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Abstract

to C albicans infection.

Background: The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans
infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17
cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the
hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of
susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1.

Results: Naive CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly
depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the
capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of /17, 1122,
S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C.
albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or II-22 alone,
significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of
infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response

Conclusions: These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal
immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.
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Background

Oropharyngeal candidiasis (OPC) is the most frequent
opportunistic fungal infection encountered in patients
infected with the human immunodeficiency virus (HIV)
[1]. Although highly active antiretroviral therapy has
sharply reduced the incidence of OPC in developed
countries [2], it remains a common co-infection in many
developing regions where people living with HIV/AIDS
have limited access to therapy [3-5]. The critical impair-
ments of mucosal immunity which cause susceptibility
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to OPC in HIV-infection are only partly understood
[6,7]. A correlation has been established in HIV infection
between symptomatic OPC and reduced CD4+ cell count
[8-10], HIV viral load [8,9], and the development of AIDS
[10]. Moreover, a dominant role for IL-17-producing
Th17 cells in host defense against OPC was demon-
strated by Conti et al. [11], who found that Candida
infection of the tongue was less severe in mice lacking
IL-12p35 than in mice lacking IL-23p19, the latter also
displaying impaired neutrophil recruitment to the mu-
cosa. Conti et al. [11] also reported defective mucosal
expression of murine B-defensin 3, SI00A8 and CCL20
in IL-17RA®® mice. Furthermore, Th17 signature genes
are induced early after oral C. albicans infection of
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immunocompetent mice [11,12]. In addition to IL-17,
IL-22 production by Th17 cells also contributes to early
host defense against C. albicans [11,13,14], and IL-17
and IL-22 cooperatively enhance expression of antimicro-
bial peptides by keratinocytes [15-19]. Induction of this
protective Th17 response is dependent on recognition of
C. albicans by the mannose receptor [20,21], and dectin-
1 and -2 signaling through the Syk/CARD9 cascade
[22-24], leading to IL-23 but not IL-12 production by
antigen-presenting cells [25]. In normal humans, mem-
ory CD4+ T-cells specific for C. albicans reside mainly in
the Th17 subset [25,26].

It is now well established that CCR6+ Th17 cells, in-
cluding those specific to C. albicans, are highly permis-
sive to HIV-1 infection in vitro and are preferentially
depleted in peripheral blood of HIV-infected patients
[27-31]. Evidence has also been presented showing that
Th17 cells are depleted in the gastrointestinal mucosa of
persons infected with HIV [32-34]. There has been much
speculation about defective Th17 responses to oral C.
albicans infection in the context of HIV infection
[35-37], which would result in a lack of the critical
cytokines required to up-regulate the innate mucosal
response, and consequently cause susceptibility to OPC
[38]. However, no experimental evidence has as yet been
presented to support this hypothesis.

Using a model of oral Candida infection in transgenic
(Tg) mice expressing HIV-1 in CD4+ T-cells, dendritic
cells (DCs) and macrophages, which closely mimics the
clinical and pathological features of candidal infection in
human HIV infection [39], we have previously shown
that altered CD4+ T-cell phenotype and function deter-
mine susceptibility to chronic carriage of C. albicans in
these Tg mice [40,41]. Furthermore, DCs from these Tg
mice display an immature phenotype and defective anti-
gen presentation [40,42]. In the present study, we asked
whether CD4C/HIVM" Tg mice have a defective
capacity to induce protective Th17-dependent mucosal
responses to oral infection with C. albicans. Here we
show that depletion of the differentiated Th1, Th2, Th17,
Th1Th17 and Treg CD4+ T-cell lineages in these Tg mice
results from depletion of naive CD4+ T-cell precursors,
and not from an inability of naive CD4+ cells to differen-
tiate in response to polarizing cytokines in vitro. We fur-
ther demonstrate that Tg mice are unable to up-regulate
expression of the /17, 1122, S$100a8 and Ccl20 genes in
oral mucosal tissue in response to oral C. albicans infec-
tion, and that combined treatment of infected Tg mice
with IL-17 and IL-22 restores the ability of the Tg mice
to up-regulate expression of S100a8 and Ccl20 and
reduces oral burdens of C. albicans. Defective IL-17- and
IL-22-dependent induction of innate mucosal immunity
to C. albicans is therefore central to the phenotype of
susceptibility to OPC in these HIV transgenic mice.
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Results

