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TRPM2 SNP genotype previously associated
with susceptibility to Rhodococcus equi
pneumonia in Quarter Horse foals displays
differential gene expression identified
using RNA-Seq
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and Noah D. Cohen1*

Abstract

Background: Rhodococcus equi (R. equi) is an intracellular bacterium that affects young foals and immuno-compromised
individuals causing severe pneumonia. Currently, the genetic mechanisms that confer susceptibility and/or resistance to
R. equi are not fully understood. Previously, using a SNP-based genome-wide association study, we identified a region on
equine chromosome 26 associated with culture-confirmed clinical pneumonia. To better characterize this region and
understand the function of the SNP located within TRPM2 that was associated with R. equi pneumonia, we performed
RNA-Seq on 12 horses representing the 3 genotypic forms of this SNP.

Results: We identified differentially expressed genes in the innate immune response pathway when comparing
homozygous A allele horses with the AB and BB horses. Isoform analyses of the RNA-Seq data predicted the existence
of multiple transcripts and provided evidence of differential expression at the TRPM2 locus. This finding is consistent
with previously demonstrated work in human cell lines in which isoform-specific expression of TRPM2 was critical for
cell viability.

Conclusions: This work demonstrates that SNPs in TRPM2 are associated with differences in gene expression, suggesting
that modulation of expression of this innate immune gene contributes to susceptibility to R. equi pneumonia.
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Background
Rhodococcus equi (R. equi) is a pathogen that predomin-
antly affects young foals causing pneumonia as well as
extra-pulmonary disorders [1–5]. Currently, there is no ap-
proved vaccine for protection against R. equi pneumonia,
and other preventative interventions, such as transfusion
of hyperimmune plasma, are expensive, labor-intensive,
and incompletely effective [4, 6]. Isolates of R. equi that
cause disease in foals must bear the virulence associated

protein A (VapA) gene in a plasmid; however, presence of
the plasmid and VapA expression alone is not sufficient to
cause disease, indicating that host factors are of great
importance [7, 8]. In addition to anecdotal reports of
some mares having multiple infected foals while other
mares in the same environment never have an af-
fected foal, several candidate gene studies suggest a
genetic basis for R. equi susceptibility [9–13]. Because of
gene-selection bias and phenotypic misclassification, the
associations from candidate gene studies have been weak
and potentially biased [14].
Recently, our laboratory identified a region on chromo-

some 26 associated with R. equi pneumonia in a genome-
wide association study (GWAS) [15] using a commercially
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available single nucleotide polymorphism (SNP) array
[15, 16]. Four SNPs were associated with clinical disease
in a region spanning several predicted genes. One of the
SNPs was well suited to serve as a marker because it was
located within a candidate gene (viz., the transient recep-
tor potential cation channel, subfamily M, member2
[TRMP2]) and could be easily and accurately genotyped
[15]. This SNP was associated with 3 genotypes designated
AA, AB, and BB alleles. Because SNPs are merely indica-
tors of location and are very rarely actual causal muta-
tions, it remains unclear which genes in this region might
explain the observed association of genotype with disease.
More importantly, these SNPs alone do not provide any
functional information regarding the relationship between
genotype and phenotype across this region. The marker
SNP in TRPM2 is a synonymous substitution and does
not change the amino acid or protein sequence and is thus
unlikely to be causally associated with disease. It is
biologically plausible, however, that this SNP is a
marker for other genetic elements nearby that might
regulate gene expression. Thus, other approaches in-
cluding investigating gene expression are necessary to
further understand the observed association of the
TRPM2 SNP and R. equi pneumonia.
Investigating the whole transcriptome using RNA-

