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Abstract 

Non-coding RNAs (ncRNAs) draw much attention from studies widely in recent years because they play vital roles 
in life activities. As a good complement to wet experiment methods, computational prediction methods can greatly 
save experimental costs. However, high false-negative data and insufficient use of multi-source information can affect 
the performance of computational prediction methods. Furthermore, many computational methods do not have 
good robustness and generalization on different datasets. In this work, we propose an effective end-to-end comput-
ing framework, called GDCL-NcDA, of deep graph learning and deep matrix factorization (DMF) with contrastive learn-
ing, which identifies the latent ncRNA-disease association on diverse multi-source heterogeneous networks (MHNs). 
The diverse MHNs include different similarity networks and proven associations among ncRNAs (miRNAs, circRNAs, 
and lncRNAs), genes, and diseases. Firstly, GDCL-NcDA employs deep graph convolutional network and multiple 
attention mechanisms to adaptively integrate multi-source of MHNs and reconstruct the ncRNA-disease association 
graph. Then, GDCL-NcDA utilizes DMF to predict the latent disease-associated ncRNAs based on the reconstructed 
graphs to reduce the impact of the false-negatives from the original associations. Finally, GDCL-NcDA uses contras-
tive learning (CL) to generate a contrastive loss on the reconstructed graphs and the predicted graphs to improve 
the generalization and robustness of our GDCL-NcDA framework. The experimental results show that GDCL-NcDA 
outperforms highly related computational methods. Moreover, case studies demonstrate the effectiveness of GDCL-
NcDA in identifying the associations among diversiform ncRNAs and diseases.
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Introduction
According to a central dogma of molecular biology, 
it describes how genetic information is transmitted 
through RNA to the corresponding protein. Non-coding 
RNAs (ncRNAs) are a large segment of the transcriptome 
that do not have apparent protein-coding roles, which 
are functional RNAs molecule that is not translated into 
a protein [1]. Thus, for the past decades, there are a view 
that ncRNAs are transcriptional noise [2]. Until a break-
through in biotechnology, ncRNAs catch extensive atten-
tion of many researchers and completely change the view 
of biological scientists on RNA function [3]. Hundred 
studies find that ncRNAs occupy a vital position in life 
activities by being a key regulators of gene expression, 
involving the occurrence and development of many dis-
eases and so on [4]. Nowadays, microRNAs (miRNAs), 
circular RNAs (circRNAs) and long noncoding RNAs 
(lncRNAs) are commonly studied in disease-associated 
ncRNAs [3, 5].

More than 1, 500 miRNAs found in the human genome 
up to now. They have a length of about 21-23 nucleotides, 
and each miRNA has hundreds of targeted mRNAs. 
miRNAs are involved in almost every process in human 
cells. Therefore, researchers believe that every disease is 
influenced by a miRNAs component [6]. miR-140-5p and 
miR-146a can target Sirt2, Nrf2, TAF9b/P53, and other 
pathways, that they take a important place in doxoru-
bicin-induced cardiotoxicity [7, 8]. In the last few years, 
great efforts be made to discover the latent miRNA-dis-
ease associations. For instance, Chen et  al. [9] use the 
matrix decomposition method to discover the disease-
associated miRNAs. Peng et  al. [10] construct a HN of 
miRNA-gene-disease with their similarity networks. 
Auto-encoder (AE) and convolutional neural network 
(CNN) are used to recognize the characteristic combina-
tion and predict the final label for each pair of miRNA 
and disease, respectively. Jiang et al. [11] design the simi-
larity kernel fusion (SKF) method to integrate diverse 
similarity kernels of miRNA and disease, which can be 
more effectively for predicting miRNA-disease asso-
ciations. Li et al. [12] combine the linear and non-linear 
features from miRNA and disease to find the latent asso-
ciations, where the linear features are formed by the cor-
relation profiles of disease-lncRNA and miRNA-lncRNA 
and the nonlinear features are extracted by graph atten-
tion network (GAT).

circRNAs can act as miRNA, or protein inhibitors, 
which attracts an increasing number of attentions from 
researchers [13]. They have a closed single-strand con-
tinuous circular form. Without 3’ or 5’ polyadenylated 
tails, they can be resistant to extracellular enzyme-medi-
ated degradation [14]. In Crohn’s disease, hsa_circRNA_

103765 can impact tumor necrosis factor-α via cell 

apoptosis induced [15]. Lei et al. [16] develop a compu-
tational path weighted method for inferring circRNA-
disease associations by integrating similarity networks 
and interaction network. More specifically, they calcu-
late a linkage score for each pair of circRNA and disease 
based on paths linking them. Wei et al. [17] reconstruct 
the association matrix between circRNAs and diseases 
based on diverse similarity networks, and use it as a basis 
for the links prediction task by nonnegative matrix fac-
torization. Wang et  al. [18] propose a machine learning 
framework for latent circRNA-disease links discovery via 
a fusion of circRNA sequences and disease ontology. Li 
et al. [19] use GAT and random walk and restart (RWR) 
to extract the low-order and high-order neighbor rep-
resentations from similarity networks of circRNA and 
disease, respectively. There are two graph auto-encod-
ers (GAE) for circRNA-disease associations prediction, 
based on integrating these representations.

lncRNAs are antisense RNA molecules with more than 
200 nucleotides. They can regulate the transcription and 
expression of genes and involve in cancer development 
or suppression, which by specific binding to non-coding 
regions of target genes [20]. For example, the overex-
pression of lncRNACTA-929C8 in brain tissue may lead 
to Alzheimer’s disease, that its high expression is about 
1000 times that of other normal tissues [21]. Wang et al. 
[22] design a weighted matrix factorization method to 
infer disease-associated lncRNAs. To be specific, the 
algorithm assigns initial weights to the inter-association 
and intra-association matrices within the network. It 
then collaboratively decomposes these matrices into 
low-rank equivalents, aiming to uncover the inherent 
relationships among the nodes. Zhang et al. [23] propose 
a multi-feature coding approach to build the character-
istic of linkage among lncRNA and disease samples by 
combining the six similarity characteristics, and develop 
an attention CNN to infer possible association between 
lncRNA and disease. Wu et al. [24] utilize GAE to extract 
low-dimensional representations of vertices and random 
forest (RF) to identify the possible relationships between 
lncRNA and disease. Zhao et al. [25] utilize the GAT to 
learn vertex representations based on homogeneous 
and heterogeneous subgraphs. To obtain more seman-
tic information, they perform an attention mechanism 
for assigning weights to numerous metapath-based sub-
graphs. For final prediction task, they use neural induc-
tive matrix completion (NIMC) to rebuild the linkages 
among lncRNA and disease.

Although there have been many efforts to analyze the 
underlying associations between various ncRNAs and 
diseases, there are still some challenges [17, 26, 27]: (1) 
High false-negative association; (2) Insufficient utiliza-
tion of multi-source information; (3) The noise both from 
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multi-source information and multi-stage methods; (4) 
The robustness and generalization of the methods are 
insufficient.

