene ex-
pression levels, and is used as a surrogate for virus de-
tection by the cell and H is a hill constant describing
concentration of B when the rate of gene induction is
half of its maximum rate. (Additional file 2: Figure S1).

Numerical simulations and parameter estimation
Numerical simulations and parameter estimation were
performed in Matlab R2010b. Ode45 was used to nu-
merically simulate the ordinary differential equation
models with zero initial condition for eight hours. For
comparison with the simulated expression levels, experi-
mentally measured gene expression levels, including
IFNB1, were normalized by the maximum of the three
averages calculated for each set of triplicate measure-
ments at three multiplicities of infections. Experimen-
tally measured IFNB1 values were used as input to the
simulation, and values at non-measured time-points
were obtained using linear interpolation (interp1) of the
average normalized IFNB1 levels at each MOI.
Parameter estimation was performed for each gene sep-

arately. All the parameters (k, d, n and H) for a given gene
were estimated simultaneously by defining an objective
function which minimizes the difference between simu-
lated and experimentally-observed expression levels at
three MOIs. Both global and local search algorithms were
used (Matlab code is provided in the Additional file 1:
Text S4). The differential evolution algorithm (devec3)
was run for 200 iterations and initial parameter values
k = 0.0-2,n = 1.0-10,d = 0-1,H = 0-1 [57]. The resulting best
estimates were then refined using a local search algorithm,
non-linear least-squares (lsqnonlin), using the same ob-
jective function [58, 59]. The quality of parameter esti-
mates was assessed by simulating the data with a set of
randomly chosen parameters and analyzing its recall.

Availability of supporting data
The microarray data used in this study are available in the
GEO repository: GSE41067, GSE18791 and GSE54970.
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Source code for BETA is available at http://clip.med.ya-
le.edu/beta.

Additional files

Additional file 1: Details about methodology and comparison with
other methods. Text 1. Estimating transcription factor activities with
BETA, Text 2. Transcription factors identified by BETA and differentially
expressed at the mrna level. Text 3. Comparative analysis of BETA with
existing methods. Text 4. Matlab code for parameter estimation of
simulated data.

Additional file 2: Figures showing normalized levels of IFNB1
(Figure S1) and identifiability of model parameters using the
proposed estimation protocol (Figure S2).
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