Sequencing (RNA-Seq) provides an unbiased approach for
gene expression analysis, including the analysis of alterna-
tively spliced transcripts (viz., isoforms), [17] yielding
greater possibility for identifying true expression pheno-
types associated with the genotype(s) of interest. RNA-Seq
can also be used to identify and examine unnanotated
genes and isoforms. The principal aims of this study were:
1) to determine whether gene expression (including ana-
lysis of isoforms) in the TRPM2 gene region was associ-
ated with the marker genotypes for the TRPM2 SNP (i.e.,
AA, AB, or BB alleles), using RNA-Seq (targeted ap-
proach); and, 2) to perform associations of gene expres-
sion across the transcriptome with the TRPM2 genotypes
(untargeted approach). As a secondary aim, we examined
the association of gene expression across the transcrip-
tome with history of R. equi pneumonia. The objectives of
this study were to identify whether the marker genotype
identified in TRPM2 was an indicator of differential ex-
pression, and to identify any other genes that were differ-
entially expressed between the TRPM2 SNP genotypes.
Completing these objectives would allow us to find key
biological pathways and processes involved in susceptibil-
ity to R. equi pneumonia [18–20].

Methods
Study population
The study population was derived from the source popu-
lation for our GWAS described above (viz., foals born dur-
ing 2011 at the 6666 Ranch) [15], which had a cumulative

incidence of R. equi pneumonia of 17% during 2011.
Briefly, foals were monitored for clinical signs of fever,
cough, nasal discharge, and lethargy which were suggest-
ive of pneumonia. Foals with clinical signs of pneumonia
were examined using thoracic ultrasonography, and foals
with areas of pulmonary abscessation or consolidation
were subjected to tracheobronchial aspiration for cyto-
logic examination and microbiologic culture of aspirate
fluid. A foal was considered to have clinical R. equi
pneumonia when it had clinical signs of pneumonia,
ultrasonographic evidence of pulmonary abscesses or
consolidation, and a positive culture of R. equi from a
tracheobronchial aspirate with cytological evidence of
septic inflammation [15].
For the current study, 12 horses were randomly se-

lected from 51 horses remaining at the 6666 Ranch that
were part of the source population used in 2011. Using
methods described previously, [15] TRPM2 genotypes
were then determined for these 12 horses (AA, n = 3;
AB, n = 4; and BB n = 5). This sample size was deter-
mined by the funding available for this project and the
cost for RNA-Seq.

Sample collection and RNA-Seq
A whole blood sample (5 mL) was collected by jugular
venipuncture into 2 Paxgene RNA Vacutainer tubes
(PreAnalytiX, Hombrechtikon, Switzerland) at the 6666
Ranch, Guthrie, TX, June 25, 2014, to permit the RNA to
be stabilized for transport to Texas A&M University. Total
RNA was isolated using the MagMax Paxgene RNA puri-
fication kit (Life Technologies). RNA-Sequencing libraries
were generated using the TrueSeq RNA preparation kit
(Illumina) with a polyA selection step. The samples were
pooled and sequenced (125-base-pair [bp], paired-end
sequencing) on 2 lanes of a HiSeq 2500 (Illumina) to
account for lane artifacts. The Texas A&M AgriLife Gen-
omics and Bioinformatics core generated the RNA-Seq li-
braries and performed the RNA-Seq reactions. The raw
data of the RNA-Seq reactions was processed using bio-
informatic tools provided by the Texas A&M Institute for
Genome Sciences and Society (TIGSS). FASTQ reads
were de-multiplexed and assessed for quality using
FastQC. Duplicate samples were merged and aligned to
the equine reference genome assembly (EquCab2) using
Tophat (version 2.0.14) [21].

Gene expression analysis for genotypic and phenotypic
comparisons
The primary aim of the study was to identify differen-
tially expressed genes, using either a targeted (TRPM2
gene region, including isoforms) or untargeted (tran-
scriptome-wide) approach, between horses with the
TRPM2 AA genotype (n = 3) and horses with either the
TRPM2 AB or BB genotypes (n = 9). The AB and BB