Firstly, as we all know, the traditional wet experiments 
consume a lot of resources, but are also inefficient and 
susceptible to the outside world. At present, plentiful 
computational methods critically depend on the asso-
ciations between ncRNAs and diseases verified by wet 
experiments. Unfortunately, there is a phenomenon 
where the existing open ncRNA-disease databases use 
1 and 0 to indicate whether has relationship between 
them, with very few “1” values pointing a known associa-
tion and very numerous “0” values pointing an unknown 
association rather than no association. This phenom-
enon we called false-negative, and there are many false-
negative associations in ncRNA-disease databases, which 
will impact the performance and interpretability of com-
putational methods [17, 28]. Secondly, abundant previ-
ous works enhance performance of methods by fusing 
the similarity networks of ncRNAs and diseases by a 
simple average or linear weighting strategy. Therefore, 
those works ignore that multi-source information may 
have different contributions to the same prediction task 
[26, 29]. Thirdly, there are many works using a multi-
stage method to integrate multi-source information to 
improve the performance, and some of those methods 
also rely on hand-crafted intermediate results. Moreover, 
noise is contained in most of the similarity information 
[10, 26]. These will affect the effectiveness and interpret-
ability of methods. Finally, great works focus on two spe-
cific bio-entities of interest (e.g., lncRNA and disease), 
which may lead to a model not being able to get a good 
result on different datasets when this model uses the 
same set of parameters. Therefore, the robustness and 
generalization of methods have to be improved. In con-
clusion, it is worth noting that reducing false-negatives 
in original association data, making full and reasonable 
use of multiple sources of information from bio-entities, 
and differentiating the significance of various sources 
of information can enhance the predictive capability of 
ncRNA-disease associations. Furthermore, it is vital to 
improve the robustness and generalization of methods. 
However, there is no complete and effective end-to-end 
framework to address these challenges.

In this work, to overcome the challenges, we design the 
GDCL-NcDA that uses the Graph learning models and 
Deep matrix factorization based on Contrastive Learn-
ing for NcRNA-Disease Associations identification. It is 
an end-to-end computational framework, for integrating 
divers multi-source information on different HNs. Differ-
ent from our previous work MHDMF [28], GDCL-NcDA 
introduces a deep graph learning (deep graph convolu-
tional network-GCNII [30]), employs multiple attention 

mechanisms, including graph attention network (GAT) 
and multi-channel attention to enhance the characteris-
tics of within and between similarity networks. GDCL-
NcDA also uses DMF to identify potential associations 
while further adding contrastive learning (CL), which 
makes the GDCL-NcDA framework have better gener-
alization and robustness. In addition, we perform GDCL-
NcDA on more multi-source heterogeneous networks 
(MHNs) which contain more bio-entities. The GDCL-
NcDA has the following advantages: 

1.	 We design an end-to-end computational framework 
GDCL-NcDA, which is the first to introduce GCNII 
to fuse the multi-source information of different 
ncRNAs and diseases based on three different multi-
layer heterogeneous networks. Furthermore, GDCL-
NcDA is the first to use CL in a chain framework. 
These multi-layer heterogeneous networks include 
miRNAs, circRNA, lncRNA, genes, and diseases. 
GDCL-NcDA consists of four parts: (1) constructing 
multiple MHNs of ncRNAs and diseases, (2) recon-
structing diverse association graphs, (3) establishing 
various predicted association graphs, (4) generating 
contrastive loss on reconstructed graphs and pre-
dicted graphs.

2.	 GDCL-NcDA efficiently integrates GCNII, multiple 
attention mechanisms, DMF, and CL into an end-
to-end framework for identifying underlying asso-
ciations. GDCL-NcDA reduces the false-negative 
associations via multi-source GCNII and multiple 
attention mechanisms, which is used to reconstruct 
the ncRNA-disease association graphs. GDCL-
NcDA introduces DMF to take both explicit and 
implicit feedback into consideration for generating 
ncRNA-disease associations predictive graphs based 
on reformulated association graphs. In addition, 
GDCL-NcDA further utilizes CL to improve gen-
eralization and robustness by generating a contras-
tive loss on the reconstructed graphs and predictive 
graphs.

3.	 To assess the capability of GDCL-NcDA, we com-
pare it with seven state-of-the-art methods under 
5-fold cross-validation (5CV) and 10-fold cross-vali-
dation (10CV) on three different MHNs, and GDCL-
NcDA achieves first-rank results. It is shown that 
GDCL-NcDA can easily extend on different datasets 
and have better generalization and robustness. Then, 
we implement ablation experiments to prove the 
effectiveness of each part and different MHNs, and 
parameter analysis of GDCL-NcDA to illustrate the 
choice of parameters. Finally, case studies are per-
formed on miRNA, circRNA, lncRNA and their two 
corresponding diseases.
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Multi‑source heterogenous networks
miRNA‑gene‑disease associations
For miRNA-disease, the positive set of miRNA-disease 
associations is downloaded from the Human Micro-
RNA Disease Database (HMDD v2.0) [31]. The miRNA-
gene associations are downloaded from the miRWalk2.0 
database [32]. The disease-gene associations are down-
loaded from DisGeNET [33]. We intersect the datasets 
to remove genes that have no relation with diseases and 
miRNAs. Meanwhile, we also download the semantic 
trees of diseases from the U.S. National Library of Medi-
cine (MeSH) [34]. We filter out miRNA-disease associa-
tions that their corresponding names are absent in the 
MeSH descriptors or miRBase records. Then, we get 
4266 associations between 285 miRNAs and 197 dis-
eases, and 1789 genes associate with miRNA and disease, 
respectively.

circRNA‑gene‑disease associations
For circRNA-disease, we download the positive associa-
tions of circRNA-disease from CircR2Disease database 
[35], the circRNA-gene associations from http://​cssb2.​
biolo​gy.​gatech.​edu/​knowg​ene/​search.​html, and the dis-
ease-gene associations from http://​cssb2.​biolo​gy.​gatech.​
edu/​knowg​ene/. We move out diseases and circRNAs 
that their corresponding names are absent in the MeSH 
descriptors or the records in Circinteractome and 
circbank databases. After filtering, there are 418 genes 
linked with 515 circRNAs and 61 genes linked with 82 
diseases, and 563 associations between circRNAs and 
diseases.

lncRNA‑gene‑disease associations
For lncRNA-disease, we obtain the lncRNA-disease posi-
tive linkages from LncRNADdisease database [36], the 
lncRNA-gene linkages from lncReg database [37], and 
the disease-gene linkage from DisGeNet database. After 
removing the duplicate and missing data, we collect 577 
linkages among 276 lncRNAs and 125 diseases with 3043 
linked genes.

Multi‑source information
We integrate multi-source information to build three 
different types of ncRNA-disease MHNs. The MHNs 
includes the hamming profile, sequence, and gauss-
ian interaction profile kernel (GIPK) similarity of three 
types of ncRNAs, the hamming profile, semantic, and 
GIPK similarity of diseases, as well as experimentally 
valid miRNA-disease, circRNA-disease, lncRNA-dis-
ease, miRNA-gene, circRNA-gene, lncRNA-gene, and 
disease-gene associations. In this work, all the similarity 
networks of ncRNAs and diseases are treated as graphs 

with edge weighted. The association matrixes of ncRNA-
gene and disease-gene are treated as features for edge-
weighted graphs of ncRNAs and diseases, respectively. 
All the similarity calculations are given in the Supple-
mentary Material.

Hamming profile similarity
Hamming profile can be used to measure the similarity 
of a pair of vectors by counting the number of different 
corresponding elements of the two vectors [38]. Accord-
ing to the biological assumption that similar ncRNAs 
are always linked with similar diseases, we treat Ham-
ming profile similarity as topological information from 
the known associations among ncRNAs and diseases. 
The higher Hamming profile value, the lower similarity 
in ncRNAs or disease. For diseases, the Hamming profile 
similarity kernel DHS(di, dj) is defined as follows:

where m(di),m(dj) represent binary vectors of diseases 
di, dj , which correspond to the ith, jth column in the 
ncRNA-disease association matrix M.

