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Abstract 

Background  The cellular and molecular dynamics of human prepuce are crucial for understanding its biological 
and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions 
and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dis-
sected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells.

Results  We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, 
macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among dif-
ferent individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory 
networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly 
dynamic between the prepuce cells of children and adults. Our cell–cell communication network analysis among dif-
ferent cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific 
(e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular 
communications could be closely associated with prepuce development in children and prepuce maintenance 
in adults.

Conclusions  Collectively, we systematically analyzed the cellular variations and molecular changes of the human 
prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light 
on the underlying molecular mechanisms of prepuce development and maintenance.

Keywords  Single-cell RNA-seq, Human prepuce, Gene regulation, Cell–cell communications, Cellular dynamics

†Fei Tan and Yuan Xuan contributed equally to this work.

*Correspondence:
Fei Tan
tanfeitrue@126.com
Jiling Wen
wenjiling@tongji.edu.cn
Geng Chen
chengeng66666@outlook.com
1 School of Medicine, Shanghai Skin Disease Hospital, Tongji University, 
Shanghai 200443, China
2 Shanghai Skin Disease Clinical College, The Fifth Clinical Medical 
College, Anhui Medical University, Shanghai Skin Disease Hospital, 
Shanghai 200443, China

3 Longgang District Maternity & Child Healthcare Hospital of Shenzhen 
City, Shenzhen 518172, China
4 Department of Urology, Shanghai Tenth People’s Hospital, Tongji 
University School of Medicine, Shanghai 200072, China
5 Department of Dermatology, Shanghai Baoshan Hospital of Integrated 
Traditional Chinese and Western Medicine, Shanghai 201999, China
6 School of Microelectronics, Shanghai University, Shanghai 201800, China
7 Department of Urology, Shanghai East Hospital, Tongji University School 
of Medicine, Shanghai 200120, China
8 Center for Bioinformatics and Computational Biology, School of Life 
Sciences, East China Normal University, Shanghai 200241, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09615-8&domain=pdf


Page 2 of 11Tan et al. BMC Genomics          (2023) 24:514 

Introduction
The prepuce, commonly referred to as the foreskin, 
comprises a specialized tissue structure that encapsu-
lates the glans penis in males [1–3]. Despite its evident 
biological and physiological significance, our under-
standing of the prepuce’s cellular heterogeneity and 
functional diversity remains limited.  With the advent 
of single-cell RNA-sequencing (scRNA-seq) technolo-
gies, gene/transcript expression profile is feasible to be 
investigated at a single-cell resolution [4, 5]. Moreover, 
scRNA-seq also enables the investigation of cellular 
expression heterogeneity, inference of gene regulatory 
networks, and construction of cell-to-cell interactions 
[6–9]. Although several studies have investigated the 
transcriptional profile of human epidermis (e.g., trun-
cal skin, and scalp) at the single-cell level [10–12], the 
cellular composition and heterogeneity of human pre-
puce were still largely unknown. Single-cell analysis of 
human prepuce is essential for unraveling its complex 
tissue composition and physiological functions.

Furthermore, with the development of prepuce, its 
cell composition and gene expression profile could be 
dynamically changed. The expression heterogeneity of 
prepuce cells is largely correlated with the composition of 
cell subtypes, while expression profiles of cell subpopu-
lations are directly influenced by the gene regulatory 
networks (GRNs) formed by transcription factors (TFs) 
and downstream target genes [13–15]. Additionally, dif-
ferent cell types usually interact with each other to exert 
corresponding functions, which are mediated by related 
ligands and receptors [16–20]. Thus, cellular differences 
in human prepuce between children and adults could be 
closely correlated to the variations of GRNs and cell–cell 
interaction networks. Systematic investigation of the pre-
puce’s cellular dynamics and molecular changes could 
provide a deeper understanding of the role of different 
cell types in maintaining prepuce health and prevent-
ing infections. It could also add valuable knowledge to 
the fields of human anatomy, biology, and reproductive 
health.

