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Abstract 

Background  A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster 
may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq data from a small 
number of cells allow robust identification of differentially expressed genes (DEGs) with various characteristics.

Results  We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable 
aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth muscle cells. We 
found that scRNA-seq data needed to have 2,000 or more cells in a cluster to identify the majority of DEGs that would 
show modest differences in a bulk RNA-seq analysis. On the other hand, clusters with as few as 50–100 cells may 
be sufficient for identifying the majority of DEGs that would have extremely small p values or transcript abundance 
greater than a few hundred transcripts per million in a bulk RNA-seq analysis.

Conclusion  Findings of the current study provide a quantitative reference for designing studies that aim for identify-
ing DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such studies.
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Background
Using single-cell RNA-seq (scRNA-seq) data to identify 
differentially expressed genes (DEGs) between cell types 
or for a specific cell type between experimental condi-
tions is potentially a powerful approach as many cell 
types are difficult or impossible to purify physically. Sev-
eral analytical methods are available for identifying DEGs 
using scRNA-seq data [1–7].

A major and common feature of scRNA-seq data 
is that the number of cells of each cell type may vary 
widely, ranging from a few dozen to several thousand. 
The characteristics of DEGs, such as the consistency 
and magnitude of differential expression and the tran-
script abundance, also vary widely. It is not clear whether 
scRNA-seq data from a small number of cells allow 
robust identification of DEGs with various characteris-
tics. This is a critical question as the number of studies 
using scRNA-seq data to identify DEGs is exploding.
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Results
We addressed this question by performing scRNA-seq 
and poly(A)-dependent bulk RNA-seq in comparable 
aliquots of human induced pluripotent stem cells (iPSC)-
derived, purified vascular endothelial and smooth mus-
cle cells (EC and VSMC) (Fig. 1; Supplemental Figure S1; 
Supplemental Tables S1  and S2). scRNA-seq data were 
analyzed directly or aggregated to produce pseudo-bulk 
RNA-seq data. The overall transcript profile based on 
pseudo-bulk RNA-seq was modestly consistent with bulk 
RNA-seq (Fig. 2).

DESeq2 analysis of the bulk RNA-seq data identified 
12,027 DEGs between EC and VSMC. Analysis of the 
pseudo-bulk RNA-seq data using DESeq2 and direct 
analysis of single cell data using the default Wilcoxon 
Rank Sum test in Seurat identified a large majority (65% 
to 84%) of the DEGs identified by bulk RNA-seq and a few 
thousand DEGs not identified by bulk RNA-seq (Fig. 3A-
D). Decreasing the number of cells included in the analy-
sis of scRNA-seq substantially decreased the number of 
DEGs identified and the fraction of bulk RNA-seq-based 
DEGs that was recapitulated (Fig. 3A, C, D). The fraction 
of DEGs unique to scRNA-seq also decreased substan-
tially. The Spearman correlation coefficients of p values of 
DEGs were 0.739 for bulk vs. pseudo-bulk RNA-seq data 
and 0.611 for bulk vs. scRNA-seq data. The correlations 
decreased modestly as the number of cells included in 
the pseudo-bulk and scRNA-seq data decreased (Fig. 3E).

The p value, fold change, and abundance of DEGs iden-
tified by bulk RNA-seq also affected the recapitulation 
of DEGs by scRNA-seq, and these effects compounded 

the effect of cell number (Fig. 4). The majority (> 50%) of 
DEGs in the quartile with smallest p values (unadjusted 
p < 2.8 × 10–24) was recapitulated by scRNA-seq based 
on 50 cells and analyzed as either pseudo-bulk or direct 
analysis with the BH adjustment (Fig.  4). The majority 
(> 50%) of DEGs in the quartile with highest transcript 
abundance (> 221 transcripts per million or TPM) was 
recapitulated by scRNA-seq based on 100 cells. The per-
cent of DEGs recapitulated by scRNA-seq based on 100 
cells dropped to below 10% for DEGs in the quartile with 
largest p values (unadjusted p > 7.0 × 10–4) and lowest 
transcript abundance (< 5.92 TPM).

Studies of a cell type under different experimental con-
ditions often find DEGs with more modest fold changes 
and p values than studies comparing different cell types. 
We examined the 1,437 DEGs identified from the bulk 
RNA-seq with unadjusted p between 3.1 × 10–5 and 0.025 
(adjusted p values between 0.0001 and 0.05) and absolute 
log2 fold changes between 0.5 and 2 (i.e., 1.4 to fourfold). 
Analysis of pseudo-bulk data based on approximately 
5,000 cells identified 70% of these DEGs. The percentage 
remained above 50% (59%) with pseudo-bulk data from 
2,000 cells but decreased to less than 10% with 100 cells 
(Fig. 5A). Results from direct analysis of the scRNA-seq 
data followed a similar trend (Fig. 5B, C).