For ncRNAs, the Hamming profile similarity kernel 
NHS(nci, ncj) is defined as follows:

where m(nci),m(ncj) are binary vectors of ncRNAs 
nci, ncj , which correspond to the ith, jth row in the asso-
ciation matrix M.

Gaussian interaction profile kernel similarity
Gaussian interaction profile kernel (GIPK) can capture 
topological features of the interaction network of bio-
logical entity pairs. The similar bio-entities can be bet-
ter clustered in a space that describes GIPK similarity. 
Therefore, the GIPK is a reasonable method for meas-
uring the similarity of bio-entities, and it is widely used. 
Here, GIPK similarity for diseases DGS(di, dj) between 
disease di and dj can be defined as follows:

βd is a regulation parameter for controlling the kernel 
bandwidth.

where Nd is the number of all diseases.

(1)DHS(di, dj) =
|m(di)! = m(dj)|

|m(di)|

(2)MHS(nci, ncj) =
|m(nci)! = m(ncj)|

|m(nci)|

(3)DGS di, dj = exp −βd m(di)−m dj
2

(4)βd =





1

Nd

Nd
�

i=1

�

�m(di)
�

�

2





http://cssb2.biology.gatech.edu/knowgene/search.html
http://cssb2.biology.gatech.edu/knowgene/search.html
http://cssb2.biology.gatech.edu/knowgene/
http://cssb2.biology.gatech.edu/knowgene/
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Similarly, the GIPK similarity for ncRNAs 
NGS

(

nci, ncj
)

 between ncRNAs nci, ncj can be obtained 
as follows:

where Nnc is the number of all ncRNAs.

Disease semantic similarity
In the last decade, the effectiveness of disease semantic 
similarity based on Wang et al. [39] has been proved by 
many previous works, and it is widely used for identify-
ing latent associations between ncRNAs and diseases. 
In the MeSH disease descriptors, the associations 
in different diseases can be described as their corre-
sponding Directed Acyclic Graph (DAG) structures. 
Each node in DAG is a disease and each directed edge 
is their association. The more similar diseases are, the 
more common parts of DAGs they share. We obtain the 
disease semantic similarity DSS1(di, dj) between dis-
ease di and dj by Eq. (7) as follows:

where N (di) represents a node set on the DAG of 
disease di . C1di(t) represents the semantic contri-
bution value of a node t ∈ N (di) , which is associ-
ated with di . For di itself, C1di(t) = 1 . For t to di , 
C1di(t) = max

{

0.5 ∗ C1di
(

t ′
)

| t ′ ∈ children of t
}

 will 
increase as their distance decreases.

If a disease occurs in different DAGs, it is a com-
mon, and vice versa. The above method for calculat-
ing semantic similarity treats every different disease 
in the same layer as having the same semantic contri-
bution. However, the semantic contribution values of 
uncommon diseases should be higher than the com-
mon diseases [40]. According to previous work [41], we 
distinguish the semantic contribution values of uncom-
mon diseases by Eq. (8) as follows:

where C2di(t) is the semantic contribution value of t to di 
can be defined as Eq. (9):

(5)
MGS

(

nci, ncj
)

= exp
(

−βnc
∥

∥m(nci)−m
(

ncj
)∥

∥

2
)

(6)βnc =

(

1

Nnc

Nnc
∑

i=1

�m(nci)�
2

)

(7)DSS1
(

di , dj
)

=

∑

t∈N (di)∩N(dj)

(

C1di (t)+ C1dj (t)
)

∑

t∈N (di)
C1di (t)+

∑

t∈N(dj) C1dj (t)

(8)

DSS2
(

di, dj
)

=

∑

t∈N (di)∩N(dj)

(

C2di (t)+ C2dj (t)
)

∑

t∈N (di)
C2di (t)+

∑

t∈N(dj) C2dj (t)

Inspired by previous work [41], we calculate the final 
disease semantic similarity DSS(di, dj) between disease 
di and dj , which integrating the results of the above two 
semantic similarity calculations and describing as below:

ncRNA sequence similarity
To make use of the ncRNA sequence information, 
we compute the ncRNA sequence similarity scores 
NSS

(

nci, ncj
)

 based on Smith-Waterman (SW) [42] 
method. This sequence pairwise alignment method 
is packaged using the Biopython, a python tool. The 
sequence information of miRNAs, circRNAs, and lncR-
NAs is downloaded from miRBase [34] database, CircIn-
teractome [43] database and circBank [44] database, and 
LncRNADisease [36] database, respectively. In this work, 
NSS represents the ncRNA sequence similarity network. 
The weight of each edge in NSS needs to be normalized 
to the range [0,1] as follows:

where NSS
(

nci, ncj
)

 denotes the Smith-Waterman score 
between ncRNA nci and ncj.

Methods
Model framework
We design a widely effective computational framework 
GDCL-NcDA for identifying latent different types of 
ncRNA-disease associations. In effect, the more differ-
ent varieties of data there are, the more complementary 
information there is. Many previous works have shown 
that exploiting multi-source information does help com-
putational methods improve their performance. In this 
work, our end-to-end framework utilize multi-source 
information from three large MHNs to reduce the influ-
ence of the false-negative associations and relieve the 
noise which may be introduced by a multi-stage method.

Figures 1 and 2 show the overall flow of GDCL-NcDA, 
which is constitutive of four parts: (1) constructing mul-
tiple MHNs of ncRNAs and diseases (Fig. 1), (2) recon-
structing association graphs (matrixes) (Fig. 2. A and B), 
(3) establishing predicted association graphs (matrixes) 
(Fig.  2.  C), (4) generating contrastive loss on recon-
structed graphs and predicted graphs (Fig.  2.  C). For 
constructing multiple MHNs of ncRNAs and diseases, 

(9)C2di (t) = − log

(

the number of DAGs including t

the number of diseases

)

(10)DSS
(

di, dj
)

=
DSS1

(

di, dj
)

+ DSS2
(

di, dj
)

2

(11)

NSS
(

nci, ncj
)

=
SW

(

nci, ncj
)

max(SW (nci, nci), SW (ncj , ncj))
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we construct three multiple layers MHNs including simi-
larity profiles and interaction profiles of miRNAs, cir-
cRNA, lncRNA, genes, and diseases. For reconstructing 
association graphs, we use GAT to reduce the the impact 
of noise in the similarity networks and enhance the char-
acteristics within the similarity network. GCNII is used 
to encode the different similarity profiles and interaction 
profiles, and channel attention mechanism to enhance 
the characteristics between the similarity networks. For 
establishing predicted association graphs, we employ 
DMF to predict the latent associations based on recon-
structed association graphs. Furthermore, we introduce 
a novel contrastive optimization module to generate a 

collaborative contrastive loss of reconstructed associa-
tion graphs and predicted graphs.

Graph attention mechanism
Graph attention network (GAT) [45] is a novel con-
volution-style neural network. It is a valid method 
for graph representation learning, which can solve 
the weaknesses of previous graph convolution-based 
approaches. In GAT, the nodes can take part in their 
neighborhoods’ features. In different sized neighbor-
hoods, GAT is capable of implicitly assigning differ-
ent significances to different nodes. In this work, we 

Fig. 1  The construction of multi-source heterogeneous network (MHN) of ncRNA-gene-disease

Fig. 2  An illustration of the GDCL-NcDA framework. A The multi-source deep graph learning is to obtain significance within similarity network 
and encode every similarity network. B The multichannel attention mechanism is performed to obtain significance among diverse similarity 
networks. The reconstruction of association graph (matrix) for downstream predictive task. C The DMF for final identification task based 
on reformulated association score matrix. The contrastive loss generated on the reconstructed graph and predicted graph
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use GAT to capture the characteristics within multi-
ple homogeneous similarity networks of ncRNA and 
disease.

