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Abstract 

Background  It is now possible to analyze cellular heterogeneity at the single-cell level thanks to the rapid develop-
ments in single-cell sequencing technologies. The clustering of cells is a fundamental and common step in heteroge-
neity analysis. Even so, accurate cell clustering remains a challenge due to the high levels of noise, the high dimen-
sions, and the high sparsity of data.

Results  Here, we present SCEA, a clustering approach for scRNA-seq data. Using two consecutive units, an encoder 
based on MLP and a graph attention auto-encoder, to obtain cell embedding and gene embedding, SCEA can simul-
taneously achieve cell low-dimensional representation and clustering performing various examinations to obtain the 
optimal value for each parameter, the presented result is in its most optimal form. To evaluate the performance of 
SCEA, we performed it on several real scRNA-seq datasets for clustering and visualization analysis.

Conclusions  The experimental results show that SCEA generally outperforms several popular single-cell analysis 
methods. As a result of using all available datasets, SCEA, in average, improves clustering accuracy by 4.4% in ARI 
Parameters over the well-known method scGAC. Also, the accuracy improvement of 11.65% is achieved by SCEA, 
compared to the Seurat model.
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Background
Cells can be differentiated based on the expression of 
their genes. In contrast to bulk RNA sequencing, which 
measures gene expression across a large number of sam-
ples [1], single-cell RNA sequencing measures gene 
expression at the cellular level. Single-cell RNA sequenc-
ing (scRNA-seq) technology obtains transcriptom-
ics information of cells individually, and it allows the 

detection of cell types and subtypes at the cellular level 
[2]. Already, single-cell RNA-sequencing methods have 
revealed new biology in terms of the composition of tis-
sues, the dynamics of transcription, and the regulatory 
relationships between genes [3].

The rapid development of single-cell sequencing tech-
nologies makes it possible to analyze cellular heteroge-
neity at the single-cell level [4]. Recently single-cell RNA 
sequencing has made progress, but still, some chal-
lenges remain. For example, weak RNA absorption and 
the low number of reads in cells are challenges associ-
ated with single-cell RNA sequencing protocols and this 
is reflected as technical zero in the data. Specifically, 
technical zero normally occurs because of low messen-
ger RNA levels in individual cells, weak absorption, and 
random expression rates. Consequently, single-cell RNA 
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sequencing data becomes sparse and has high drop-
out rates. On the other hand, as another challenge, the 
complex and undetermined distribution of the single-
cell RNA sequencing data affects its analysis. Further-
more, the large dimensions of the primary data require 
efficient methods for dimension reduction. In order 
to overcome these challenges, in recent years, several 
methods have been proposed for analyzing single-cell 
RNA sequencing data taking advantages of deep learn-
ing approaches [5–7]. Most of these scRNA-seq pipelines 
consist of three stages: 1) imputation of dropout events, 
2) adoption of dimension reduction methods to identify 
lower-dimensional representations that explain the maxi-
mum variance, 3) Clustering of various cells with similar 
expressions [8].

Addressing aforementioned goals, Seurat [9], as a pop-
ular tools used by biologists, adopts weighted nearest 
neighbor clustering method, which is used for integrated 
analysis of multiple data types in a cell. In addition to 
clustering, Seurat can also be used to infer and analyze 
single-cell data. On the other hand, many tools have been 
developed based on deep neural networks for imputation 
and data reduction. DESC [7] is an Autoencoder-based 
model that clusters cells and visualizes the results of 
clustering and gene expression. In DESC, a deep neural 
network iteratively optimizes a clustering objective func-
tion from scRNA-seq data to low-dimensional feature 
space, and then, it moves each cell to its cluster centroid. 
The next module is SC3 [10] which presents an interac-
tive clustering tool for scRNA-seq data that is an easy-
to-use R package with a graphical interface. The main 
innovation of SC3 is the demonstration that accurate 
and robust results can be obtained by combining several 
wellestablished techniques using a consensus cluster-
ing approach. Through the use of a consensus approach, 
they are able to achieve high accuracy and robustness. As 
another analyzing method, ScGNN [6] uses Graph Neu-
ral Networks (GNN) [11] for embedding, as well as for 
cells’ imputation and clustering. Since there is no effec-
tive method for graphs denoising, this method does not 
produce satisfactory results. Similarly, scGAC [5] utilizes 
a graph neural network, while it adopts a graph denois-
ing approach named Network enhancement (NE) [12]. 
Specifically, scGAC reduces dimensions in two steps, 
first Principal Component Analysis (PCA) and then, the 
graph attention networks are applied. In this manner, it 
improved the accuracy of single-cell clustering.