We randomly down-sampled the bulk RNA-seq data 
to examine the effect of sequencing depth. (Supplemen-
tal Table S2). The overall transcript profile at each level 
of down sampling was highly similar with the original 
sample (Fig.  6), in contrast with the modest similarity 
between pseudo-bulk and bulk RNA-seq data (see Fig. 2). 
The numbers of DEGs recapitulated with lower amounts 
of sequencing data were 7% to 10% greater than the 
numbers recapitulated by scRNA-seq data with a simi-
lar number of read pairs (Fig. 7A; compared with Fig. 3). 
The p value, fold change, and abundance of DEGs also 
affected the recapitulation of DEGs with lower amounts 
of sequencing data (Fig.  7B). The Spearman correlation 
coefficient of p values of DEGs was 0.971 for 100 M read 
pairs vs. 40  M, decreasing to 0.889 for 5  M (Fig.  7C). 
These correlations were substantially higher than the cor-
relations between bulk and pseudo-bulk or scRNA-seq 
data shown in Fig. 3E.

Discussion and conclusions
Findings of the current study provide a quantitative 
reference for designing studies that aim for identifying 
DEGs for specific cell clusters using scRNA-seq data 
and for interpreting results of such studies. If a study 
anticipates DEGs with modest differences, the study 
should aim for having 2,000 or more cells in a cluster in 
order to identify the majority of DEGs that would have 
been identified by a bulk RNA-seq analysis of thousands 

Fig. 1  Study outline. The 3 replicates referred to 3 separate rounds 
of differentiation of an iPSC line. Cells collected from each round of 
differentiation were split for scRNA-seq and bulk RNA-seq analyses. 
EC, iPSC-derived endothelial cells; VSMC, iPSC-derived vascular 
smooth muscle cells; RNA-seq, poly(A)-dependent RNA-seq; DEG, 
differentially expressed gene
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of physically purified cells. Such studies should be cau-
tious in interpreting a lack of DEGs from clusters with 
fewer than 100 cells. On the other hand, clusters with 
as few as 50–100 cells may be sufficient for identifying 
the majority of DEGs that would have extremely small p 
values or transcript abundance greater than a few hun-
dred TPM in a bulk RNA-seq analysis.

Our study was performed in two cell types derived 
from one iPSC line, and one should be cautious in 
extrapolating our findings directly to other cell types. 
However, our findings are likely to be relevant to a 
wide range of experimental scenarios as we tested vari-
ous sizes of dataset and degrees of differential expres-
sion. scRNA-seq analysis remains several fold more 

Fig. 2  Transcriptome profiles from bulk and pseudo-bulk RNA-seq are modestly correlated. A Number of genes detected by bulk and pseudo-bulk, 
and the overlaps. B Venn diagram for examples of panel A. C log2(TPM + 1) of genes detected in both bulk and pseudo-bulk data. D Correlations 
between bulk and pseudo-bulk data. Abundance of genes not detected in one of the two datasets was set to 0 TPM. E An example of the 
correlation. Genes were divided into quartiles based on the abundance in bulk RNA-seq. EC, iPSC-derived endothelial cells; VSMC, iPSC-derived 
vascular smooth muscle cells; TPM, transcripts per million

Fig. 3  The number of cells substantially influences the identification of DEGs by scRNA-seq. A Overlap of DEGs identified by bulk and pseudo-bulk 
RNA-seq. B Characteristics of DEGs identified by both bulk and pseudo-bulk RNA-seq or by one method only. C Overlap of DEGs identified by 
bulk RNA-seq and by scRNA-seq analyzed with Seurat with BH adjustment. D Overlap of DEGs identified by bulk RNA-seq and by scRNA-seq 
analyzed with Seurat with Bonferroni adjustment. The bulk RNA-seq data were analyzed using BH adjustment. scRNA-seq analyzed using Bonferroni 
adjustment was plotted here for reference only as it was the default setting in Seurat. E Spearman correlation coefficients of p values of DEGs for 
bulk vs. pseudo-bulk RNA-seq data and bulk vs. scRNA-seq data. 100% to 1% corresponded to scRNA-seq data from approximately 5,000 to 50 cells, 
randomly sampled three time at each level below 100%. DEG, differentially expressed gene; Log2FC, log2 fold change; TPM, transcript per million; Q1 
to Q4, first to fourth quartile. N = 3

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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expensive than bulk RNA-seq and requires additional 
expertise and effort. The quantitative reference pro-
vided by the current study should be an important con-
sideration for scRNA-seq studies.