CD4+ T-cell subsets are all profoundly depleted in
CDAC/HIVM™ Tg mice

Phenotyping of cervical lymph node (CLN) CD4+ T-
cells, harvested ex vivo from Tg mice 7 or 70 days after
infection or not with C. albicans, revealed significantly
enhanced percentages of Thl7, ThiThl7 and Treg
subsets but strikingly depleted absolute numbers of Thi,
Th2, Th17, Th1Thl7 and Treg cell populations com-
pared to non-Tg mice (Figure 1). Furthermore, a signifi-
cant expansion in absolute numbers of the Th2 subset
observed in non-Tg mice 7 days after infection with C.
albicans was absent in the Tg mice (Figure 1). Interest-
ingly, mean surface expression of CCR6 by Thl7 cells
(CD4+ CXCR3+ CCR4+ CCR6+) was not significantly
altered (p > 0.05) by HIV-1 transgene expression, indicat-
ing that this determinant of Th17 cell migration was
preserved in the Tg mice.

Polarization of CD4+ T-cells and production of cytokines
in vitro

To determine if expression of the HIV-1 transgene alters
the differentiation of naive CD4+ T-cells into specific
subsets, we next assessed expression of signature CD4+
T-cell subset genes and production of cytokines after
differentiation of naive splenic cells in vitro. Numbers of
naive CD4+ T-cells recovered per spleen were sharply
diminished in Tg compared to non-Tg mice (1.5+0.2
versus 7.9 + 0.4 x 10°, p < 0.0001; N = 11), consistent with
previous findings in CLNs of Tg mice [40]. The predicted
up- or down-regulation of signature gene expression
[43,44] was found after incubation of naive cells from
both non-Tg and Tg mice with cocktails of differentiating
cytokines and blocking antibodies specific to the Thl,
Th2, Th17 and Treg subsets (Figure 2). However, HIV-1
transgene expression nevertheless altered gene expres-
sion profiles of the polarized subsets (Figure 2). Com-
pared to non-transgenic controls, polarized Th17 cells
from CD4C/HIVM'* Tg mice displayed increased
expression of Ahr, 1122 and Foxp3, and polarized Treg
cells had enhanced expression of Ahr and I117a (Figure 2),
suggesting that expression of the HIV-1 transgene in
CD4+ T-cells may produce an intermediate Th17-Treg
phenotype under these differentiating conditions. Al-
though Gata3 expression was lower in differentiated Th1
cells from Tg mice (Figure 2), the most relevant finding
was that expression of this Th2 signature gene was
unaffected by transgene expression in Th2 differentiating
conditions (Figure 2). These findings demonstrate that
naive CD4+ cells from Tg mice maintain the overall
capacity to differentiate into specific subsets in vitro.
Furthermore, HIV-1 transgene expression did not
significantly alter cytokine production in supernatants of
cells differentiated or not into specific subsets (p > 0.05)
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Figure 1 Immunophenotypes of cervical lymph node CD4+ T-cell subsets in CD4C/HIVM“** Tg and non-Tg control mice. CLNs were
harvested 7 or 70 days after oral infection or not with Candida albicans. Data are expressed as (A) the percentage of CD4+ T-cells or as

(B) absolute numbers of cells, and are the mean + SD of 4 to 13 independent experiments. *, greater (p < 0.05) than non-Tg mice; **, lower
(p < 0.05) than non-Tg mice; ***, greater (p < 0.05) than uninfected non-Tg mice.
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Figure 2 qRT-PCR analysis of signature genes of CD4+ T-cell subsets polarized in vitro. Naive CD4+ precursors were harvested from
CD4C/HIVM™ Tg and non-Tg mice, and incubated with subset-specific differentiating cytokines and blocking antibodies. Bars represent the
mean + standard error range of significantly (p < 0.05) up- or down-regulated genes compared to that of control naive cells from non-Tg mice,
incubated without cytokines and antibodies. In all differentiating conditions, gene expression of IL-4 and IL-10 was not significantly different

(p > 0.05) from control. Data are from 6 independent experiments.
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(Figure 3). Production of IFN-y and IL-17A by naive
CD4+ cells from Tg and non-Tg mice increased compar-
ably in response to Thl and Th17 differentiating condi-
tions (Figure 3). Therefore, using identical numbers of
naive CD4+ T-cells from Tg and non-Tg mice, in vitro
differentiated CD4+ T-cell lineages from Tg mice main-
tained their capacity to produce the critical cytokines
required for a protective adaptive immune response to C.
albicans.