McQueen et al. BMC Genomics  (2016) 17:993 Page 2 of 10



TRPM2 genotypes were combined on the basis of our
previous results indicating that the odds of disease were
similar in comparisons between horses with the AA
TRPM2 genotype relative to the AB genotype (OR = 4.3;
P = 0.0017), the BB genotype (OR = 3.6; P = 0.0574), or
combined genotypes (OR = 3.7; P = 0.0006) [15]. A sec-
ondary aim was to compare differential gene expression
between horses that had developed R. equi pneumonia as
foals (n = 2) and horses that had not developed clinical
signs of pneumonia as foals (i.e., subclinical pneumonia or
no pneumonia; n = 10), independent of TRPM2 genotype.
Sequencing reads were aligned to the equine genome

using Tophat with the default parameters. EdgeR, which
operates within the R statistical package (Version 3.0.1;
R Statistical Project), and cuffdiff were used to identify
differentially expressed genes using the Ensembl equine
gene annotation [build 83] [21–26]. For the edgeR analysis,
read counts of each gene were first determined using
HTSeq [27] with the intersection nonempty parameter to
account for ambiguous reads. The resulting count table
was filtered to remove genes in which 0 reads mapped in
all samples. The tabulated read counts were then normal-
ized relative to library size and tag-wise and common
dispersions estimated. Differentially expressed genes were
defined as those genes having a false discovery rate
(FDR) ≤ 0.05 that were identified with the exactTest func-
tion. For the cuffdiff analysis the default settings were used
with the exception of the minimum isoform fraction set-
ting (F - 0). Differentially expressed genes were defined as
those having a q-value (FDR) ≤ 0.05.
Biological pathway analysis was performed using

the Ingenuity Pathway Analysis (IPA) (Qiagen, Venlo,
Netherlands; www.ingenuity.com) tool-kit. Output files
from both edgeR and cuffdiff were used in their respective
pathway analyses. Input files for IPA used the following in-
formation from the edgeR or cuffdiff outputs: a column
containing an Ensembl gene identifier, a corresponding
gene name where applicable, the log fold-change of ex-
pression for each gene between the 2 groups tested, and a
FDR for each gene tested.
Visualization of RNA-Seq read coverage across the re-

gion of interest was carried out using BEDTools and the
University of California Santa Cruz (UCSC) online gen-
ome browser using aligned reads from the previously de-
scribed Tophat mapping step [28, 29]. The cufflinks
function of the Tophat tool suite was used to identify
novel transcripts at the TRPM2 locus [21]. The Ensembl
annotated TRPM2 gene model was then replaced with
the TRPM2 assembled transcripts generated through
Cufflinks. Analysis of the TRPM2 isoforms was per-
formed using cuffdiff.
The assembled TRPM2 transcripts were verified by

polymerase chain reaction (PCR). Briefly, equine RNA
was isolated using the Ambion PureLink™ RNA isolation

kit (Ambion, Waltham, MA) and cDNA synthesized using
the iScript™ cDNA synthesis kit (BIO-RAD, Hercules,
CA). PCR probes were developed using the Primer3 soft-
ware [30] for the 3′ end of predicted TRPM-1 with com-
plementary reverse primers targeted at the 5′ and 3′ ends
of TRPM2-2. Cycling conditions were as follows: 94 °C for
2 min, 94 °C for 30 s to 58 °C for 45 s to 72 °C for 1 min
30 times, followed by 72 °C for 3 min. PCR products were
resolved on a 1% agarose gel.

Results
RNA-seq of horse samples
RNA-seq generated an average of 33.7 million paired-end
reads per sample of which 78.7% (viz., 26.5 million)
uniquely aligned to the equine genome. With the excep-
tion of 1 sample (viz., foal 45), all samples had base quality
scores (Phred) > 30.