In GDCL-NcDA, GAT is adopted to obtain the shal-
lower embeddings on each similarity networks ncRNA 
and disease for downstream works, which can reduce 
the effect of noise in the similarity networks. We can 
obtain the attention-based similarity networks after 
GAT. We use GAT to enhance the characteristics 
within each similarity network. GAT utilizes a masked 
self-attention mechanism to learn the significance of its 
neighbors first. More specifically, it apples linear trans-
formation on nodes i,  j (node pointing a disease here) 
in a similarity graph G and employs self-attention on 
the nodes by a shared attentional mechanism, a map-
ping function fa(·) , which can calculate attention coef-
ficient wgat

ij  as follows:

where Fd = {f1, f2, · · · , fNd
}, fi, fj ∈ R

Fd is the input 
feature of disease nodes, where Nd is the number of 
disease nodes, and Fd is the dimensionality of each 
node, and Wgat ∈ R

Fd×Nd . The GAT output of disease 
F
′

d = {f
′

1, f
′

2, · · · , f
′

Nd
}, f

′

i ∈ R
Nd

In this model, each node can participate in each other 
node, without all structural information. By introduc-
ing the masked attention, the wgat

ij  for nodes j ∈ Ni , 
where Ni denotes 1st-order neighbors of node i in the G . 
To make the coefficients easy to compare between dif-
ferent nodes, we normalize the significance of different 
neighbor nodes by softmax function can be expressed 
as follows:

In this work, we apply the LeakyReLU nonlinearity, by 
fully expanding out, the coefficients calculated by the 
attention mechanism can be formulated as follows:

where a ∈ R
2Nd is a weight vector to parameterize the 

attention layer. ·T represents matrix transposition and ‖ 
represents the concatenation operation.

Subsequently, we can obtain the aggregated features of 
each node that linearly combines the normalized atten-
tion coefficients and nodes features. The aggregated fea-
tures use a potentially nonlinear activation function σ(·) 
to be the final node features. Then, the formation of GAT 
output f ′ i is shown as follows:

(12)w
gat
ij = fa(Wgat fi,Wgat fj);

(13)αij = softmaxj(w
gat
ij ) =

exp(w
gat
ij )

∑

k∈Ni
exp(w

gat
ik )

(14)

αij =
exp(LeakyReLU(aT [Wgat fi||Wgat fj]))

∑

k∈Ni
exp(LeakyReLU(aT [Wgat fi||Wgat fk ]))

In this work, to reduce the impact of self-attention and 
stabilize the learning process of nodes importance, we 
further employ multi-head attention. Specifically, we 
concatenate the node features which executing K inde-
pendent self-attention, then the Eq. (15) can be rewritten 
as follows:

where ‖ denotes the concatenation operation, αk
ij denote 

the normalized attention coefficients calculated by kth 
self-attention (akgat) , and Wk

gat denotes the corresponding 
weight matrix. Correspondingly, we can obtain the final 
GAT output of disease F′

d ∈ R
Nd×Nd , as well as ncRNA 

F
′

nc ∈ R
Nnc×Nnc , Nnc is the number of ncRNA nodes. We 

treat these GAT outputs as attention-adjacency matrixes 
of ncRNA Anc and disease Ad for the downstream recon-
struction task, which also called attention-based similar-
ity networks of ncRNAs Ga

nc and diseases Ga
d.

Deep graph convolution network
Graph convolution network (GCN) and its variants are 
vital components of graph learning, which can obtain 
the low-dimensional vector embedding of nodes [46]. 
Despite they show excellent performance in varieties 
of application areas on real-world datasets, most of the 
recent models are shallow, such as GCN [47] and GAT 
[45], to accomplish their perfect performance with 
2-layer models. Stacking more graph convolution lay-
ers and adding non-linearity can cause a phenomenon, 
called over-smoothing, which tends to impact these mod-
els’ performance. Chen et al. [30] develop the GCNII to 
effectively relieve the problem of over-smoothing by using 
Initial residual and Identity mapping techniques. In this 
work, we utilize the GCNII for similarity-specific learn-
ing, where a GCNII is trained for each attention-based 
similarity network to apply the association graph refor-
mulation component.

In GDCL-NcDA, we treat every attention-based simi-
larity network as a edge-weighted graph Ga

nc = (Vnc, Enc) 
and Ga

d = (Vd , Ed) . There are two inputs for a GCNII 
model: (1) attention-adjacency matrixes Anc ∈ R

Nnc×Nnc 
and Ad ∈ R

Nd×Nd representing the graph structure 
description, where Nnc is the number of ncRNAs and 
Nd is the number of diseases; (2) nodes feature matrixes 
X ∈ R

Nnc×Fnc and Y ∈ R
Nd×Fd , where Fnc and Fd are the 

feature dimensionality of ncRNAs and diseases, respec-
tively. We treat ncRNA-gene and disease-gene as the 

(15)f
′

i = σ





�

j∈Ni

αijWgat fj





(16)f
′

i = �Kk=1σ





�

j∈Ni

αk
ijW

k
gat fj



.
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feature matrixes of ncRNA-ncRNA edge-weighted 
graphs and disease-disease edge-weighted graphs, 
respectively. Each attention-based similarity network 
trained by one GCNII, the GCNII can be built by stack-
ing multiple convolutional layers, for ncRNA, the embed-
ding of the lth, l = {1, 2, · · · , L} layer defined as follows:

For disease, the embedding of the lth layer can be written 
as follows:

where αl and βl are hyperparameters. We need ensure 
that the final embedding of every node retains a fraction 
of αl from input feature if the layers stacked, αl = 0.2 we 
set here. Setting βl is to ensure the decay of the weight 
matrix adaptively increases as more layers stacked, in 
here βl = log(�/l) ≈ �/l , where � is a hyperparameter.

which is the graph convolution matrix with the renor-
malization trick, where D is the diagonal degree matrix 
of A . In is identity mapping. We can obtain the final deep 
graph learning embeddings of ncRNA EX ∈ R

Nnc×fnc and 
disease EY ∈ R

Nd×fd from multiple source information, 
fnc and fd are the dimensionality of embeddings.

Multi‑channel attention mechanism
Many previous works normally use a simple average 
or a linear weighting strategy to integrate the multiple 
similarity information, which ignores the difference 
in contribution of different source similarity informa-
tion [48]. In this work, we perform the multi-channel 
attention mechanism to capture the characteristics 
between the multiple similarity networks of ncRNA 
and disease.