IL-17 and IL-22 treatment augments resistance to oral
candidiasis and oral mucosal expression of calprotectin in
CD4C/HIVMY™A Tg mice

Oral burdens of C. albicans were significantly increased
(p<0.05) in Tg compared to non-Tg mice on days 3-17
after inoculation, as reported previously [39], and treat-
ment of the Tg mice with the combination of IL-17 and
IL-22 reduced oral burdens on days 5-12 compared to
untreated Tg controls (Figure 4A). Nevertheless, on days
3-17 after inoculation, oral burdens of C. albicans in Tg
mice treated with the combination of IL-17 and IL-22
remained significantly greater (p<0.05) than in un-
treated control non-Tg mice, showing that this cytokine
treatment did not fully restore resistance to oral candid-
iasis. Interestingly, treatment with IL-17 alone only
produced a transient reduction (p < 0.05) of oral burdens
on day 7 (Figure 4B), while IL-22 alone was without sig-
nificant effect (p > 0.05) (Figure 4C), showing that IL-17
and IL-22 are both required and non-redundant for mu-
cosal host defense against C. albicans.
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Histopathology of tongues of untreated control Tg mice,
conducted 7 days after oral inoculation of C. albicans,
showed the expected dense hyphal penetration of the
epithelium of the entire dorsum of the tongue, accom-
panied by occasional inflammatory cell infiltrates [39]
(Figure 5B1,2). In contrast, in Tg mice treated with the
combination of IL-17 and IL-22, the density of Candida
hyphae was sharply diminished, and, in most of the
epithelium, hyphae were entirely absent (Figure 5A1,2).
Compared to untreated Tg controls (Figure 5B1), this
cytokine treatment did not induce an additional influx
of polymorphonuclear leukocytes (PMNs) or other
inflammatory cells to the epithelium of these Tg mice at
this time point of infection (Figure 5A1). In the control
non-Tg mice, which at day 7 are resolving primary
Candida infection (Figure 4A) [39], only one or two
small foci of Candida hyphae were found in the kerati-
nized layer of the epithelium of three of the six mice
examined, with an underlying epithelial inflammatory
infiltrate composed of PMNs (Figure 5C1,2). Uninfected
non-Tg and Tg mice showed an absence of Candida
hyphae and inflammatory cell response (Additional file 1).

Compared to uninfected controls at day 7, infection of
non-Tg mice with C. albicans significantly (p <0.05) en-
hanced tongue tissue expression of S100a8, Ccl20, 1117,
1122 and, to a lesser degree, of the Dfb3 gene (Figure 6).
In striking contrast, the heightened expression of these
genes in response to Candida infection was completely
abrogated in untreated control Tg mice, with the excep-
tion of Defb3 which showed a modest increase (p < 0.05)
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Figure 3 Cytokine production in supernatants of CD4+ T-cell subsets polarized in vitro. Naive CD4+ precursors were harvested from
CDAC/HIVMA Tg and non-Tg mice, and incubated with (Th1, Th2, Th17, Treg) or without (control) subset-specific differentiating cytokines and
blocking antibodies. *, significantly greater (p < 0.05) than the other subsets and control; **, significantly lower (P < 0.05) than the other subsets
and control; ***, significantly lower (p < 0.05) than control. In all differentiating conditions, production of IL.-13 and IL-6 was undetectable. Data
are mean + SD of 6 independent experiments.
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comparable to that of the infected non-Tg mice (p > 0.05)
(Figure 6). Consistent with the reduced oral burdens of
C. albicans, combined treatment with IL-17 and IL-22
restored the ability of the Tg mice to up-regulate expres-
sion of S100a8, Ccl20 and 1122 in response to C. albicans
infection, to a level not significantly different from
infected non-Tg mice (p > 0.05) (Figure 6). Expression of
Ccl2 was unaffected by transgene expression, Candida
infection or cytokine treatment at this time point after
oral inoculation.