Here, we first explored the expression heterogeneity 
and cell type compositions of human prepuce of chil-
dren and adults based on related scRNA-seq data. Then, 
we constructed the gene regulatory networks (GRNs) for 
the prepuce cells and investigated the gene regulatory 
dynamics among transcription factors and downstream 
target genes. The GRN differences between children and 
adults were also examined. Additionally, we built the cel-
lular interaction networks among different cell subtypes 
and interrogated cell–cell communication variations 
between children and adults. The signaling pathways 
enriched by the ligand-receptor pairs of cell–cell interac-
tions were explored as well.

Results
Cell type identification for human prepuce based 
on scRNA‑seq data
To explore the cell composition and expression heteroge-
neity of human prepuce at single-cell resolution, we first 
applied scRNA-seq to prepuce samples from 5 children 
and 4 adults. After removing the low-quality samples and 
cells (two unqualified samples of one child and one adult 
were excluded), a total of 90,770 qualified single cells 
were kept for 4 children and 3 adults (Fig. 1A). Based on 
the top 2000 variable genes, those prepuce cells from chil-
dren and adults were mixed together in the UMAP plot 
(Fig. 1A). All these 7 samples showed similar cell distri-
butions, suggesting that no batch effect exists among dif-
ferent samples. Using a graph-based clustering approach, 
the 90,770 cells of these 7 samples could be grouped into 
27 different clusters with Seurat [21] (Fig.  1B). A series 
of marker genes with enriched expression were identified 
for different clusters (Fig. 1C, Supplementary Table S1). 
According to the known marker genes of corresponding 
cell types in CellMarker database [22], those 27 clusters 
could be further classified into 15 cell subtypes, including 
dendritic cells (DC), smooth muscle cells (SMC), fibro-
blast (Fibro), vascular endothelial cell (VEC), vascular 
endothelial-to-mesenchymal transition cell (VEndMT), 
lymphatic endothelial cell (LEC), lymphatic endothelial-
to-mesenchymal transition cell (LEndMT), melanocyte 
(MC), keratinocyte/epithelium (KC/Epi), schwann cell 
(SC), Mast, Macrophages (Macro), neutrophils (Neutro), 
T/natural killer (NK) and B cells (Fig. 1D). Interestingly, 
fibroblast cells (55.52%) occupied the largest portion of 
cells, followed by SMC cells (10.49%), T/NK cells (9.50%), 
VEC (5.15%), Macro (4.93%), and LEC (4.83%).

Characterization of marker expression and cell 
composition in the human prepuce
For each of those 15 cell types, we identified a set of 
marker genes with enriched expression compared 
to other cell types (Fig.  2A, adjusted p-value < 0.05). 
For instance, DCN, LUM, and COL1A2 were highly 
expressed in fibroblast cells, while CD3D, CD3E, and 
CD3G showed enriched expression in T/NK cells 
(Fig.  2A). PECAM1, VWF, and ACKR1 were detected 
as the marker genes for VEC, while ACTA2, MYL9, 
and MYH11 exhibited high expression in SMC. CPA3, 
TPSB2, and CTSG were the marker genes of MAST, 
while SFN, KRT1, and KRT14 were with enriched expres-
sion in KC. Specifically, as shown in Fig.  2B-E, some 
marker genes like CD3D, CDH19, CD1C, and CPA3 were 
almost only expressed in T/NK, SC, DC, and Mast cells, 
respectively.