Analysis of TRPM2 region gene expression and assembled
transcripts (targeted approach)
Neither the TRPM2 nor adjacent genes were differen-
tially expressed between the AA and non-AA genotypes.
Visualization of the aligned RNA-Seq reads relative to
the TRPM2 gene annotation (Ensembl equine 83 and
Non-horse RefSeq annotation) suggested that there were
unnanotated exons and 3′ untranslated regions (UTR) of
the TRPM2 gene expressed in leukocytes (Fig. 1a). This
observation promoted us to ask whether the TRPM2 iso-
forms were differentially expressed between horses with
different TRPM2 genotypes as described above. To test
this, we first merged the transcriptomes of each animal to
increase the total depth of coverage of the transcriptomes
and used Cufflinks to assemble transcripts of TRPM2. We
then examined differential expression of the assembled
TRPM2 transcripts as described above. The transcript as-
sembly revealed 2 unspliced 5′ and 3′ transcripts of
TRPM2 (hereafter referred to as TRPM2-1 and TRPM2-2)
that included 17 novel isoforms (TRPM2-1 = 10, TRPM2-
2 = 7) consisting of unnanotated exons (e.g., 5′ terminal
and cassette exons), retained introns, and 3′ UTRs
(Fig. 1b). Neither TRPM2-1 nor TRPM2-2 were differen-
tially expressed between the 2 cohorts (edgeR and cuffdiff ).
Likewise, no differentially expressed isoforms were identi-
fied between the 2 groups. We then examined differential
expression of the TRPM2 transcripts among the 3 TRPM2
genotypes (AA vs AB; AA vs BB; AB vs BB). The TRPM2-
1 transcript was significantly higher in the AB group in
comparison to the AA group as well as higher than AA in
all comparisons (Table 1).
To determine whether the 2 predicted genes at the an-

notated at TRPM2 locus are in fact 2 independent tran-
scriptional units, we isolated RNA, synthesized cDNA,
and probed with primers targeted for the 3′ end of
TRPM2-1 and the 5′ end of TRPM-2. Gel electrophoresis
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Fig. 1 a Bedgraphs representing RNA-Seq coverage of TRPM2 for each genotype from top to bottom: AA, AB, and BB. b Cufflinks output of TRPM2
novel isoform overlaying the equine Ensembl predicted gene annotations. c PCR amplicons stained with EtBr reveal splicing from cuffdiff identified
TRPM2-1 to TRPM2-2 as well as multiple isoforms. Primer locations indicated by colored arrows in panel b and c and resulting amplicons of primer pairs
represented in in panel c

Table 1 Pairwise comparisons of potentially novel TRPM2 transcript expression values

Cufflinks ID Transcript ID AA AB/BB Log2 FC P value P adjusted

CUFF.23429 TRPM2-1 90.99 118.90 0.39 0.0971 0.1942

CUFF.23430 TRPM2-2 168.23 214.17 0.35 0.1630 0.3260

AA AB

CUFF.23429 TRPM2-1 91.81 130.55 0.51 0.0224 0.0448

CUFF.23430 TRPM2-2 169.73 225.94 0.41 0.0783 0.1566

AA BB

CUFF.23429 TRPM2-1 90.63 110.04 0.28 0.2663 0.5326

CUFF.23430 TRPM2-2 167.57 205.44 0.29 0.2766 0.5532

AB BB

CUFF.23429 TRPM2-1 128.83 110.27 −0.22 0.3456 0.6912

CUFF.23430 TRPM2-2 223.02 205.87 −0.12 0.6565 1.0000
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of the amplicons revealed that PCR successfully amplified
transcripts spanning the region, indicating that TRPM2-1
and −2 are, at least in some instances, spliced together as
a single transcription unit (Fig. 1c). Visual inspection of
the PCR gel revealed several splice variants (amplicons)
synthesized between the primer sets which corresponds
with the several exons predicted by the Ensembl gene pre-
diction track. This analysis does not rule out the possibility
that independent transcriptional units might be synthe-
sized from the TRPM2-1 and −2 locus.