Discussion

Discovery of the critical role of Th17 cell-dependent mu-
cosal host responses in protection against oral candidiasis
[45,46], and the depletion of this cell population in HIV-
infected patients [27-30,32-34,47-49], have together
suggested that defective Th17-dependent responses to C.
albicans determine susceptibility to OPC in the setting of
HIV infection [50,51]. However, direct experimental
evidence in support of this hypothesis has been lacking.
Taking advantage of a model of oral candidiasis in trans-
genic mice expressing HIV-1 [39], which display an

AIDS-like disease [52], we here show that defective IL-
17- and IL-22-dependent induction of oral antimicrobial
peptide expression in response to C. albicans infection is
indeed central to the phenotype of susceptibility to OPC
in these HIV-transgenic mice.

In previous work, we found that CD4+ T-cells are
depleted in the oral mucosa, CLNs and peripheral blood
of CD4C/HIVM™** Tg mice, that CD4+ cells harvested
from Tg mice 7 days after infection fail to proliferate and
to acquire an effector phenotype in response to C. albi-
cans antigen in vitro, and that transfer of CD4+ T-cells
from uninfected non-Tg mice into infected Tg mice re-
stores cell proliferation and sharply reduces oral burdens
of C. albicans [40]. The present data show that naive
CD4+ T-cells and the polarized subsets, including Th17
cells, are all depleted in these Tg mice and together con-
tribute to the observed diminution of total CD4+ T-cells.
Mechanistically, CD4+ cell depletion in these Tg mice
has been shown to result from impaired selection and
lineage commitment of CD4+ single-positive thymocytes
[53], and an activated memory-like phenotype that ex-
hausts the T-cell pool [54]. Consistent with our previous
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observations 7 days after infection with C. albicans [40],
absolute numbers of CD4+ T-cells were augmented in
the CLNs of non-Tg, but not of Tg mice, at this time
point. Although absolute numbers of the Th1, Th2, Th17
and Th1Th17 subsets were all increased in CLNs of in-
fected non-Tg mice compared to uninfected controls, this
increase only reached statistical significance for the Th2
subset. Nevertheless, these aggregate results indicate that
C. albicans infection induces a broad expansion of CD4+
cell subsets in control non-Tg mice, that is abrogated in
infected Tg mice.

Although depleted in absolute numbers, the proportion
of Tregs relative to total CD4+ cells was enhanced in Tg
compared to non-Tg mice. This Treg enrichment is the
direct result of HIV-1 Nef expression in CD4+ T-cells,
occurs independently of Nef-induced lymphopenia, and
involves multiple mechanisms: lower apoptosis, enhanced
cell division, and increased generation from precursors
[55]. Consistent with our findings, studies in HIV-infected
patients have also reported a relative increase in frequency
but reduced absolute numbers of Tregs [56-60]. In
addition, the late depletion of Tregs in CLNs of the Tg
mice, at 70 but not 7 days, concurs with the preserved
numbers of Tregs in lymph nodes during acute SIV infec-
tion [61].

Having established that the Th17 and other CD4+ cell
subsets are depleted in the Tg mice, we next showed that
this depletion does not result from an inability of naive
CD4+ cells from Tg mice to differentiate into the ex-
pected CD4 + cell subsets when incubated with polarizing
cytokines in vitro. Therefore, the depletion of polarized
CD4+ T-cell subsets is most likely caused by the marked
diminution of naive CD4+ cells which we found in the Tg
mice, rather than any potential downstream defects in
CD4+ cell differentiation. Naive CD4+ T-cells are also
depleted in human HIV infection [62-64].