We further examined the cellular compositions of dif-
ferent prepuce cell subtypes in children and adults. For 
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Fig. 1  Cell clustering and cell-type identification of human prepuce based on scRNA-seq data. A UMAP plot showing 90,770 qualified prepuce cells 
from 4 children and 3 adults based on the top 2000 variable genes in expression. B Clustering results of the prepuce cells of children and adults. 
C Expression heatmap for the markers of 27 different cell clusters. D UMAP plot displaying the 15 distinct cell subtypes of prepuce cells

Fig. 2  Maker expression profile and cell subtype composition of prepuce cells. A Expression distribution of selected markers for each type 
of prepuce cells. B-E Specific makers for T/NK, SC, DC, and Mast cell types. F Cell type composition of the prepuce in each individual of children 
and adults
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each individual of children and adults, fibroblast cells 
accounted for the largest portion of cells (children: 
46.46%-66.18%; adults: 52.6%-60.78%). However, the rank-
ing of other types of cells varied greatly among different 
individuals (Fig.  2F). For example, smooth muscle cells 
were the second most abundant cells for child-2 (11.85%), 
child-3 (17.51%), child-4 (10.37%), and adult-1 (13.11%), 
while T/NK cells occupied the second largest fraction 
for child-1 (19.98%) and adult-2 (12.68%). Interestingly, 
we also found that the proportions of all the 15 cell types 
were highly variable among the 4 children in general, 
whereas several cell types showed relatively constant 
small fractions (< 1%) among the 3 adults (e.g., B cells, 
KC, Mast, neutrophils, and VEndMT). These results sug-
gest that human prepuce of both children and adults have 
prominent differences in composition ratios of cell types.

Gene regulatory network inference for prepuce cells
To investigate the transcriptional regulatory profile 
of human prepuce, we inferred the gene regulatory 

networks (GRNs) in prepuce cells by employing SCENIC 
[23]. According to the expression associations between 
transcription factors (TFs) and downstream target genes, 
a total of 59 significant regulons were detected based 
on all 90,770 prepuce cells (each regulon contains one 
TF and its downstream target genes). These regulons 
involved 59 TFs and 2985 downstream target genes in 
total. As shown in Fig. 3A, different cell types can be dis-
tinguished in the t-SNE plot based on those 59 regulons, 
suggesting that the gene regulatory profiles of these cell 
types could be significantly different.

Intriguingly, we detected a set of cell-type-specific regu-
lons that mainly activated in certain cell types. For example, 
the regulon formed by TF KLF5 was primarily detected in 
KC, which contained 64 downstream target genes (Fig. 3B). 
We observed that 40 out of those 64 (62.5%) downstream 
target genes of KLF5 were the marker genes of KC (e.g., 
EHF, KRT14, CALML5, SERPINB5, PKP1, and LGALS7), 
indicating the coregulation of these genes and the significant 
constribution of KLF5 to the expression profile of KC. Those 