Based on the pros and cons of analyzing models pre-
sented so far, exploring new methods to improve and 
increase the accuracy of clustering has been considered 
in this field of research recently. It is worth noting that 
although the scGAC model has improved clustering 
accuracy due to the use of graph attention architecture, 

adjustment of its various parameters, including the num-
ber of head attentions, has not been well investigated. On 
the other hand, while PCA, as a linear dimension reduc-
tion method, is based on the simple assumptions for 
data analysis, its adoption by scGAC may not be suitable 
considering the biological data with uncertain distribu-
tion [13]. In this regard, a proper non-linear dimension 
reduction method for single-cell RNA sequencing data 
should be considered. So, in this work, we propose a new 
method for clustering single cells RNA sequencing data, 
named SCEA, which uses two independent units for 
dimension reduction, as well as a self-optimizing clus-
tering method for cell annotations. For this purpose, a 
multi-layer perceptron (MLP) based encoder is applied, 
followed by a GAT [14]. Using eight realistic scRNA-seq 
datasets as benchmarks, we compare our method with 
alternative methods in terms of clustering accuracy. 
Based on the comparative simulation results, we dem-
onstrate that taking advantages of two effective units for 
dimension reduction, SCEA improves clustering accu-
racy compared to the baselines. Additionally, SCEA can 
also be optimized by the Tensor Processing Unit (TPU) 
architecture, and so, achieves a significant reduction in 
execution time. It should be noted, our study’s primary 
focus is on dimension reduction, aiming to improve the 
clustering performance by reducing the data dimensions 
effectively. For clustering analysis, we utilized the widely 
used k-means algorithm, which is available in commonly 
used software packages, making it more accessible and 
easier to apply in real-world scenarios. Therefore, our 
main contribution is in the dimension reduction process, 
which has shown promising results.

Method and materials
Method
In this research area, an accurate clustering method 
should be able to extract important information, such as 
boundaries and different characteristics among cells, to 
produce a valid result. In this regard, the SCEA method 
advances the implementation in four steps, as follows. 
SECA introduces: a) input data preprocessing, b) graph 
construction and denoising, c) dimension reduction, d) 
data clustering by K-means [15]. As depicted in Fig. 1, we 
first construct a graph using Pearson’s correlation coeffi-
cient method [16]. At the next step, for graph pruning, 
we use the Network Enhancement (NE) [12] method 
which uses a doubly stochastic matrix to find the noisy 
edge. It is important to emphasize that a square matrix 
is categorized as doubly stochastic only if all its matrix 
entries are non-negative, and the sum of the elements 
in each row and column is equal to one. Out of all the 
non-negative matrices, stochastic and doubly stochastic 
matrices hold multiple remarkable properties. To achieve 
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the dimension reduction of data, deep neural networks 
are used in two steps; as the first step, we use an encoder 
based on MLP architecture, and then, a graph attention 
autoencoder [14] uses a cell graph to reduce the dimen-
sion of the encoder’s output. The graph attention autoen-
coder, taking advantages of the denoised cell graph 
containing information on cells connectivity, can extract 
the connections and bounds between cells, and so, 
improves the clustering output. As follows, various steps 
of the proposed method are explained in more details.

Step 1: Input data preprocessing
In the proposed method, data preprocessing begins 
with a raw-count matrix of gene expressions, and so, the 
SECA tries to filter out the data with poor quality. For 
this purpose, SECA measures the quality of cells and 
genes based on their gene expression levels. Once pre-
processing is performed, each gene must be expressed in 
three or further cells. For each cell, SECA determines the 
expression levels of the appropriate number of genes, as 
well as the amount of Unique Molecular Identifier)UMI(. 
In this manner, it can eliminate those with extremely high 
or extremely low expression levels (based on the first and 
the third quartiles). For Example, we excluded genes that 
were expressed in very few cells (e.g., with a zero expres-
sion value in most cells) as they may be due to the tech-
nical noise or poor sample quality, rather than biological 
signal. Similarly, we removed genes that had too much 
expression in most cells, such as housekeeping genes 
that are constitutively expressed across all cell types and 

do not contribute to the variance of the data. We deter-
mined such genes as having expression values above 75th 
percentile of the dataset.