In vitro differentiation of naive CD4+ T-cells from
control non-Tg mice induced expression of the expected
subset-specific signature genes. The enhanced expres-
sion of I[21 by cells from Tg and non-Tg mice under
Thi, Th2 and Th17 polarizing conditions confirms that
this cytokine can be produced not only by Th17 cells
but also by other subsets including Thl and Th2 cells
[65-68]. Although HIV-1 transgene expression did not
inhibit subset polarization and expression of the
expected signature genes, it nevertheless altered gene
expression profiles of cells incubated in the presence of
differentiating cytokines. In cells from the Tg mice,
induction of Ahr in Th17 and Treg differentiation condi-
tions is consistent with the known activation of the NF-
KB pathway by the HIV Nef protein [69], which in turn
enhances Alr expression [70]. For their part, naive CD4
+ cells from non-Tg mice, polarized under Th17 condi-
tions, displayed significantly lower expression of Foxp3
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compared to cells from Tg mice. Because naive CD4+
cells were polarized in vitro without APCs, it is unlikely
that the enhanced Foxp3 expression in Th1l7-polarized
cells from Tg mice, compared to non-Tg animals,
resulted from induction of IDO by HIV-1 Nef. However,
we cannot exclude the possibility that prior in vivo
exposure of naive cells to increased IDO activity, before
harvesting from the Tg mice, may have sufficed to alter the
balance of Th17 and Treg signature genes in vitro. Interest-
ingly, Foxp3 expression is increased in gut-associated
lymphoid tissue of untreated HIV-infected patients [57].

Despite these alterations in gene expression induced by
the HIV-1 transgene, it is noteworthy that cytokine
production in supernatants of in vitro differentiated
CD4+ cell subsets was nevertheless comparable in Tg
and non-Tg mice. Accordingly, the differentiated CD4+
cell subsets maintained this critical functional capacity
despite HIV-1 transgene expression. Of direct relevance
to host defense against C. albicans, production of IL-17
under Th17 differentiation conditions in vitro was un-
affected by transgene expression.

Consistent with previous studies conducted in immuno-
competent mice [11,12,71], oral infection with C. albicans
induced expression of S100a8, Ccl20, Il17 and II122 in
tongue tissues of the non-Tg mice. However, this mucosal
immune response to C. albicans infection was completely
abrogated in the Tg mice. Treatment of infected Tg mice
with the combination of IL-17 and II-22 by the intraperi-
toneal route every 2 days for 14 days significantly reduced
oral burdens of C. albicans, markedly decreased the dens-
ity of C. albicans on histopathology of the oral epithelium,
and restored the expression of S100a8 and Ccl20. The
cytokine dosage of 3 pg was selected because it is at the
upper end of the range of dosages (0.5-3 pg) previously
administered to mice by the intraperitoneal route without
undesirable effects [72-75]. Because this combined cyto-
kine treatment did not fully reduce oral burdens of C.
albicans to levels in the non-Tg mice, we cannot exclude
the possibility that a further reduction may be achievable
with daily treatment, or by increasing the cytokine dosage
to the maximum tolerated dose, to be determined by
dose-ranging studies. Alternately, the defects of mucosal
immunity which cause susceptibility to OPC in the Tg
mice could partially involve Th1 effector mechanisms [51]
which are IL-17- and IL-22-independent. The require-
ment for combined treatment with both IL-17 and IL-22
to restore mucosal immunity to C. albicans extends
in vitro studies which showed that IL-22 in conjunction
with IL-17 additively enhance the expression of S100A8
by keratinocytes [15]. The mechanism of this cooperation
between IL-17 and IL-22 for induction of antimicrobial
peptides is unknown but may be the result of convergence
of the STAT3 and NF-«B pathways [18]. Although studies
in IL-22%° and IL-17RA*® mice have shown that IL-22
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has a significant but lesser protective role than IL-17 in
OPC [11], the present results demonstrate that neither
cytokine is dispensable for protection against OPC in the
context of HIV transgene expression. This paradigm is
likely applicable to other susceptible hosts, such as
patients with chronic mucocutaneous candidiasis who
exhibit reduced production of IL-17 and IL-22 [76].

Consistent with a previous report [11], expression of
Defb3 was induced by oral C. albicans infection in the
non-Tg mice. However, in contrast to $100a8, expression
of Defb3 was not significantly diminished in the Tg mice,
despite the fact that expression of Defb3 and S100a8 is
induced by the same cytokines, including IL-17 and IL-
22 [14-16]. Future work will be needed to examine the
signaling pathways leading to induction of Defb3 and
S100A8 in the Tg mice [14,18,77].