Fig. 3  Gene regulatory network profile of human prepuce cells. A t-SNE plot showing the distribution of 15 cell types of prepuce based on 59 
significant regulons. The cells in the plot were colored by corresponding cell types. B-F Profiles of cell-type specific regulons for KC, SC, and B cells, 
respectively. Venn plots displaying the intersection between downstream target genes of corresponding TF and the marker genes of related cell 
types. Bubble diagrams showing the enriched biological processes or KEGG pathways for the downstream target genes of the corresponding TF
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64 target genes of KLF5 were significantly enriched in the 
biological processes of epidermis development, skin devel-
opment, keratinocyte differentiation, and epidermal cell dif-
ferentiation (Fig.  3B), further demonstrating its important 
regulatory role in the development of human prepuce. The 
regulons formed by TF SOX2 (66 downstream target genes) 
and SOX10 (113 downstream target genes) were enriched 
in the cell subpopulations of SC (Figs. 3C and D). Of note, 
35 out of those 66 (53%) SOX2 target genes (e.g., L1CAM, 
COL9A3, CADM4, AATK, MPZ, and ATP1A2) and 55 
out of those 113 (48.7%) SOX10 target genes (e.g., GPR155, 
L1CAM, CNPY2, GFRA3, COL9A3, and CADM4) were 
the marker genes of SC. The enriched KEGG pathways for 
those 66 SOX2 downstream target genes were cell adhesion 
molecules, PI3K − Akt signaling pathway, and ECM − recep-
tor interaction, while those 113 SOX10 downstream target 
genes were mainly enriched in cell adhesion molecules and 
Wnt signaling pathway (Fig.  3C and D). The regulons of 
TF PRDM1 (18 downstream target genes) and XBP1 (99 
downstream target genes) were mainly detected in B cells 
(Fig. 3E and F). Compared with the B cell marker genes, 6 
out of those 18 (33.3%) PRDM1 target genes (e.g., RAB30, 
TMEM156, PDK1, MIR155HG, FBXW7, and PRDM1) and 
29 out of those 99 (29.3%) XBP1 downstream target genes 
(e.g., C16orf74, IRF4, TPD52, RAB30, CD79B, and DERL1) 
overlapped with those markers. Gene functional enrich-
ment analysis showed that those 18 PRDM1 target genes 
were mainly involved in the biological processes of positive 
regulation of proteolysis, negative regulation of triglyceride 
metabolic process, regulation of fibroblast apoptotic pro-
cess, and fibroblast apoptotic process, while those 99 XBP1 
target genes were mainly enriched the KEGG pathways of 
protein processing in the endoplasmic reticulum, biosynthe-
sis of nucleotide sugars, amino sugar and nucleotide sugar 
metabolism, and fructose and mannose metabolism (Fig. 3E 
and F). Therefore, those cell-type-specific regulons could 
play crucial roles in regulating the gene expression of cor-
responding cell subpopulations. The results would benefit 
the understanding of cellular expression heterogeneity and 
the function of different cell subtypes of the human prepuce.

Dynamics of gene regulatory networks in human prepuce 
cells
To gain insights into the transcriptional regulatory differ-
ences between children and adults, we further separately 
constructed the GRNs for these two groups. As shown 
in Figs.  4A and B, each cell type could be distinguished 
from other cell types based on the detected regulons for 
children and adults. Interestingly, we found that a few TFs 
formed potential age-specific regulons, which were also 
differentially expressed between children and adults. For 
example, TF androgen receptor (AR) formed a specific 

regulon (involved 19 downstream target genes, such as 
BNC2, BOC, and CRNDE) in children, which showed a 
more enriched expression in children compared to adults 
(Fig.  4C). AR is a steroid-hormone-activated TF and has 
the potential to affect cellular differentiation and prolifera-
tion in corresponding tissues [24]. TF KLF10 also showed 
higher expression in children than adults and formed a 
children-specific regulon (involved 19 downstream target 
genes, such as CNOT8, NFYA, and PHF21A) (Fig.  4D). 
Previous studies have shown that KLF10 might play a criti-
cal role in regulating the circadian clock [25, 26]. Accord-
ingly, we identified potential children-specific regulons 
that were not detected in adults, these regulons could be 
important in regulating the expression of related gene sets 
in children’s prepuce cells.