Step 2: Graph construction and denoising
Once preprocessing is performed, an auxiliary cell graph 
is constructed to facilitate the information sharing 
between cells. To construct an initial similarity matrix, 
the Pearson correlation coefficient [16] between cells is 
calculated. Then, for graph denoising and achieving more 
reliable clustering output, the SECA uses NE which takes 
the adjacency matrix as its input. NE does not alter the 
eigenvectors while mapping eigenvalues through a non-
linear function, and finally, increases the eigengap of the 
matrix [12]. The diffusion process in NE generates a net-
work consisting of nodes with strong similarity intercon-
nected by edges with large weights, while the nodes with 
weak similarity are interconnected by edges with small 
weights. Finally, the Network Enhancement method 
results an adjacency matrix, while the number of cells 
connected to each cell is selected based on its k nearest 
neighbor values. It should be noted, the k-number speci-
fies the number of nearest neighbors that are consid-
ered in the cluster formation in the k-nearest neighbors 
(KNN) algorithm. At the beginning, the algorithm ran-
domly assigns some samples with clusters, which serves 
as a basis for identifying the rest of the clusters. Each 
step then updates the center of the clusters, based on the 
proximity of samples to each other.

Fig. 1  SCEA Workflow, The model consists of a basic MLP neural network with multiple layers and a graph attention neural network used for final 
dimensionality reduction. The reduced dimensionality of the graph will be used for clustering with the KMeans algorithm. KL loss represents the 
Kullback Leibler divergence and MAE is the Mean Absolute Error
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Step 3: Dimension reduction using neural networks
As the first step of data dimension reduction, SECA uses 
an MLP-based Encoder. Reducing the dimensions of the 
data means to condense the data with a large number of 
features into smaller dimensions. Dimensionality reduc-
tion techniques allow us to reduce the complexity and 
size of datasets, while preserving the variance and dis-
criminative features of the samples. Generally, the single-
cell data contains a large number of features (i.e. genes). 
Encoding, as a nonlinear dimension reduction technique, 
can reduce data dimensions while preserving its informa-
tion content. For this purpose, the MPL extracts informa-
tional features of the raw data in a low-dimensional space 
to feed the graph attention autoencoder. The proposed 
encoder has three layers to reduce data dimension to 
4096, 2048, and finally, 1024. Additionally, tanh, as a non-
linear activation function [17], is utilized in all layers; so 
the negative inputs are drawn strongly negative, while 
the zero inputs are kept near zero. Taking advantages of 
dimension reduction at the first step, the user can decide 
whether or not to standardize the output of the encoder.

Step 4: Graph attention and clustering
GAT [14] are used to obtain topological information 
between cells in low dimensions. For this purpose, the 
cell graph and the encoder’s output from the previous 
step are provided to GAT as its inputs. GAT’s architec-
ture consists of two stacked-graph attentional layers for 
the encoder and a structurally symmetric decoder. To 
optimize the graph attention autoencoder, the loss value 
between the input matrix and the reconstructed matrix 
is calculated by Mean Absolute Error (MAE) [18]. The 
multi-head attention [19] can Identify similar cells, as 
well as the differences between clusters, since it can learn 
a cell’s features by aggregating features of its nearby cells. 
Accordingly, the attention mechanism can improve clus-
tering results. To perform the clustering task, SECA uses 
a Self-optimizing clustering module that can optimize 
the clustering center and redistribute the membership to 
make the clustering output more sensible. Additionally, 
the loss value in the proposed method is computed as the 
combination of MAE for the GAT step and Kullback Lei-
bler Divergence (KLD) [20] for the clustering step.

Evaluation metrics for clustering
To evaluate the clustering outputs of the proposed 
method, we use two well-known metrics, Adjusted 
Rand Index (ARI) [21] and Normalized Mutual Informa-
tion (NMI) [22] by means of the true dataset labels, as 
reported in the articles. As shown in Eq. 1 for ARI [21], 
nij is the total number of cells that are assigned to the ith 
cluster according to the model prediction, and assigned 

to the jth cluster according to the true label. ai is the total 
number of cells that are assigned to the ith cluster based 
on the prediction and aj is the total number of cells that 
are assigned to the jth cluster based on the true label, and 
finally, n is the total number of clusters.