Differential gene expression analysis of transcriptome
(untargeted approach)
Examination of the gene count tables generated by
HTSeq revealed 8212 genes with < 1 read count/gene,
leaving 18,779 genes for analysis in edgeR. Comparison
of the TRPM2 genotypes (AA [n = 3] vs. AB [n = 4] + BB
[n = 5]) showed that expression of the ankyrin repeat do-
main 22 (ANKRD22), major histocompatibility complex,
class II, DQ beta (DQB), and myeloperoxidase (MPO)
genes were significantly higher (FDR ≤ 0.05) in horses
with the TRPM2 AA genotype compared to horses with
the TRPRM2 AB and BB genotypes (Table 2). Cuffdiff
analysis revealed 58 differentially expressed genes be-
tween the 2 groups (Table 3); however, none of the genes
were concordant between the 2 analyses. Although not
significantly different, expression of DQB was closest to
being differentially expressed (P = 0.00075, FDR = 0.108)
in the cuffdiff analysis, with the ANKRD22 and MPO
having FDRs of 0.73 and 0.63, respectively. Pathway ana-
lysis of the differentially expressed genes identified by
cuffdiff revealed biological processes involving host anti-
microbial and inflammatory response (17 genes), cell-to-
cell signaling, and cell interaction (Fig. 2). Notably, the
CCAAT/enhancer binding protein epsilon (C/EBPE),
which was a central gene in the identified pathways, was
expressed ~ 1.3-fold higher in the horses with TRPM2

AA genotypes relative to the other horses. No biological
processes were identified using the differentially expressed
genes identified by edgeR. Comparison of transcrip-
tome by clinical status as foals (i.e., R. equi pneumo-
nia [n = 2], unaffected [n = 10]) using the analysis
methods described above identified no differentially
expressed genes (FDR ≤ 0.05).

Discussion
As previously reported, TRPM2 markers have been asso-
ciated with clinical disease caused by R. equi [15]. The
TRPM2 gene was biologically plausible as a candidate
gene because TRPM2 has been shown to increase tissue
damage at sites of inflammation in a mouse model of ul-
cerative colitis [15, 31]. On the basis of these findings,
we considered it important to understand the expression
pattern across the region of interest identified by our
previous GWAS (targeted approach). We found evi-
dence indicating that alternative splicing occurs within
the TRPM2 locus in horses resulting in multiple iso-
forms. Although we did not attempt to verify the func-
tionality of these transcripts in horses, an alternative
transcript has been functionally characterized in human-
derived cell lines: a short isoform of TRPM2 inhibits cal-
cium influx while increasing cell viability [32]. Given our
demonstration of only a single TRPM2 gene in the
equine genome, it is biologically plausible that the short
isoforms of TRPM2 in the horse might have altered
function that could confer some degree of protection
against infection and subsequent tissue damage. Further
experimentation is required to understand the function
of these isoforms of equine TRPM2 and what role these
isoforms might play in innate immune responses to R.
equi infection.
The C/EBP gene was identified as differentially expressed

by cuffdiff (Table 3) and was indirectly implicated by IPA
(Fig. 2). Like TRPM2, this gene is associated with neutrophil

Table 2 Transcriptome-wide differentially expressed genes identified by edgeR analysis

Ensembl ID Gene name Log FCa Log CPMb P value FDR

ENSECAG00000022239 ANKRD22 −5.82 0.23 0.0000 0.0000

ENSECAG00000006492 DQB −2.00 7.30 0.0000 0.0028

ENSECAG00000006662 MPO −3.22 −0.44 0.0000 0.0483

ENSECAG00000017147 C15orf52 −3.08 −1.66 0.0000 0.0968

ENSECAG00000002249 PLEKHG4B −4.64 −1.57 0.0000 0.0983

ENSECAG00000008171 N/A −3.80 −0.68 0.0000 0.1476

ENSECAG00000008238 S100A5 −3.41 −1.98 0.0001 0.1476

ENSECAG00000016666 OMG 0.89 6.37 0.0001 0.2650

ENSECAG00000006656 N/A −3.08 −2.89 0.0002 0.4258

ENSECAG00000024043 CSTA −2.09 2.50 0.0003 0.4904
aFC fold change
bCPM counts per million
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Table 3 Transcriptome-wide differentially expressed genes identified by cuffdiff analysis