We also observed that several TFs formed correspond-
ing regulons in both children and adults, but they acti-
vated in different cell types and the downstream target 
genes varied greatly. For instance, TF JUND formed 
a specific regulon in B cells of children (containing 81 
downstream target genes), whereas it generated a dif-
ferent regulon (including 51 downstream target genes) 
specific to the T/NK cells of adults (Fig. 4E). Most of the 
downstream target genes regulated by JUND in children 
were different from those regulated in adults (Fig.  4E), 
only sharing 8 genes (CCND2, TNFRSF12A, ANXA6, 
JUND, BTG1, ODC1, DUSP8, and PRR7). Gene func-
tional enrichment analysis showed that those downstream 
target genes regulated by JUND in children were mainly 
involved in the biological processes of negative regulation 
of phosphorylation, regulation of protein catabolic pro-
cess, negative regulation of protein phosphorylation, and 
regulation of protein ubiquitination, while those JUND 
targeting genes in adults were enriched in peptidyl-threo-
nine dephosphorylation and inactivation of MAPK activ-
ity. The regulon of TF MITF was specific to MAST cells of 
children (having 34 downstream target genes), whereas it 
formed a specific regulon (including 227 downstream tar-
get genes) in the adult MC (Fig.  4F). We found that the 
downstream target genes regulated by MITF had 27 com-
mon genes (such as CLCN7, SLCO4A1, GNPTAB, GNAL, 
and MSC) between children and adults (Fig. 4F). Those 34 
MITF downstream target genes in children were mainly 
enriched in the biological processes of pigmentation, 
developmental pigmentation, regulation of cell shape, pig-
ment cell differentiation, and cellular pigmentation, while 
those 227 downstream target genes regulated by MITF 
in adults were involved in similar biological processes as 
well (adjusted p-value < 0.05). Consequently, we revealed 
the dynamics of gene regulatory networks formed by the 
same TFs in prepuce cells between children and adults, 
which could contribute to the expression dynamics of 
human prepuce development and maintenance.
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Cell–cell communication network construction for human 
prepuce cells
To investigate the cellular communications among dif-
ferent cell types in children and adults, we constructed 

the cell–cell interaction networks based on the expres-
sion profiles of ligand-receptor pairs using CellChat 
[27]. By comparing the cell–cell interaction networks 
between children and adults, we found that fibroblast, 

Fig. 4  Gene regulatory differences between the prepuce cells of children and adults. A t-SNE plot of prepuce cells for children based on detected 
regulons. B t-SNE plot of prepuce cells for adults based on inferred regulons. C Expression profile of children-specific regulon AR. D Expression 
distribution of children-specific regulon KLF10. E–F Regulons with the same TF but having different sets of downstream target genes in children 
and adults. t-SNE plot showing the activation state of a regulon in cells (blue: activated; gray: un-activated). Venn plots displaying the intersection 
between the downstream target genes of the same TF-regulon in children and adults. The significantly enriched biological processes were shown 
in the bubble diagram
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VEndMT, and LEndMT cells exhibited relatively strong 
cellular communications with other cell types, whereas 
the cell types of T/NK, B, MC, Mast, KC, and Neutro 
showed relatively weak cell–cell interactions with other 
types of cells for both children and adults (Fig.  5A and 
B). However, cell types of VEC, LEC, Macro, SMC, DC, 
and SC generally had stronger cellular interactions with 
other types of cells in children compared to adults. For 
the outgoing cellular interaction strength, the largest was 
fibroblast in children followed by LEndMT, VEndMT, 
and LEC, whereas the strongest was LEndMT in adults 
followed by fibroblast, VEndMT, and DC (Supplemen-
tary Figure S1A). For the intensity of incoming cell–cell 
communications, the highest was VEC in children fol-
lowed by VEndMT, Macro, and DC, while the largest 
was VEndMT in adults followed by LEndMT, VEC, and 
DC (Supplementary Figure S1B). For children, the lowest 
outgoing and incoming cellular interaction strength were 
KC and B cells respectively. In comparison, the weakest 
outgoing and incoming cell–cell interaction intensity 
were both Mast cells in adults.

We also found that the cellular interaction intensities 
for some enriched signaling pathways formed by cor-
responding ligand-receptor pairs were significantly dif-
ferent between children and adults (Fig. 5C and D). For 
example, stronger cell–cell interactions were observed 
between B cells and DC or Macro cells in children com-
pared to adults for BAFF signaling pathway (Fig.  5C). 
Our result was in line with previous reports that the 
cytokine of BAFF was critical for supporting the sur-
vival of mature naïve B cells, which was also required 
for the survival of autoimmune B cells and memory B 
cells [28–30]. More cellular communications were also 
detected among VEndMT, LEC, and VEC in children 
than that in adults for the EPHB signaling pathway 
(Fig.  5C). Previous studies have shown that the EPHB 
signaling pathway plays an important role in cell adhe-
sion and migration, indicating that it could promote the 
development of children’s prepuce [31–34].