Our data indicate that the protective effect of IL-17 and
IL-22 treatment was most likely mediated by induction of
S$100a8 in the Tg mice. Calprotectin has been shown to be
crucial for clearance of Candida infection [78], is pro-
duced at higher levels in patients with OPC [79], but is
decreased by HIV infection [80]. No discernible influx of
PMNs was induced by the cytokine treatment. This is
expected on the part of IL-22, which does not act on
immune cells [16] and is uninvolved in PMN recruitment
to the oral mucosa in murine candidiasis [11]. Although
IL-17-dependent PMN recruitment has been demon-
strated in murine OPC, these observations were done
5 days after primary oral infection with C. albicans [11].
Early [81] and more recent [12] studies of experimental
murine OPC have consistently shown that the early PMN
influx is maximal at 24-72 h after infection with C. albi-
cans and is largely replaced by mononuclear cells after day
7 of infection. Therefore, the lack of involvement of PMNs
in the protective response to cytokine treatment which we
found at day 7 after primary C. albicans infection of the
Tg mice may more closely mimic the reality of the host-
pathogen interaction found in HIV-infected patients with
established OPC, and provides evidence to support the
concept that the mobilization of PMNs may not be the
primary underlying mechanism by which IL-17 mediates
antifungal effects at this stage of infection [35].

Although we have shown that defective IL-17 and IL-
22 mucosal responses are involved in the susceptibility
of the Tg mice to OPC, these observations do not in
themselves fully explain the progressive reduction in oral
burdens in untreated Tg mice from day 5 to 17 after C.
albicans infection, concluding with a lack of effect of
cytokine treatment from day 13 to 17. In fact, these
observations suggest the participation of IL-17-
producing cell populations other than Th17 cells in the
response to OPC in the Tg mice, which could potentially
include y& T-cells, NKT cells, Tc17 CD8 T-cells, and in-
nate lymphoid cells [33,44,82]. Indeed, evidence has been
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presented that IL-17-producing cells other than classic
CD4+ Th17 cells protect from OPC in CD4-deficient
hosts [35]. Of the potential IL-17-producing cell popula-
tions, y0 T-cells and NKT cells have been shown to not
contribute significantly to IL-17 immunity in the oral
mucosa [11,71]. However, CD8+ T-cells are protective in
OPC [11], and we have previously shown that CD8+ T-
cells accumulate in the oral mucosa of the Tg mice in re-
sponse to C. albicans [40] and compensate in part for the
loss of CD4+ T-cells [83]. It will therefore be relevant to
further characterize these cells and determine if they
belong to the Tc17 phenotype. Of note, IL-17-producing
innate lymphoid cells [71] may also be an alternative
source of this cytokine in the Tg mice, considering that
this cell population is depleted in the jejunum but not
the oral mucosa of SIV-infected macaques [84,85].

Conclusion

This study shows that susceptibility to OPC in HIV-
transgenic mice is caused by a defective IL-17 and IL-
22-mediated response to C. albicans, producing a loss
of mucosal antimicrobial peptide-mediated protective
immunity.

Methods
Generation of Tg mice expressing HIV-1 and animal
model of candidiasis
The Tg mice expressing Nef, Env, and Rev of HIV-1 in
CD4+ T-cells, DCs, and macrophages (CD4C/HIVM"** Tg
mice) have been described elsewhere [52]. CD4C/HIVMUtA
mutant DNA harbors mouse CD4 enhancer and human
CD4 promoter elements to drive the expression of HIV-1
genes in CD4 + CD8+ and CD4+ thymocytes, in peripheral
CD4+ T-cells, and in macrophages and DCs. Founder
mouse F21388 was bred on the C3H background. Animals
from this line express moderate levels of the transgene,
with 50% survival at 3 months [52]. Several HIV-1 genes
(Gag, Pol, Vif, Vpr, Tat and Vpu) are mutated in the
CD4C/HIVM"*A DNA, whereas Env, Rev and Nef are in-
tact. The generation of CD4C/HIVM"'“ mice revealed that
selective expression of the Nef gene is required and suffi-
cient to elicit an AIDS-like disease in these Tg mice [52].
This disease is characterized by failure to thrive, wasting,
severe atrophy and fibrosis of lymphoid organs, a preferen-
tial depletion of CD4+ T-cells, with altered CD4+ T-cell
proliferation in vitro, loss of CD4+ T-cell help, CD4+ T-
cell and B-cell activation and impaired DC maturation and
function [42,52-54,86,87]. In addition, disease of the lung
(lymphocytic interstitial pneumonitis), heart (myocytolysis,
myocarditis), and kidney (segmental glomerulosclerosis,
tubulointerstitial nephritis, microcystic dilatation) develop
in these Tg mice [52,88].