The effect of cell number in scRNA-seq on the reca-
pitulation of DEGs appears largely, but not completely, 
explainable by the effect of total sequencing depth. In 
addition, the analysis of scRNA-seq data identifies new 
DEGs not identified by bulk RNA-seq. It is not clear 
whether these new DEGs are false positives from the 
scRNA-seq analysis or false negatives in the bulk RNA-
seq analysis.

Methods
Differentiation of iPSC to EC and VSMC
The human iPSC line 039B used in this study was repro-
grammed from urine cell from a 35-year-old female 
Caucasian using Sendai virus following the protocol 
described previously [8]. All procedures were approved 
by the Institutional Review Boards at the Medical Col-
lege of Wisconsin with patient consent. iPSCs were dif-
ferentiated into EC and VSMC following previously 
published protocols [9] with modifications. Briefly, 
039B iPSCs were cultured on Matrigel coated dishes 
with mTeSR™ plus (STEMCELL Technologies) on 6-cm 

Fig. 4  P value, fold change, and transcript abundance of DEGs identified by bulk RNA-seq compound the effect of cell number on the identification 
of the DEGs by scRNA-seq. Effects of p value (from small to large), absolute log-transformed fold change (from large to small), and transcript 
abundance (from high to low) on the overlap of DEGs identified by bulk and pseudo-bulk RNA-seq (A) or scRNA-seq analyzed with Seurat with BH 
adjustment (B) or Bonferroni adjustment (C). 100% to 1% corresponded to scRNA-seq data from approximately 5,000 to 50 cells, randomly sampled 
three time at each level below 100%. DEG, differentially expressed gene; Log2FC, log2 fold change; TPM, transcript per million; Q1 to Q4, first to 
fourth quartile. N = 3
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dishes and routinely passaged at a dilution of 1:6 to 
1:10. For differentiation, iPSCs were dissociated using 
Accutase (STEMCELL Technologies) and plated on 
Matrigel coated 6-well plates at a density of 47,000 cells/
cm2 in mTeSR™ plus with 10 µM Rock inhibitor Y-27632 
(STEMCELL Technologies). After 24 h, cells were treated 
with N2B27 medium (a 1:1 mixture of DMEM:F12 with 

Glutamax and Neurobasal media supplemented with 
N2 supplement and B27 supplement minus vitamin A; 
all Life Technologies) plus 8  µM CHIR99021 (Selleck 
Chemicals) and 25  ng/ml BMP4 (PeproTech) for 3  days 
to generate mesoderm cells. ECs were further induced 
with StemPro-34 SFM medium (STEMCELL Technolo-
gies) supplemented with 200  ng/ml VEGF (PeproTech) 
and 2  µM forskolin (Abcam) for 2  days and purified 
with CD144 magnetic beads (Miltenyi Biotec). CD144-
positive cells were cultured in StemPro-34 SFM medium 
supplemented with 50  ng/ml VEGF for 5  days before 
harvest. For VSMC induction, mesoderm cells were 
treated with N2B27 medium supplemented with 10  ng/
ml PDGF-BB (PeproTech) and 2 ng/ml Activin A (Pepro-
Tech) for 2 days. Contractile VSMCs were then induced 
with N2B27 supplemented with 2  ng/ml Activin A and 
2 µg/ml Heparin (STEMCELL Technologies) for 5 days. 
VSMCs were enriched by removing CD144 + cells using 
CD144 magnetic beads.

scRNA‑seq library preparation and sequencing
scRNA-seq library preparation was performed using 
Chromium Next GEM Single Cell 3ʹ Reagent Kits 
v3.1 (Dual Index) (10 × Genomics). The libraries were 
subjected to 150  bp paired-end sequencing using 
NovaSeq 6000 with the v1.5 S4 reagent kit and Flowcell 
(Novogene).

scRNA‑seq data processing and sampling
Single cell feature counts were generated by cell-
ranger count (Cell Ranger v6.0.0, 10 × Genomics) with 
sequencing reads in FASTQ files and the human ref-
erence GRCh38 dataset. To remove the ambient RNA 
from count matrices, we used remove-background 
from CellBender v0.2.1 with FPR = 0.01. The analy-
sis was performed on an HPC GPU cluster in the 
Research Computing Center at the Medical College 