In contrast, some signaling pathways showed oppo-
site trends between children and adults (Fig.  5D). For 
instance, the cell–cell interactions enriched in the 

Fig. 5  Cell–cell communication networks among different prepuce cell types in children and adults. A Cell–cell interaction heatmap between any 
two cell types of children prepuce. B Cellular communication heatmap between cell types for the prepuce of adults. C Signaling pathways 
that have stronger interaction intensity in children compared to adults. D Signaling pathways that show stronger interaction intensity in adults 
compared to children
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ADGRE5 signaling pathway were stronger in adults 
compared to children. ADGRE5 encodes the proteins 
of the EGF-TM7 subfamily of adhesion G protein-cou-
pled receptors, which may be functionally important for 
cell adhesion as well as the recruitment, activation, and 
migration of leukocytes [35–37]. A similar phenomenon 
was observed for the ANGPT signaling pathway, where 
higher cell–cell interaction intensity was detected among 
VEndMT, LEndMT, SMC, Macro, LEC, and VEC in 
adults compared to children. These signaling pathways 
could be important for prepuce maintenance in adults, 
reflecting the functional differences of cellular communi-
cations between children and adults.

Cell–cell communication variations among different cell 
types of the human prepuce
We also detected the signaling pathways that were 
mainly enriched in children and adults, respectively. For 
example, the signaling pathways of CD96, EPO, IFN-1, 
CHEMERIN, and WNT were only identified as signifi-
cant enrichment in children (Fig.  6A), suggesting that 
they could be mainly activated in children rather than 
adults. Cell–cell interactions were primarily detected 
between KC and T/NK cells for the CD96 signaling path-
way. It has been suggested that CD96-mediated signal-
ing had the potential to modulate the differentiation of 
effector T cells, which could have a co-stimulatory role 
in the activation and effector function of CD8 + T cells 
[38]. EPO signaling pathway was mainly enriched by 
the cell–cell interactions between fibroblast and other 
cell subtypes. Previous studies have revealed that EPO 
could enhance the differentiation of myofibroblasts, and 
also had the potential to accelerate skin wound closure 

[39–41]. CHEMERIN signaling pathway was mainly 
enriched by the interactions between Macro and other 
cell types, while IFN-I and WNT signaling pathways were 
mediated by the cell–cell communications among various 
cell types in the prepuce of children. Thus, these signaling 
pathways could be functionally important in the prepuce 
development of children.

The signaling pathways mainly detected in adults 
included BMP10, NEGR, ncWNT, PRL, and NPR1 
(Fig.  6B). BMP10 signaling pathway was enriched by 
the cellular communications among the cell types of 
VEndMT, LEndMT, fibroblast, LEC, VEC, and T/NK, 
while the NEGR signaling pathway was mainly activated 
by the interactions with SC. The activation of the NPR1 
signaling pathway in adults’ prepuce was primarily medi-
ated by the cell–cell interactions between VEndMT and 
other cell types. By contrast, ncWNT and PRL signal-
ing pathways were enriched by the cellular interactions 
among different cell types in adults. The cell–cell com-
munications mediated by corresponding ligand-receptor 
pairs for these pathways could play an important role in 
the prepuce maintenance of adults. Our results indicate 
that the cell–cell interaction networks among different 
cell types varied greatly between children and adults.