Specific-pathogen-free male and female Tg mice and
non-Tg littermates were housed in sterilized individual
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cages equipped with filter hoods, supplied with sterile
water, and fed with sterile mouse chow. All animal ex-
periments were approved by the Animal Care Commit-
tee of the University of Montreal (protocol 12-088;
Additional file 2).

Oral inoculation with C. albicans LAM-1, a clinical
isolate, was done as described elsewhere [39,81]. In
brief, mice were inoculated by topical application of 10
pelleted blastoconidia recovered on sterile calcium al-
ginate Calgiswabs (Puritan Medical Products, Guilford,
ME). A longitudinal quantification of C. albicans in the
oral cavity of individual mice was done from day 1 until
euthanizing of the animals. Calgiswabs used for sampling
were dissolved in 2 mL of Ringer’s citrate buffer and
plated on Sabouraud dextrose agar supplemented with
chloramphenicol (0.05 g/L). Plates were incubated for
24 h at 37°C, and data were expressed as oral C. albicans
colony forming units recovered.

Flow cytometry analysis of CD4+ T-cell subsets

Single-cell suspensions of CLNs and spleen were prepared
as previously described [40]. Cells were surface stained
with four fluorochrome-labelled antibodies (CD4-FITC,
CXCR3-PERCP-CY5.5, CCR4-APC, CCR6-PE; BioLegend,
San Diego, CA) and their respective isotype controls to
specifically identify the Th1, Th2, Th1Th17 and Th17 sub-
sets (Additional file 3). Chemokine receptors CCR4, CCR6
and CXCR3 are surface markers for the functionally
distinct Thl (CXCR3 + CCR6-), Th2 (CCR4 + CCR6-),
Th17 (CCR4+, CCR6+), and Th1Th17 (CXCR3 + CCR6+)
memory CD4+ T-cell subsets [25,29]. As a positive control
for CCR4, CCR6 and CXCR3 identification of these
subsets, splenic CD4+ T-cells were enriched to >90%
purity by negative selection (Mouse CD4+ T-Cell Enrich-
ment Kit; Stemcell Technologies, Vancouver, BC) and
differentiated in vitro into Thl, Th2 and Th17 cells using
stimulation with anti-CD3 and anti-CD28 antibodies
(eBioscience, San Diego, CA) and combinations of cyto-
kines and anti-cytokine antibodies [89]. Regulatory T-
cells were quantitated by staining with anti-mouse
anti-CD4, anti-CD25 (both BD Biosciences) and anti-
Foxp3 (eBioscience) fluorescence-labeled monoclonal
antibodies and their respective isotype controls (Additional
file 3). Cell surface marker analysis was conducted on a
FACSCalibur flow cytometer (BD Biosciences) equipped
with CellQuest software. Data were acquired for 50,000
events by gating on CD4+ cells.

Naive CD4+ T-cell sorting

Single-cell suspensions of spleen were prepared as previ-
ously described [40]. Splenic CD4+ T cells were enriched
to >90% purity by negative selection (Mouse CD4+ T-
Cell Enrichment Kit; Stemcell Technologies, Vancouver,
BC) and surface stained with anti-mouse anti-CD4, anti-
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CD25, anti-CD62L and anti-CD44 fluorescence-labeled
monoclonal antibodies and their respective isotype con-
trols (BD Biosciences). Naive CD4+ T-cells (CD4 +
CD25- CD62L"CD44'°) were sorted using a FACSVan-
tage SE instrument (BD Biosciences).