We also use the NMI [22] measure, which is formulated 
as shown in Eq. 2.

where, X represents the assigned clustering, Y represents 
the pre-existing labels on the same data, k is the number 
of clusters, c is the number of pre-existing classes, and 
finally, I (X. Y) calculate the mutual information between 
X and Y, as formulated in Eq. 3

where, H(Z) calculates the marginal information entropy, 
H(X|Y) represents the conditional entropy, and H (X. Y) 
calculates the joint entropy.

Datasets
We evaluate SECA on a diverse set of challenging 
single-cell datasets (Klein [23] (GSE65525), Zeisel [24] 
(GSE60361), Romanov [25] (GSE74672), Chung [26] 
(GSE75688), Pbmc [27] (https://​suppo​rt.​10xge​nomics.​
com/​single-​cell-​gene-​expre​ssion/​datas​ets/2.​1.0/​pbmc4k), 
Mouse [28] (https://​figsh​are.​com/s/​865e6​94ad0​6d585​
7db4b), Biase [29] (GSE57249), Petropoulos [30] (https://​
www.​ebi.​ac.​uk/​array​expre​ss/​exp), Neurons_5K [31] (https://​
cf.​10xge​nomics.​com/​sampl​es/​cell-​exp/6.​0.0/​SC3_​v3_​
NextG​em_​DI_​Neuro​ns_​5K_​SC3_​v3_​NextG​em_​DI_​
Neuro​ns_​5K/​SC3_​v3_​NextG​em_​DI_​Neuro​ns_​5K_​SC3_​
v3_​NextG​em_​DI_​Neuro​ns_​5K_​web_​summa​ry.​html), 
Mouse Brain [32] (https://​www.​10xge​nomics.​com/​resou​
rces/​datas​ets/​mouse-​tissue-​micro​array-​in-​3x3-​layout-​
with-2-​mm-​edge-​to-​edge-​spaci​ng-​ffpe-2-​stand​ard)) that 
range from humans to mice, as listed in Table  1. Gene’s 
counts range from 15,344 to 27,420 and cells are from 49 
to 5483. We cover data with the different numbers of cells 
in our dataset package. We have small data like biase which 
has 49 cells and large data like Pbmc which has 4220 cells. 
We also used the scanpy [33] tool to extract the expression 
matrix from the existing feature/barcode matrix for the 
Neuron data and Mouse brain data.

(1)

ARI =
ij nij
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i ai

2 j bj
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( n2 )

1
2 i ai

2 + j bj
2 −

i ai
2 + j bj

2

( n2 )

(2)NMI(X .Y ) =
I(X .Y )

2(logK + logc)

(3)I(X .Y ) = H(X .Y )− ((H(X |Y )+H(Y |X))
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Results
As discussed in the previous section, our clustering 
architecture includes some metadata and steps, and so, 
as follows, we investigate their impact on the clustering 
accuracy. For this purpose, the following assessments are 
established:

1)	 The impact of standardization on the SCEA’s perfor-
mance.

2)	 The impact of the number of head attentions on the 
SCEA’s performance.

3)	 The impact of nonlinear dimension reduction, com-
pared to the linear type (like PCA), on the SCEA’s 
performance.

To determine the accuracy of clustering, we use two 
parameters, ARI [21] and NMI [22]. We also examine 
how the TPU affects run time, as shown in the following 
section.

Analyzing the impact of standardization
Using standardization to contain data values in the fixed 
range can improve their applicability in many data ana-
lyzing applications. Therefore, in this section, we assess 
the impact of standardization, as defined in Eq.  4, on 
the accuracy of cell typing. Figure 2 shows the impact of 
standardization on the accuracy of cell typing. The plot 
compares the performance of two different algorithms, 
SCEA and scGAC, on eight different datasets using 
standardized and non-standardized data. The results 
indicate that standardization improves the accuracy of 
cell typing in seven out of eight datasets, as evidenced 
by higher values of NMI [22] and ARI [21]. However, it 
is important to note that this improvement is only slight. 
Overall, this suggests that standardization can be a useful 
tool for improving the accuracy of cell typing, but it may 

not have a significant impact on performance in all cases. 
It is up to the user to decide whether to use standardiza-
tion based on the specific requirements of their analysis. 
Nevertheless, SCEA considers the standardization as an 
option which can be activated by the user. For brevity, in 
the following, SCEA with and without the standardiza-
tion is specified as SCEAs and SCEAns, respectively. It is 
worth noting that aside from the NMI and ARI reports, 
we have also disclosed the p-value results of our model 
for the datasets accessible through our project link. All 
datasets have generated p-values below 0.05, thereby 
establishing the credibility of both modes.