Fig. 5  Identification of DEGs with modest changes by scRNA-seq. 
DEGs with modest changes referred to the 1,437 DEGs identified 
from the bulk RNA-seq that had unadjusted p between 3.1 × 10–5 
and 0.025 (BH adjusted p values between 0.0001 and 0.05) and 
absolute log2 fold changes between 0.5 and 2 (i.e., 1.4 to 4 fold). 
A Recapitulation of modest DEGs by pseudo-bulk RNA-seq. B 
Recapitulation of modest DEGs by scRNA-seq analyzed with Seurat 
with BH adjustment. C Recapitulation of modest DEGs by scRNA-seq 
analyzed with Seurat with Bonferroni adjustment. The bulk RNA-seq 
data were analyzed using BH adjustment. scRNA-seq analyzed using 
Bonferroni adjustment was plotted here for reference only as it was 
the default setting in Seurat. 100% to 1% corresponded to scRNA-seq 
data from approximately 5,000 to 50 cells, randomly sampled three 
time at each level below 100%. DEG, differentially expressed gene. 
N = 3
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Fig. 6  Transcriptome profiles from bulk RNA-seq with lower amounts of sequencing data were highly correlated with the original bulk-RNA-seq 
data. A Number of genes detected by various read numbers, and the overlaps with 100 M read pairs. B log2(TPM + 1) of genes detected by both 
100 M and 5 M read pairs or by one level of read pairs only. C. Correlations of transcript abundance between 100 M and various sequencing depths. 
D. An example of the correlation. EC, endothelial cells; VSMC, vascular smooth muscle cells; TPM, transcript per million. N = 3
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of Wisconsin. Cells with fewer than 200 or more than 
5,000 detected genes were filtered out [10]. Seurat R 
package v4.1.1 was used for downstream data pro-
cessing including clustering [6]. Random sampling of 
a desired percentage of cells was repeated three times 
from each scRNA-seq library to examine the effect of 
cell number.

Bulk RNA‑seq library preparation and sequencing
Total RNA was extracted from iPSC-derived ECs or 
VSMCs with TRIzol reagent (Thermo Fisher). Librar-
ies for poly(A)-dependent RNA-seq, which will be 
called RNA-seq for convenience in this article, were 
prepared with NEBNext Ultra II RNA Library Prep 
kit following its Section I protocol (Novogene). The 
libraries were subjected to 150 bp paired-end sequenc-
ing using NovaSeq 6000 with the v1.5 S4 reagent kit 
and Flowcell (Novogene).

Bulk RNA‑seq data processing and sampling
We used Trim Galore v0.6.6 to trim the adapter and low-
quality raw reads. Random sampling of a desired number 
of sequencing reads was done using the Seqtk tool (v1.3). 
Reads were then aligned to the human reference genome 
GRCh38-2020-A with STAR tools (v2.7.9a) [11]. Reads 
per gene were counted by htseq-count of htseq v0.13.5 
[12].

Statistical analysis
We took read count matrix as input for all the data anal-
ysis. For each sample, we computed pseudo-bulk data 
from scRNA-seq count matrix with the sum of counts 
mapped to each gene. Transcript per million (TPM) value 
was used to quantify expression levels of genes as defined 
in GENCODE GRCh38.p13 for bulk and pseudo-bulk 
data. DESeq function from DESeq2 v1.34.0 was used to 
identify DEGs between EC and VSMC for bulk RNA-seq 

Fig. 7  DEGs identified from bulk RNA-seq with lower amounts of sequencing data. Down-samples of 40, 20, 10, and 5 million read pairs were 
close to the number of read pairs from 5,000, 2,000, 1,000, and 500 cells, respectively, in scRNA-seq. A Overlap of DEGs identified from various 
amounts of data and overlaps with DEGs from 100 M read pairs. B Effect of p value, fold change, and abundance on the overlap of DEGs identified 
by lower amounts of data with DEGs from 100 M read pairs. C Spearman correlation coefficients of p values of DEGs for 100 M read pairs vs. the 
down-samples. DEG, differentially expressed gene; log2FC, log2 fold change; TPM, transcript per million; Q1 to Q4, first to fourth quartile. N = 3
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data and pseudo-bulk data [13]. Benjamini-Hochberg 
(BH) adjusted p-value equal to or lower than 0.05 was 
considered significant. Default settings were used for all 
other parameters.

For direct analysis of scRNA-seq data, we used Seurat 
v4.1.1 to identify differentially expressed features. EC 
and VSMC were merged into one Seurat object as two 
identities. We normalized Seurat objects with “LogNor-
malize” method and set scale factor to 10,000. Since we 
wanted to include all genes and cells for comparison with 
bulk RNA-seq, we set logfc.threshold = 0 and min.pc = 0. 
P-values were calculated by the FindMarkers func-
tion using the default Wilcoxon Rank Sum test. DEGs 
between EC and VSMC were identified by Bonferroni 
and, separately, Benjamini- Hochberg (BH) adjusted p 
value equal to or lower than 0.05. scRNA-seq data from 
randomly sampled cells were processed in the same way.

All the data analysis was performed in R v4.1.1. Violin 
plots were generated using ggplot2 v3.3.6 [14]. Venn plots 
and bar plots were created by Matplotlib library [15] in 
python v3.8.13.
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