From Fig.  2. C, the embedding tensor T is stacked 
by all similarity embedding matrixes from the upper 
deep multi-source information graph learning, and 
each embedding matrixes are treated as a channel for 
an attention layer. Then, we model the significance of 
each channel (similarity) to increase or decrease the con-
tribution of diverse source similarities. Cnc,Cd are the 
numbers of channels from ncRNA and disease, respec-
tively. By squeezing embedding tensors of ncRNA 
TX = [EX

1 ,E
X
2 , · · · ,E

X
Cnc

],TX ∈ R
Nnc×fnc×Cnc and dis-

ease TY = [EY
1 ,E

Y
2 , · · · ,E

Y
Cd
],TY ∈ R

Nd×fd×Cd . We 
can get the one-dimensional (1D) features of ncRNA 
FX ∈ R

1×1×Cnc and disease FY ∈ R
1×1×Cd . Specifically, 

(17)X
(l+1) = δ

(

(1− αl)P̃X
(l) + αlX)((1− βl)In + βlW

(l)
gcnii

)

(18)Y
(l+1) = δ

(

(1− αl)P̃Y
(l) + αlY

)(

(1− βl)In + βlW
(l)
gcnii

)

P̃ = D̃
−1/2

ÃD̃
−1/2 = (D+ In)

−1/2(A + In)(D+ In)
−1/2

,

for the cthnc , cthd  embedding matrix of ncRNA EX
cnc

 and disease 
EY
cd

 , the values fcnc , fcd in FX ,FY  are calculated as follows:

We capture the significance of channels is computed as 
attention weights by using attention mechanism:

where W = {W1,W2} is the training parameter, f aCnc
, f aCd

 
are values in F

a
X ∈ R

1×1×Cnc ,F a
Y ∈ R

1×1×Cd , which 
are attentional 1D features of ncRNA and disease, 
respectively.

Finally, we obtain the normalized channel embeddings 
with attention weights as follows:

as aforementioned, we can get the enhanced channel 
embeddings of ncRNA T̃X = [ẼX

1 , Ẽ
X
2 , . . . , Ẽ

X
Cnc

] , and 
disease T̃Y = [ẼY

1 , Ẽ
Y
2 , . . . , Ẽ

Y
Cd
].

The association graph reconstruction
We employ CNN to generate the final embeddings of 
ncRNA X′

nc and disease Y′
d based on the enhanced mul-

tiple channel embeddings, X′
nc and Y′

d are represented as 
follows:

(19)fcnc = �squeez

(

EX
cnc

)

=

∑fnc
i=1

∑Nnc
j=1 E

X
cnc
(i, j)

fnc × Nnc

(20)fcd = �squeez

(

EY
cd

)

=

∑fd
i=1

∑Nd
j=1 E

Y
cd
(i, j)

fd × Nd

(21)

F
a
X =�attention

(

FX ,W
X
)

=Sigmoid
(

WX
2 · Relu

(

WX
1 FX

))

=
[

f a1 , f
a
2 , . . . , f

a
Cnc

]

(22)

F
a
Y =�attention

(

FY ,W
Y
)

=Sigmoid
(

WY
2 · Relu

(

WY
1 FY

))

=
[

f a1 , f
a
2 , . . . , f

a
Cd

]

(23)ẼX
cnc

= � weighted

(

EX
cnc
, f acnc

)

= f acnc · E
X
cnc

(24)ẼY
cd

= � weighted

(

EY
cd
, f acd

)

= f acd · E
Y
cd

(25)X′
nc = stack(Xoutk)

(26)Xoutk = �agg (T̃X ) = biask +

Cnc
∑

i=1

ẼX
i ∗Wnc

k

(27)Y′
d = stack(Youtk)
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where Wnc
k ∈ R

fnc×1 and Wd
k ∈ R

fd×1 , fnc and fd are the 
numbers of feature from GCNII embeddings.

Then, we reconstruct the ncRNA-disease association 
graph ReG ∈ R

Nnc×Nd by using Matrix Factorization 
(MF), which can be described as:

Deep matrix factorization
Matrix Factorization (MF) is a latent factor model, which 
performs outstanding capacity in information mining of 
the recommender tasks [49]. Many previous works utilize 
MF methods of predicting the linkages between biologi-
cal entities successfully [3, 50, 51]. As we all know, the 
associations between biological entities are very sparse, 
which will affect the performance of the computational 
methods. In order to alleviate the impact of this prob-
lem, many methods add relevant similarity information 
to assist a prediction task [52]. However, modeling only 
linear features extracted by MF is insufficient to extract 
complicated associations between ncRNAs and diseases. 
Deep matrix factorization (DMF) captures non-linear 
features between ncRNA and disease, which is based on 
all explicit and implicit feedback and improves the pre-
diction performance.

There are three steps in this part. Firstly, we extract 
the row vector and column vector of the reconstructed 
associations ReG as the original features of ncRNA ReGi∗ 
and disease ReG∗j , respectively. ReGi∗ and ReG∗j con-
tain the association patterns of ncRNA nci and disease 
dj , and considered as associations between ith ncRNA 
and all diseases, as well as jth disease and all ncRNAs, 
respectively. There is a high false-negative in the original 
ncRNA-disease association M , because that 1 is known 
link with experimental backing (explicit feedback), while 
0 is unknown link rather than no link (implicit feedback). 
We obtain predicted scores for some unknown rela-
tions in ReG to reduce the false-negative. Meanwhile, 
we retain the original “1” values in ncRNA-disease asso-
ciations. The implicit feedback is denoted by non-zero 
values between 0 and 1, rather than 0 only. We further 
perform implicit feedback composed of association pat-
terns to enhance performance. Secondly, we treat ReGi∗ 
and ReG∗j as inputs of multiple fully connected layers, 
projecting ncRNA and disease into potential structured 
space. To be more specifically, we generate the feature of 
ncRNA xi (as same as the feature of disease yj ) from this 
process is as follows:

(28)Youtk = �agg (T̃Y ) = biask +

Cd
∑

i=1

ẼY
i ∗Wd

k

(29)ReG = X′
nc · Y

′
d
T

where hl′(l′ = 1, . . . , L′ − 1) denotes the l′th hidden layer 
and the L′ denotes the number of hidden layers. W′

l′ and 
bl′ are the weight matrix and the bias term on the l′th 
hidden layer, respectively. fθ (·) is a nonlinear activation 
function, we use the Rectified Linear Unit (ReLU) here.

Thirdly, we obtain the final features of ncNRA 
Xnc = {x1, x2, . . . , xm} and disease Yd = {y1, y2, . . . , yn} . 
We can get the final ncRNA-disease association pre-
dicted graph PrG ∈ R

Nnc×Nd by MF as below:

the higher value PrGij is, the more possibility association 
between ncRNA nci and disease dj , and vice versa.

In GDCL-NcDA, we use mean square error as a loss 
function. It is which is achieved by minimizing the Frobe-
nius norm of the difference between PrG and M . The loss 
function is given as follows:

Co‑contrastive learning
Contrastive Learning (CL) demonstrates excellent abil-
ity of unsupervised performance in graph representa-
tion learning [53–56]. Initially, Velickovic et al. [53] and 
Sun et  al. [57] learn the expressive representations of 
graphs or nodes, which by maximizing the interactive 
information of different graininess among graph-level 
representations and substructure-level representations. 
Peng et al. [58] obtain interactive information between 
input and representations of nodes and edges by per-
forming two discriminators. You et al. [59–61] propose 
various augmentations for graph-level representation 
learning.