Analyzing the impact of the number of head attentions
While using a multi-head attention mechanism [19] 
in our architecture, the number of head attentions can 
affect the SCEA’s performance, as discussed in this sec-
tion. For this purpose, we examine five different num-
bers of head attentions: two, four, six, eight, and ten. 
To achieve a comprehensive statement, five data sets 
are considered for this analysis: Biase [29], Chung [26], 
Mouse [28], Petropoulos [30], and Mouse Brain. We 
would like to clarify the rationale behind our choice of 
range for the number of headers in our model. Firstly, 
in similar works [5, 34] that have employed the use of 
multi-head attention, values of 4 and 8 have commonly 
been selected. We have also chosen to explore two, four, 
six, eight, and ten as the number of headers, based on the 
success of these previous studies. Secondly, it should be 
noted that increasing the number of headers can result 
in higher computational overhead without a significant 
improvement in performance. Therefore, we have lim-
ited the range to a maximum of 10, in order to maintain 

(4)X(scaled) =
X −mean

sd

Table 1  Dataset description and details

Dataset Type # of cluster # of cell # of gene Seq platform

Klein Homo sapiens 4 2717 24,021 inDrop

Zeisel Mus musculus 7 2998 18,869 Illumina HiSeq

Romanov Mus musculus 7 2863 18,496 Illumina HiSeq

Chung Homo sapiens 5 515 27,420 Illumina HiSeq

Pbmc Homo sapiens 8 4220 16,412 10X

Mouse Mus musculus 16 2044 15,344 Microwell-seq

Biase Mus musculus 3 49 21,489 Illumina HiSeq

Petropoulos Homo sapiens 5 1518 21,627 Illumina HiSeq

Neuron Homo sapiens 11 5483 32,286 cell ranger

Mouse Brain Mus musculus 5 501 19,465 Space Ranger
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practical usability and avoid unnecessary computational 
burden.

As shown in Figs.  3 and 4, eight number of head 
attentions leads to a minor increase in both ARI [21] 
and NMI [22] in comparison to other cases, while 

taking advantages of 10 head attentions has no sig-
nificant impact on the SCEA’s accuracy. On the other 
hand, since increasing this parameter results in a larger 
execution time, its minimization should be consid-
ered. Finally, it is worth noting that taking advances of 

Fig. 2  Analysis of the effect of standardization on the clustering accuracy of SCEA and scGAC. A investigate the impact on SCEA accuracy using the 
parameter ARI. B investigate the impact on SCEA accuracy using the parameter NMI. C investigate the impact using the parameter ARI on scGAC. D 
investigate the impact using the parameter NMI on scGAC​

Fig. 3  Analysis of ARI value for different numbers of head attention
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TPUs facilitates runtime management, and so, extra 
runtime resulted from the multi-head attentions can 
be afforded. It is noteworthy that gene expression data 
has an unknown distribution, making it challenging to 
select the optimal number of head attention. To tackle 
this issue, we conducted numerous tests with differ-
ent combinations of parameters, and we found that the 
best value for the number of head attentions is eight. We 
implemented this parameter on various datasets (from 
49 to 5000 cells) and observed that it consistently pro-
vided the best results with a small difference in all cases. 
Therefore, we conclude that the selected parameter (i.e., 
eight head attentions) is optimal for our problem, con-
sidering the designed structure and the number of cells 
in our investigations. It should be noted that the results 
of this experiment are also given in Table 2.

Analyzing the impact of nonlinear dimension reductions
When working with large datasets, dimension reduc-
tion is inevitable to facilitate runtime management. 

Dimension reduction refers to the transformation of 
high-dimensional data into low-dimensional data to 
retain some meaningful properties of the original data, 
ideally close to its intrinsic dimensions [35]. In scGAC, 
PCA is used as the main linear technique for dimension 
reduction that maps data to a smaller space in such a way 
that it maximizes the variance of the data. However, it 
might be leaving out features that do not explain much 
of the variance of the dataset but do explain what charac-
terizes one class against another. For PCA to be effective, 
data elements must be correlated, otherwise, it performs 
poorly on uncorrelated data [13].