CD4+ T-cell differentiation in vitro
To assay the capacity of CD4+ T-cells from Tg mice to
differentiate into specific subsets in vitro, 1 x 10° sorted
naive CD4+ T-cells were cultured in 200 ul of ISCOVE
medium (Wisent) supplemented with 10% fetal bovine
serum (Gibco). Cells were activated with anti-CD3 and
anti-CD28 (Dynabeads Mouse T-Activator CD3/CD28;
Gibco) for 6 days at 37°C and 5% CO, in the presence of
specific cytokines (eBioscience) and antibodies (BD
Biosciences): IL-12, IFN-y (each 10 ng/ml) and anti-IL-4
(Thl); IL-4 (5 ng/ml) and anti-IEN-y (Th2); TGEF-B
(5 ng/ml), IL-6 (20 ng/ml), IL-1p (10 ng/ml), IL-21
(10 ng/ml), IL-23 (10 ng/ml), anti-IFN-y and anti-1L-4
(Th17); TGF-B (5 ng/ml), IL-2 (10 ng/ml) (Treg). After
6 days of incubation, cells were harvested to assay the
expression of the Thet, Ifug, Tnf, Gata3, Staté, 114, 1110,
Foxp3, Tgfb, Ahr, Rora, Rorc, Il17a, 1l17f, 1121 and /22
genes. RNA was extracted using the RNeasy Plus Mini
Kit (Qiagen) according to the manufacturer’s protocol,
and qRT-PCR was performed for 40 cycles on a Rotor-
Gene 6000 instrument (Qiagen). Ubc, B2m and Atp5b
were utilized as reference genes (Primerdesign, UK), and
data analysis was done using Qiagen REST 2009 software.
To determine cytokine production by the differentiated
cells, culture supernatants were also harvested at day 6
and assayed using the BD cytometric bead array Flex Set
(BD Biosciences) according to the manufacturer’s proto-
col on a FACSCalibur flow cytometer equipped with BD
CellQuest software. Data analysis was performed using
BD FCARP array software 3.0.

Administration of IL-17 and IL-22

To determine if cytokine treatment can restore resistance
to OPC in the Tg mice, Tg and control non-Tg mice were
inoculated orally with C. albicans. Beginning at day 1
after inoculation, Tg mice were treated with PBS or 3 pg
of recombinant IL-17 and/or IL-22 (eBioscience) i.p.
every two days for 14 days. Control non-Tg mice were
untreated. Oral fungal burdens were determined daily
[39] to compare efficacy of treatments.

In separate experiments, Tg and non-Tg mice were inoc-
ulated or not with C. albicans, and the inoculated Tg mice
were treated or not with the combination of IL-17 and IL-
22 on days 1, 3 and 5 post-inoculation. On day 7, the mice
were euthanized and the tongues were harvested and
bisected longitudinally. qRT-PCR was performed to deter-
mine expression of the Defb3, S100a8, 1117, 1122, Ccl2 and
Ccl20 genes in tongue tissue, normalized to 18S, or Gapdh
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and Ubc. Histopathological examination was performed as
described [39].

Statistical analysis

CD4+ T-cell subset populations and cytokine production
were analyzed with IBM SPSS Statistics for Windows ver-
sion 20 software (IBM, Armonk, NY) using analysis of
variance. Qiagen REST 2009 software was used to
analyze gene expression results in real-time qRT-PCR.
Oral burdens of C. albicans were compared using ana-
lysis of variance with the Welch correction, followed by
the Games-Howell test for multiple comparisons of un-
equal variances. Differences were considered to be sig-
nificant at a p value of <0.05.

Additional files

Additional file 1: Histopathology of tongues from control
uninfected and untreated CD4C/HIVMutA Tg and non-Tg mice.
Representative histopathology of tongues from uninfected Tg (E1, E2)
and non-Tg mice (D1, D2).

Additional file 2: ARRIVE guidelines checklist. Completed ARRIVE
checklist.

Additional file 3: Gating strategies for Th1, Th2, Th1Th17, Th17 and
Treg subpopulations. Staining with four fluorochrome-labelled
antibodies (CD4-FITC, CXCR3-PERCP-CY5.5, CCR4-APC, CCR6-PE) specifically
identifies the Th1, Th2, Th1Th17 and Th17 subsets. Staining with three
fluorochrome-labelled antibodies (CD4-PE, CD25-APC, Foxp3-FITC)
identifies the Treg subset.
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