In this work, we use the CL to learn the interactive 
information of representations of nodes and edges from 
reconstructed association graph and predicted associa-
tion graph, rather than contrasting different augmented 
views of examples. The purpose of CL used is to improve 
the generalization ability of our framework and super-
vise the learning of the latent linkage prediction task. The 
co-contrastive learning loss LossCL for each positive pair 
(regi,prgi) of the reconstructed association graph and 
predicted association graph can be defined as follows:

(30)

h1 =W′
1′ReGi∗

hl =fθ
(

W′
l′−1l

′
l′−1 + bl′

)

, l′ = 2, . . . , L′ − 1

xi =fθ
(

W′
L′hL′−1 + bL′

)

(31)PrG = Xnc · Yd
T

(32)LossDMF = �M − PrG�2F

(33)

LossCL = −
1

2N

N
∑

i=1

[l(regi,prgi)+ l(prgi, regi)]
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where regi is the embedding of a node regi in ReG 
treated as the anchor, and prgi is the embedding in 
PrG , which is the positive sample. We treat the embed-
dings of other nodes in both graphs as negatives (posi-
tives and negatives mean that have relations and no 
relations). T  is a augmentation function, the critic 
φ(reg,prg) = sim(g(reg), g(prg)) , where sim(·) is the 
cos similarity and g(·) is linear projection to enhance the 
expression power of the critic function [30].

Finally, the optimization objective of our framework 
consists of three parts: the multi-source graph learning 
loss, the DMF loss, and the contrastive loss. The final loss 
function of Loss can be shown as follows:

Experiments
In this section, we implement experiments to implement 
the following queries: (1) Is it viable and efficient to be 
a wide method for identifying latent associations among 
multiple types of ncRNAs and diseases based on the pro-
posed GDCL-NcDA? (2) Is it useful to integrate deep 
graph learning, DMF and co-contrastive learning into an 
end-to-end framework? (3) Is it beneficial to use informa-
tion on larger MHNs?

Comparison with highly related methods
To prove the viable and efficient of GDCL-NcDA, we 
compare the GDCL-NcDA framework to another seven 
advanced methods in recent years. The 5CV and the 
10CV are performed to evaluate the performance of 
GDCL-NcDA and those seven methods on the same 
MHNs. All known associations between ncRNA and 
disease are treated as positive samples and unknown 
associations are treated as candidate samples. In K-fold 
cross-validation (K is 5 or 10), (step 1) all proved asso-
ciations are shuffled randomly and divided into K groups; 
(step 2) for each unique group, it is toke as a test data-
set and the remaining groups are toke as training dataset; 
(step 3) repeat step 2 K times, each time with a differ-
ent group. Our results are the average of the K group of 
results for K-fold cross-validation. According to the arti-
cles of baselines, the settings of the parameters in these 
methods are adjusted to the optimal on our datasets. 
For our GDCL-NcDA, the GCNII layers is set to 5, the 
CNN feature dimensionality is set to 96, the DMF lay-
ers is set to 2, the DMF feature dimensionality is set to 
96, the learning rate is set to 0.001, the adaptive moment 

(34)

l(regi ,prgi) =

log
eφ(regi ,prgi)/T

eφ(regi ,prgi)/T +
∑

k �=i e
φ(regi ,prgk )/T +

∑

k �=i e
φ(regi ,regk )/T

(35)Loss = �M − ReG�2F + �M − PrG�2F + LossCL

estimation (Adam) optimizer is used as the optimizer. It 
is worth noting that our experiments on the three differ-
ent MHNs are all based on the above set of parameters. 
We also utilize the area under the receiver operating 
characteristic curve (AUC) and the area under the pre-
cision/recall curve (AUPRC) to assess the performance 
of those eight methods. All experiments are repeated 10 
times to obtain a sound estimate of prediction results.

Baselines
MDA − SKF [11]: A novel diverse similarity kernels inte-
gration for miRNA-disease relations prediction. MDA-
SKF develops the Similarity Kernel Fusion (SKF) to 
integrate different similarity kernels of miRNA and dis-
ease extracted in two subspaces, respectively, and then, 
performs the Laplacian regularized least-squares method 
to predict the potential miRNA-disease relations.
NIMCGCN [62]: Neural Inductive Matrix Comple-

tion (NIMC) with GCN for miRNA-disease relationships 
identification. NIMCGCN is the first model that uses 
GCN to learn miRNA and disease representations based 
on their corresponding similarity networks. Then, the 
learned representations are treated as inputs for a novel 
NIMC method to obtain a miRNA-disease relationship 
matrix completion.
MMGCN [26]: A multi-source GCN with atten-

tion mechanism for miRNA-disease links prediction. 
MMGCN learns embeddings of miRNA and disease via 
GCN encoding their various corresponding similarity 
views, respectively. It further employs attention mecha-
nism to differentiate the embeddings from different views 
for prediction task.
DMFCDA [63]: DMF for circRNA-disease linkages 

inference. DMFCDA employs a projection layer to learn 
underlying features of circRNA and disease from origi-
nal linkages between circRNA and diseases only. By 
modeling the non-linear linkages, it can learn complex 
information from data and take both explicit and implicit 
feedback into consideration.
DMFMSF [27]: DMF with SVD and SKF for ncRNA-

disease relations discovery. DMFMSF first uses SKF to 
integrate three similarities of ncNRA and disease, respec-
tively. Then, it extracts linear and non-linear characteris-
tics by Singular Value Decomposition (SVD) and DMF. In 
finally, it combines linear and non-linear characteristics 
to discover potential ncRNA-disease relations.
CKA −HGRTMF [3]: A novel model of three matrixes 

factorization with hypergraph-regular terms for ncRNA-
disease relationship prediction. It assesses the degree of 
association by the bilateral projection matrix and two 
potential characteristic matrixes of ncRNA and disease, 
respectively. It further uses two graph regular terms on 
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ncRNA and disease characteristics to enhance the pre-
dict performance.
MHDMF [28]: A multi-source GCN and DMF for 

miRNA-disease associations identification. MHDMF 
learns and enhances embeddings of miRNA and disease 
by GCN and channel attention from their diverse cor-
responding similarity networks, respectively. At last, it 
further uses DMF to identify latent associations based on 
the embeddings.

Performance comparison
In Tables 1, 2, 3, and 4, we demonstrate all comparison 
results to illustrate the feasibility and the effectiveness 
of GDCL-NcDA. Our framework GDCL-NcDA per-
forms outstanding among these comparison methods. 
As the comparative results of GDCL-NcDA under 5CV 
and 10CV have tiny differences, our GDCL-NcDA has 
better robustness than other methods. More impor-
tantly, the GDCL-NcDA framework has stable perfor-
mance on different MHNs and strong generalization in 
the face of different datasets.

Different from these traditional similarity network 
information integration methods (MDA-SKF, DMFMSF 
and CKA-HGRTMF), GDCL-NcDA does not inte-
grate similarity information through a simple average 
or linear weighting strategy. It automatically learns 
the information of each similarity network through 
depth graph learning and effectively distinguishes the 
contribution of different similarity information to the 
prediction task through the attention mechanism. The 
GDCL-NcDA framework can integrate multi-source 
similarities in a more reasonable way of calculating. 
Different from the multi-stage methods (DMFMSF and 
CKA-HGRTMF), our framework takes an end-to-end 
approach for data training and prediction. It enables 
the model to automatically learn relevant and discrimi-
native features from the raw input data. Instead of rely-
ing on handcrafted features, the model can effectively 
extract representations and patterns directly from the 
data, potentially capturing more intricate and nuanced 
information. Furthermore, it optimizes all the model 
parameters jointly, considering the entire pipeline 
from input to output. This holistic optimization can 
lead to improved performance as the model can adapt 
its internal representations and decision-making pro-
cesses based on the end objective, rather than optimiz-
ing individual components separately. Different from 
the graph learning-based methods (NIMCGCN and 