Discussion
To the best of our knowledge, we are the first to system-
atically explore the cellular heterogeneity of human pre-
puce between children and adults from different aspects 
(including expression, gene regulation, and cell–cell com-
munication) at the single-cell level. A total of 15 differ-
ent cell types were identified in human prepuce cells and 
each cell type had a set of marker genes with significantly 

Fig. 6  Enriched cell-type specific signaling pathways of children and adults. A Signaling pathways mediated by ligand-receptor pairs significantly 
enriched in children. B Signaling pathways significantly enriched in adults mediated by ligand-receptor pairs
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enriched expression. Fibroblast cells accounted for the 
largest fraction in both children and adults. We observed 
that the proportion of those identified cell types in differ-
ent individuals varied greatly in general. A number of dif-
ferentially expressed genes (DEGs) between children and 
adults for each cell type were detected. The quantity of 
DEGs for those 15 cell types ranged from 3 to 981 (Sup-
plementary Figure S2), indicating the large expression 
variation between the prepuce cells of children and adults.

We also revealed the dynamics of gene regulation among 
different cell types as well as between the prepuce of chil-
dren and adults. In total, 59 significant regulons were 
detected based on the 90,770 prepuce cells, which were 
involved in 59 TFs and 2985 downstream target genes. 
Interestingly, we detected a number of cell-type-specific 
regulons with enriched activation for certain cell types, 
such as the KC-specific regulon formed by TF KLF5, the 
regulons of TFs SOX2 and SOX10 specific to SC, as well 
as the regulons of PRDM1 and XBP1 enriched in B cells 
(Fig. 3). Surprisingly, a large fraction of those downstream 
target genes regulated by these TFs were the marker genes 
detected for corresponding cell types, suggesting that cell-
type-specific TFs played critical gene regulatory roles and 
could significantly affect the expression profile of related 
cell types. We further identified two regulons formed by 
TFs AR and KLF10 that were mainly activated in children 
prepuce compared to adults. Moreover, we also uncov-
ered several regulons shared between children and adults 
but activated in different cell types and regulated distinct 
sets of downstream target genes. For instance, TF JUND 
formed a specific regulon in B cells of children but its 
regulon was enriched in T/NK cells of adults, while MITF 
regulon was mainly activated in MAST cells of children 
but it formed a specific regulon of MC in adults (Fig. 4E). 
Consequently, the prepuce cells showed high gene regula-
tory dynamics between children and adults. Our findings 
could facilitate a better understanding of expression het-
erogeneity of prepuce cells during development.

We constructed the cell–cell communication networks 
among different cell types of the human prepuce and 
discovered large-scale variations between children and 
adults. Strong cell–cell interactions were observed among 
Fibroblast, VEndMT, and LEndMT cells, while relatively 
weak cellular communications were detected among T/
NK, B, MC, Mast, KC, and Neutro. Furthermore, we 
also observed that some enriched signaling pathways 
exhibited highly different cellular interaction intensities 
between children and adults, such as BAFF, ADGRE5, 
EPHB, and ANGPT signaling pathways. Additionally, we 
identified a number of signaling pathways specific to chil-
dren (e.g., CD96, EPO, IFN-1, CHEMERIN, and WNT 
signaling pathways) and adults (e.g., BMP10, NEGR, 
ncWNT, PRL, and NPR1 signaling pathways). Our results 

not only showed the cellular communication variations 
among different cell types between children and adults, 
but also revealed the signaling pathways that could con-
tribute to the prepuce development in children and the 
prepuce maintenance in adults.

Given the results obtained from our study, several ave-
nues for future investigations could be conducted. One 
promising direction is the incorporation of spatial tran-
scriptomics techniques to complement our understand-
ing of the prepuce’s cellular organization and interactions 
within its microenvironment. Spatial transcriptomics can 
provide insights into the spatial distribution of cell types 
and their gene expression patterns [42–44], providing 
additional information for cell–cell communication net-
works and tissue organization within the prepuce. On the 
other hand, the ages of the four children (4, 4, 5, and 5) 
are very similar in this study, the age differences of adults 
(19, 32, and 37) may introduce certain biological varia-
tions. Further investigation of the longitudinal changes 
in cell heterogeneity across more groups with similar 
ages could facilitate better understanding of the devel-
opment and maintenance of human prepuces. Addition-
ally, exploring the prepuce’s cellular dynamics in disease 
states may provide valuable insights into its tissue home-
ostasis and susceptibility to pathological conditions.