Considering that the biological data have an indeter-
minate and complex distribution, and the relationships 
among features may not have a linear factorization, it is 
more appropriate to use nonlinear dimension reduction 
techniques. In this manner, we proposed an encoder net-
work with layers of MLP and reduced the data dimensions 
to 1024, as shown in Fig. 1. We also used tanh as a non-lin-
ear activation function in each layer [17]. To investigate the 

Fig. 4  Analysis of NMI value for different numbers of head attention

Table 2  ARI and NMI value for different numbers of head attention

2 head 4 head 6 head 8 head 10 head

Dataset ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

Biase 100 100 100 100 100 100 100 100 100 100

Chung 31.15 44.9 30.3 44.6 33.19 47.04 33.40 49.6 32.22 48.73

Mouse 39.00 65.98 39.31 66.43 40.36 67.31 40.82 68.05 40.16 67.6

Petropoulos 42.99 59.12 43.93 58.39 41.75 58.17 44.50 59.09 44 59.19

Mouse Brain 74.1 72.5 73.6 72.8 72.33 70.33 77.8 74.1 73.33 71.5
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capability of the proposed dimension reduction network, 
we compare it against scGAC [5], which employs a linear 
method of dimension reduction, PCA. As shown in Figs. 5 
and 6, the proposed non-linear dimension reduction net-
work improves the clustering outputs in eight benchmarks.

In the next step, based on the results of the previous 
sections, we use the most optimal possible conditions 
for SCEA. In other words, SCEA accuracy refers to the 
accuracy obtained from the best experience including:

1)	 To reduce dimensions in the first step, we use an 
encoder based on Tensorflow.

2)	 During the dimension reduction process, we also 
use a Graph attention Autoencoder [14] with a set of 
eight head attentions.

3)	 We use the standardization option for SCEA.

As reported in Figs.  7 and  8, SCEA achieves the best 
accuracy, compared to the four alternative models 
in terms of two parameters, ARI [21] and NMI [22]. 
Detailed information regarding the accuracy of the mod-
els can be found in the Table 3.

Analyzing the impact of TPU on runtime
TPUs are Google’s custom-developed Application-Spe-
cific Integrated Circuits (ASICs) used for accelerating 
machine learning workloads. Researchers, developers, 
and businesses can leverage TensorFlow computing clus-
ters that use Cloud TPU for maximum performance and 

Fig. 5  Analyzing the ARI value in order to compare different methods of dimension reduction

Fig. 6  Analyzing the NMI value in order to compare different methods of dimension reduction
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flexibility. It should be clarified that TPU is not included 
in our algorithm. Instead, since a portion of our model 
was constructed using the TensorFlow package, we 

explored the potential of utilizing TPU to enhance the 
computational speed. Typically, when dealing with exten-
sive matrix operations, executing the code on a TPU can 

Fig. 7  Comparison of Adjusted rand index (ARI) for baselines and SCEA

Fig. 8  Comparison of Normalized mutual information (NMI) for baselines and SCEA

Table 3  Simulation result for all compared methods

SCEA SC3 scGAC​ scGNN Seurat Desc

Dataset ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

Klein 0.843 0.869 0.831 0.859 0.835 0.856 0.601 0.680 0.836 0.856 0.808 0.784
Zeisel 0.562 0.616 0.822 0.076 0.520 0.624 0.495 0.635 0.494 0.661 0.473 0.593
Romanov 0.600 0.535 0.551 0.530 0.569 0.553 0.283 0.330 0.426 0.641 0.403 0.589
Chung 0.317 0.490 0.025 0.310 0.303 0.446 0.298 0.469 0.209 0.470 0.215 0.493
Pbmc 0.661 0.781 0.643 0.737 0.613 0.760 0.562 0.683 0.623 0.746 0.687 0.757
Mouse 0.446 0.672 0.616 0.757 0.393 0.664 0.362 0.635 0.571 0.762 0.593 0.752
Biase 1.00 1.00 0.948 0.929 1.00 1.00 0.330 0.443 1.00 1.00 0.594 0.641
Petropoulos 0.594 0.654 0.538 0.627 0.439 0.583 0.282 0.384 0.322 0.523 0.318 0.555
Neuron 0.408 0.461 0.327 0.315 0.385 0.427 0.236 0.425 0.249 0.324 0.239 0.364
Mouse Brain 0.786 0.746 0.754 0.696 0.744 0.708 0.306 0.486 0.410 0.579 0.535 0.588
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greatly enhance the speed of computation compared to 
a CPU. However, it should be noted that not all types 
of code can be optimally accelerated through TPUs. In 
instances, where the code has minimal computational 
intensity or contains numerous branches or conditional 
statements, the TPU may not offer notable gains in terms 
of computational speed compared to a CPU or GPU. Fur-
thermore, if the code necessitates significant memory 
bandwidth, TPU may not be the optimal choice, owing 
to their focus on computation as opposed to memory 
access. Based on our code’s description, it exhibits excep-
tional performance when executed on TPU, highlighting 
its developmental benefits.