Table 1  AUC of GDCL-NcDA and seven comparison methods 
under the 5CV

Methods miRNA circRNA lncRNA

MDA-SKF 0.9068 0.9661 0.9222

NIMCGCN 0.8959 0.8891 0.8612

MMGCN 0.9063 0.9578 0.8788

DMFCDA 0.8519 0.8629 0.8044

DMFMSF 0.9247 0.9397 0.9292

CKA-HGRTMF 0.9675 0.9732 0.9185

MHDMF 0.9240 0.9434 0.9314

GDCL-NcDA 0.9761 0.9849 0.9382

Table 2  AUPRC of GDCL-NcDA and seven comparison methods 
under the 5CV

Methods miRNA circRNA lncRNA

MDA-SKF 0.6332 0.7342 0.6074

NIMCGCN 0.8611 0.9094 0.8771

MMGCN 0.9159 0.9622 0.9053

DMFCDA 0.8632 0.8868 0.8228

DMFMSF 0.9366 0.9448 0.9471

CKA-HGRTMF 0.8712 0.9173 0.8017

MHDMF 0.9452 0.9783 0.9537

GDCL-NcDA 0.9806 0.9890 0.9515

Table 3  AUC of GDCL-NcDA and seven comparison methods 
under the 10CV

Methods miRNA circRNA lncRNA

MDA-SKF 0.9291 0.9821 0.9375

NIMCGCN 0.9187 0.9169 0.8992

MMGCN 0.9097 0.9595 0.8990

DMFCDA 0.8726 0.8567 0.8163

DMFMSF 0.9265 0.8245 0.8743

CKA-HGRTMF 0.9274 0.9173 0.9226

MHDMF 0.9611 0.9087 0.9339

GDCL-NcDA 0.9807 0.9823 0.9436

Table 4  AUPRC of GDCL-NcDA and seven comparison methods 
under the 10CV

Methods miRNA circRNA lncRNA

MDA-SKF 0.6404 0.7349 0.6108

NIMCGCN 0.9388 0.9231 0.8997

MMGCN 0.9160 0.9601 0.9157

DMFCDA 0.8913 0.8919 0.8363

DMFMSF 0.9296 0.8855 0.8134

CKA-HGRTMF 0.8836 0.8147 0.8109

MHDMF 0.9713 0.9234 0.9550

GDCL-NcDA 0.9844 0.9880 0.9607
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MMGCN), this framework utilizes more information 
from larger MHNs and captures richer and more com-
prehensive representations. Furthermore, it uses the 
attention mechanism to strengthen the feature of nodes 
within the similarity network and the contribution 
between different similarity networks. GDCL-NcDA 
can effectively integrate information from multiple 
sources and improve the overall understanding of the 
data. We use contrastive learning in this framework 
to extract semantically meaningful representations by 
maximizing the similarity between positive pairs and 
minimizing the similarity between negative pairs. This 
encourages the framework to focus on capturing essen-
tial features and discarding irrelevant or noisy informa-
tion, resulting in rich and informative representations 
that can generalize well to downstream tasks. Differ-
ent from the DMF-based methods (DMFCDA and 
DMFMSF), our GDCL-NcDA decreases the false-nega-
tive of the original associations, which MF relies on. We 
further integrate more information as additional data 
into the reconstructed graph. Multi-source informa-
tion often provide complementary information about 
the data, capturing different aspects or modalities. 
Contrastive learning can be used to reduce the need 
for large amounts of labeled data in the target domain, 
also reducing the impact of false-negative accordingly. 
These can improve the ability of GDCL-NcDA to gen-
eralize and handle complex patterns and variations. In 
brief, GDCL-NcDA is feasibility and the effectiveness 
in underlying ncRNA-disease associations identifica-
tion, which can be verified by the comparison results 
thereinbefore.

Ablation experiments
Performance of GDCL‑NcDA and its variants
In this section, we illustrate whether the integration of 
deep graph learning, DMF and contrastive learning 
within the GDCL-NcDA framework is necessary for 
the ncRNA-disease associations identification task. We 
carry out an ablation experiment by split and recombi-
nation of our framework. The experiment is conducted 
under 5CV.

The variant methods we framed include GDCL-NcDA, 
GDCL-NcDA_GCNII, GDCL-NcDA_GATGCNII, GDCL-
NcDA_DMF, GDCL-NcDA_GCNII+DMF, and GDCL-
NcDA_GCNII+DMF+CL.

•	 GDCL-NcDA_GCNII denotes that GCNII and 
channel attention are only performed to extract and 
strengthen the embeddings for final identification task.

•	 GDCL-NcDA_GATGCNII denotes that GAT and 
GCNII are only performed to enhance and generate 
the embeddings for final identification task.

•	 GDCL-NcDA_DMF denotes that DMF is only used 
for final identification task without any additional 
information.

•	 GDCL-NcDA_GCNII+DMF denotes that GCNII 
used first to reconstruct the association graph, and 
then, DMF used for final identification task based on 
the reconstructed graph.

•	 GDCL-NcDA_GCNII+DMF+CL denotes that 
GCNII used first to reconstruct the association 
graph. Then, DMF used to generate predicted graph. 
The CL used to obtain the loss between the recon-
structed graph and predicted graph, which used to 
update and optimize the entire framework.

As demonstrated in the Table 5, the results of GDCL-
NcDA and its variant methods. GDCL-NcDA can attain 
supreme performance among all methods. For GDCL-
NcDA_GCNII and GDCL-NcDA_GATGCNII methods, 
the latter uses attention mechanism in each similarity 
network. This result demonstrates that enhancing the 
features within each similarity network is useful to the 
identification task. For GDCL-NcDA_GCNII, GDCL-
NcDA_DMF and GDCL-NcDA_GCNII+DMF methods, 
the last one combines the GDCL-NcDA_GCNII and 
the GDCL-NcDA_DMF. This result demonstrates that 
associations reconstruction can reduce some real false-
negative in original associations. For GDCL-NcDA_

GCNII+DMF and GDCL-NcDA_GCNII+DMF+CL 
methods, the latter adds contrastive loss in frame-
work. This result demonstrates that contrastive learning 
between GCNII and DMF can be conducive to improve 

Table 5  Performance of GDCL-NcDA and its variants on miRNA-disease MHN

Methods AUC​ AUPRC F1-score Recall Precision

GDCL-NcDA_GCNII 0.8761 0.8810 0.8096 0.8508 0.7736

GDCL-NcDA_GATGCNII 0.8838 0.8940 0.8173 0.8477 0.7906

GDCL-NcDA_DMF 0.8556 0.8661 0.8096 0.8508 0.7736

GDCL-NcDA_GCNII+DMF 0.9720 0.9628 0.9247 0.9153 0.9347

GDCL-NcDA_GCNII+DMF+CL 0.9741 0.9783 0.9328 0.9382 0.9278

GDCL-NcDA 0.9761 0.9806 0.9394 0.9352 0.9439
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generalization and performance of framework. GDCL-
NcDA accomplishes the brilliant performance among 
these variants, which illustrates the essentials of each 
component within GDCL-NcDA.

Performance of GDCL‑NcDA on different heterogeneous 
networks
To show the benefit of using information of larger MHNs, 
we perform another ablation experiment by leveraging 
different MHNs used in the GDCL-NcDA framework. 

All the numerical experiments are carried out under the 
same number of iteratives and 5CV. In the Table 6, there 
are all results from the associations between miRNAs, 
circRNAs, lncRNAs, and their corresponding diseases 
and genes. These results demonstrate whether the inte-
gration of diverse interaction information is beneficial for 
ncRNA-disease associations identification. GDCL-NcDA 
achieves outstanding performance by performing on 
larger MHNs. GDCL-NcDA is more powerful by adding 
multiple interaction information.