In conclusion, we dissected the prepuce cells in terms 
of cellular compositions, gene expression changes, gene 
regulatory dynamics, and cell–cell communication varia-
tions, which shed light on the cellular heterogeneity and 
underlying molecular mechanisms of human prepuce 
development and maintenance.

Materials and methods
Quality control of scRNA‑seq data and cell type 
identification
The scRNA-seq approach of 10X Genomics was applied 
to the prepuce samples from 5 children and 4 adults. 
Two samples from one child and one adult were excluded 
due to the low quality of scRNA-seq data. The remain-
ing qualified scRNA-seq data of 4 children (ages of 4, 
4, 5, and 5) and 3 adults (ages of 19, 32, and 37) were 
used in the downstream analysis. We further employed 
Seurat (version 4.1.1) [21] to conduct cell quality con-
trol, dimensionality reduction, and clustering. Those 
cells with > 5,000 or < 200 expressed genes, > 10% mito-
chondrial genes, or > 0.01% red blood cell genes were 
removed. Then we used the function of FindVariableFea-
tures in Seurat to select the top 2000 variable genes in 
expression for dimensionality reduction. The function 
of FindClusters in Seurat was applied to group cells into 
different clusters with Uniform Manifold Approximation 
and Projection (UMAP). We determined the cell types 
of prepuce with corresponding cluster markers using the 
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CellMarker database [22]. Specifically, the top 10 marker 
genes detected in each cell cluster were compared with 
the known makers of related cell types in CellMarker 
database. According to the overlap of marker genes, the 
cell clusters were grouped into corresponding cell types.

Gene functional enrichment analysis
We employed the R package of clusterProfiler [45] 
(version 3.18) to carry out Gene Ontology (GO) 
and KEGG pathway enrichment analysis. Adjusted 
p-value < 0.05 was used to define the significantly 
enriched biological processes and KEGG pathways. 
Gene set enrichment analysis (GSEA) was based on 
the Molecular Signatures Database (http://​www.​gsea-​
msigdb.​org/​gsea/​index.​jsp).

Inference of single‑cell gene regulatory networks
Single-cell gene regulatory networks of cells formed by 
transcription factors (TFs) and their downstream tar-
get genes were inferred using SCENIC (version 1.1.2) 
[23]. Specifically, the normalized gene expression matrix 
of cells was first used as the input for the R package of 
GENIE3 (version 1.16.0) to construct co-expression net-
works of genes. Next, RcisTarget (version 1.14.0) was 
employed to deduce the regulatory networks between 
TFs and downstream target genes. After the construc-
tion of gene regulatory networks, AUCell (version 
1.16.0) was utilized to analyze the activity of predicted 
regulons in each cell. Each regulon was formed by the TF 
and its downstream target genes. Adjusted p-value < 0.05 
was applied to define the significance of regulons.

Cell–cell communication network construction 
and signaling pathway analysis
We used CellChat (version 1.4.0) [27] to construct the 
cell–cell interaction network among different cell types of 
human prepuce. Cellular communications between two 
different cell types or within the same cell types were pre-
dicted based on the expression profile of known ligand-
receptor pairs. CellChat computed an enrichment score 
for each potential ligand-receptor interaction by compar-
ing the joint expression of the ligand in the sending cell 
type and the receptor in the receiving cell type against 
their individual background expression distributions. 
Statistically significant interactions between cell types 
were identified based on empirical p-values using a per-
mutation-based test. By summarizing the probabilities of 
ligand-receptor pairs, the communication probability of a 
signaling pathway is computed by CellChat. Using mani-
fold learning and quantitative comparisons, CellChat clas-
sified signaling pathways and identified conserved and 
context-specific pathways for children and adults.
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