At the first step of dimension reduction, as shown in 
Fig.  1, we propose utilization of an encoder based on 
Tensorflow. Figure  9 illustrates various experiments to 
investigate whether TPU can improve runtime of differ-
ent applications. We have used the TPU version3 avail-
able in colab [36] with the configuration of 36 RAM, and 
10 GB cache.

As shown in Fig.  9, runtime of pre-training pro-
cess increases exponentially in the non-TPU execution 
mode. However, this figure shows a significant runtime 
improvement for TPU-base implementation over the 
non-TPU one. It is worth noting that we examines the 
scGAC model in a similar manner, and concluded that 
taking advantage of TPU cannot improve its runtime sig-
nificantly. Table 4 presents the results of all tests.

To evaluate our proposed model’s efficiency, we com-
pared it to the scGAC model across all datasets with 
respect to the execution time. We conducted these com-
parisons to determine whether our method produced 
results more quickly than scGAC, which is considered 
to be one of the standard baseline methods. The com-
parison process was performed using a range of datasets, 

of varying sizes and complexities. We recorded the time 
taken by both models to process these datasets and drew 
insights from the results. The findings are visually rep-
resented in Fig. 10, which provides a graphical compari-
son of our proposed method’s execution time against 
scGAC.

When examining the results, it was observed that our 
approach was indeed faster than scGAC. Our method 
was able to generate results in all datasets more quickly, 
thus providing a more efficient method for processing 
large datasets. Additionally, we observed that our pro-
posed model was able to complete the processing task 
while using significantly fewer computational resources, 
making it a more cost-effective option for processing 
large-scale datasets.

Discussion and conclusion
To identify cell identities and functions using scRNA-seq 
data, it is necessary to cluster different cells according to 
their gene expression. In this study, using the scGAC [5] 

Fig. 9  Comparison of execution times to find the effect of TPU on 7 datasets

Table 4  Duration of each experiment in two modes of using 
and not using the TPU (based on minutes)

Dataset  + TPU -TPU

Petropolus 2.78 23.18

Mouse 5.98 40.93

Klein 9.35 71.52

Romanov 12.95 82.72

Zeisel 14.13 84.89

Pbmc 26.08 56.58

Biase 0.36 0.55

Mouse_brain 1.26 10.91

Chung 0.8 3.35
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tool, we have developed a method called SCEA that gives 
us the best accuracy for clustering among famous and 
reliable models. The complex and irregular distribution of 
single-cell RNA-seq data is one of the main challenges for 
cells clustering. In scGAC [5], although adoption of PCA 
based on the simple assumptions reduces hardware costs 
and execution times, does not perform well for dimen-
sion reduction of single-cell data. Therefore, to address 
this drawback, we propose adoption of an encoder neural 
network, which applies a non-linear reduction of dimen-
sionality. In addition, we realized that increasing the 
number of head attentions can improve accuracy (up to a 
certain extent). Moreover, by using TPU, we have shown 
that the execution time can be limited. Specifically, for 
approximately 5000 cells, the execution time will be less 
than 30 min. Our method also includes two modes, con-
sidering either standardization or non-standardization of 
the dimensionally reduced data produced by the encoder. 
Although either choice is applicable, we suggest using a 
method with data standardization, since based on our 
simulation results, it improves the clustering accuracy. 
Simulating eight realistic scRNA-seq datasets as bench-
marks, we show that SCEA can outperform state-of-the-
art methods in scRNA-seq clustering.

Future improvements can be made in several direc-
tions. Efficient attention-based models, such as trans-
formers instead of GAT [14], which are also something 
we follow seriously. The second issue is improving noise 
removal conditions in the cell graphs would be consid-
ered to significantly improve the final result. Finally, as 
we concluded, valid biological concepts discovered so 
far, such as protein–protein interaction networks, can be 
integrated into the model to precisely determine the state 
of communication between cells.
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