Parameter analysis of GDCL‑NcDA
In this section, we conduct an experiment analyzing 
some parameters within the GDCL-NcDA framework to 
demonstrate their impact. This experiment is under 5CV. 
In the following, only one parameter is varied to test its 
effect while the others are fixed.

GCNII layer
We utilize GCNII to obtain multi-source embeddings 
for ncRNA and disease. The number of GCNII layer l 
is selected in {4, 5, 6, 7} . As shown in Fig.  3(a), there is 

Table 6  Performance of GDCL-NcDA on different MHNs

Networks AUC​ AUPRC

miRNA-disease 0.9357 0.9561

miRNA-gene-disease 0.9761 0.9806
circRNA-disease 0.9455 0.9508

circRNA-gene-disease 0.9849 0.9890
lncRNA-disease 0.8983 0.9079

lncRNA-gene-disease 0.9382 0.9515

Fig. 3  The AUC for parameter analysis of GDCL-NcDA on miRNA-disease MHN
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a small influence on GDCL-NcDA performance when 
the GCNII layer number changes. When the layer num-
ber is 5, we obtain optimal performance. In the network 
topology of biological entities, the biological signifi-
cance will be greatly reduced if the distance between 
two biological entities is too far.

Dimensionality of CNN features
The CNN dimensionality determines the size of final 
embeddings of ncRNA and disease. After generating 
these embeddings, the framework will implement the 
succeeding association graph reconstruction task. The 
CNN dimensionality is selected from {48, 64, 96, 128} , 
shown in Fig. 3(b), it can be discovered that the perfor-
mance of GDCL-NcDA has tiny changes under differ-
ent dimensionalities. When CNN dimensionality is 96, 
we obtain optimal performance.

DMF layer
The number of DMF layers will directly affect the result 
of the identification task. The number of DMF layers is 
selected from {1, 2, 3} , when it is 2, we obtain optimal 
performance, as shown in Fig. 3(c).

Dimensionality of DMF feature
We use DMF to extract the features of ncRNA-disease 
associations via potential features in a common low-
dimensional space. Therefore, the DNF dimensionality of 
potential features is crucial for the predicted graph gen-
erated. The DMF dimensionality for potential feature is 
selected from {32, 48, 64, 96} , when DMF dimensionality is 
96, we obtain optimal performance, as shown in Fig. 3(d).

Learning rate
As learning rate can control the size of step for gradient 
descent, it be a significant hyper-parameter for deep 
learning. Step size is one of the factors that determine 
whether the algorithm can reach the optimal solution. 
A bad learning rate can lead to a number of problems. 
For example, the model is unstable and unable to con-
verge, easily falls into local optimal, slow convergence 
and other problems. The learning rate is selected in 
{0.1, 0.01, 0.001, 0.0001} , when it is 0.001, we obtain 
optimal performance, as shown in Fig. 3(e).

Case studies
We illustrate the ability of GDCL-NcDA with case stud-
ies for ncRNA-disease associations identification. The 
performance of case studies for GDCL-NcDA is fur-
ther assessed by two specific diseases for miRNA, cir-
cRNA, and lncRNA. More explicitly, we choose diverse 
cancers, such as lung neoplasms and brain cancer for 

miRNA, cervical cancer and breast cancer cancer for 
circRNA, and ovarian cancer and kidney cancer for 
lncRNA. In this work, we rank the predicted score of 
unknown associations from those MHNs.

Table 7 displays the top-10 candidate miRNAs, and fur-
ther proved the predicted associations by performing ① 
dbDEMC [64], ② HDMM v3.2 [65], and ③ MNDR2.0 
[66]. The HDMM v3.2 database is the updated version of 
the HMDD v2.0 database [31], from which we download 
the positive set for our MHN of miRNA-disease. More 
specifically, the top-10 candidate miRNAs we identified, 
which did not appear in HDMM v2.0 but found valida-
tion in HDMM v3.2, further illustrate the effectiveness of 
our GDCL-NcDA framework.

Table  8 displays the top-10 candidate circRNAs, and 
further verified the predicted associations by utilizing ④ 
circMine [67], and ⑤ Lnc2Cancer3.0 [68]. Table  9 dis-
plays the top-10 candidate lncRNAs, and further proved 
the predicted associations by employing ⑥ LncRNADis-
ease v2.0 [69], ③MNDR2.0, and ⑤ Lnc2Cancer3.0.

Conclusion
The central dogma of molecular biology describes how 
genetic information is transmitted through RNA to the 
corresponding protein. As ncRNAs do not involved in 

Table 7  The top 10 candidate miRNAs identified by GDCL-NcDA 
for (1) lung neoplasms and (2) brain cancer

Ranking miRNAs of (1) Evidence

1 hsa-mir-375 ①/②
2 hsa-mir-376a-1 ①/②
3 hsa-mir-376a-2 ①/②
4 hsa-mir-376b ①
5 hsa-mir-376c ①
6 hsa-mir-377 ①/②/③
7 hsa-mir-379 ①
8 hsa-mir-381 ①/②
9 hsa-mir-383 ①/②
10 hsa-mir-24-2 ①/②
Ranking miRNAs of (2) Evidence

1 hsa-mir-192 ①/②
2 hsa-mir-205 ①/②
3 hsa-mir-181c ①/②
4 hsa-mir-143 ①/②
5 hsa-let-7a-2 ①/②
6 hsa-let-7a-3 ①/②
7 hsa-let-7a-1 ②
8 hsa-mir-494 ①/②
9 hsa-mir-183 ①/②
10 hsa-mir-92b ①/②
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transcription of proteins, they are treated as the tran-
scriptional noise. With the development of biotechnol-
ogy, ncRNA has attracted wide attention. For the past few 
years, increasing experimental skills demonstrate that 
ncRNA is badly related to the development of diverse 
human diseases. However, the relationship verified by wet 
experimental skills is not sufficient to further explore the 
pathogenic mechanism at the molecular level of disease. 
Therefore, it is essential to develop the computational 
method for studying the ncRNA-disease associations.

In this work, we develop a novel end-to-end frame-
work called GDCL-NcDA, which accomplishes brilliant 
performance on three MHNs, including three varieties 
of ncRNA (miRNA, circRNA, and lncRNA). Different 
from previous works, we construct multiple MHNs of 
three varieties ncRNA, disease, and gene, and use deep 
graph learning and multiple attention mechanisms to 
reconstruct associations between ncRNAs and dis-
eases, on which DMF to generate the predicted associa-
tions based. Furthermore, we add contrastive learning 
between reconstructed associations and predicted asso-
ciations to improve the generalization of our framework. 
In practice, the feasibility and availability of GDCL-
NcDA is also proved by our following experiments.

GDCL-NcDA can not only efficiently make use of 
restricted verified associations to predict latent rela-
tion, but also fuse multi-source information of MHNs 
to weaken the false-negative of ncRNA-disease asso-
ciations accountably. The experimental results account 
for that GDCL-NcDA obtains outstanding perfor-
mance among state-of-the-art methods we compared 
under 5CV and 10CV. Additionally, diverse ablation 
experiments show evidence of the availability of differ-
ent modules within GDCL-NcDA and the efficacy for 
MHNs construction. Finally, we construct case stud-
ies to further give evidence of the potential ability of 
GDCL-NcDA in identifying the underlying candidate 
disease-related ncRNAs.
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