Ensembl ID Gene name Log2 FC P value Q value Significant

ENSECAG00000024043 CSTA −2.08 0.0001 0.0122 yes

ENSECAG00000024259 DQA −1.83 0.0001 0.0122 yes

ENSECAG00000019922 ADAMDEC1 −1.39 0.0001 0.0122 yes

ENSECAG00000009142 DQA −1.34 0.0001 0.0122 yes

ENSECAG00000020816 PDLIM1 −1.32 0.0001 0.0122 yes

ENSECAG00000015109 N/A −1.28 0.0001 0.0122 yes

ENSECAG00000012883 CEBPE −1.27 0.0001 0.0122 yes

ENSECAG00000023062 N/A −1.26 0.0001 0.0122 yes

ENSECAG00000019130 SIRPG −1.22 0.0001 0.0122 yes

ENSECAG00000011315 EMR3 −1.17 0.0001 0.0122 yes

ENSECAG00000013660 C1orf186 −1.16 0.0002 0.0371 yes

ENSECAG00000025078 SUSD2 −1.05 0.0001 0.0122 yes

ENSECAG00000016730 CSMD1 −0.99 0.0001 0.0122 yes

ENSECAG00000001282 CCR3 −0.95 0.0001 0.0122 yes

ENSECAG00000008322 GZMH 0.79 0.0002 0.0371 yes

ENSECAG00000007621 TRIP11 0.86 0.0003 0.0435 yes

ENSECAG00000018564 SPATS2L 0.87 0.0001 0.0221 yes

ENSECAG00000019111 CD163 0.89 0.0002 0.0308 yes

ENSECAG00000020763 MGST1 0.91 0.0001 0.0221 yes

ENSECAG00000014422 OAS2 0.92 0.0001 0.0122 yes

ENSECAG00000011776 MX1 0.93 0.0001 0.0221 yes

ENSECAG00000021989 DDX58 0.94 0.0002 0.0308 yes

ENSECAG00000003474 TTLL3 0.94 0.0001 0.0122 yes

ENSECAG00000001399 SAMD9 1.03 0.0001 0.0221 yes

ENSECAG00000014218 SIGLEC1 1.04 0.0003 0.0435 yes

ENSECAG00000008274 CLEC4E 1.05 0.0001 0.0122 yes

ENSECAG00000010117 S100A9 1.05 0.0001 0.0122 yes

ENSECAG00000013762 NCR1 1.07 0.0002 0.0308 yes

ENSECAG00000023733 MMP-1 1.10 0.0001 0.0221 yes

ENSECAG00000015006 FGFR1 1.10 0.0003 0.0435 yes

ENSECAG00000007133 TPPP3 1.11 0.0001 0.0122 yes

ENSECAG00000022042 PNP 1.11 0.0001 0.0122 yes

ENSECAG00000008356 ZNF577 1.15 0.0003 0.0435 yes

ENSECAG00000012235 BAZ2B 1.15 0.0001 0.0122 yes

ENSECAG00000009742 S100A12 1.15 0.0001 0.0122 yes

ENSECAG00000021476 MMP8 1.16 0.0001 0.0122 yes

ENSECAG00000009271 S100A8 1.18 0.0001 0.0122 yes

ENSECAG00000019411 HERC6 1.20 0.0001 0.0122 yes

ENSECAG00000026820 SEPP1 1.22 0.0001 0.0122 yes

ENSECAG00000007881 IFIH1 1.24 0.0001 0.0122 yes

ENSECAG00000014645 OASL 1.29 0.0001 0.0122 yes

ENSECAG00000010153 IFIT4 1.33 0.0001 0.0122 yes

ENSECAG00000013874 SPARC 1.44 0.0002 0.0308 yes

ENSECAG00000001481 SAMD9L 1.47 0.0001 0.0122 yes
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function. Isoforms of the C/EBP gene are expressed by hu-
man neutrophils and play an integral part in inducing sev-
eral inflammatory cytokines [33]. C/EBP was shown to bind
the promoter of interleukin 8 (IL-8, CXCL8) when stimu-
lated by lipopolysaccharides (LPS), [33] and upregulation of
CXCL8 production by TRPM2 has been linked to increased
tissue damage at sites of inflammation in mice [31, 34].
The transcriptome-wide analysis for association of

gene expression with TRPM2 SNP genotype using both
edgeR and cuffdiff did not reveal any concordant results.
This might be attributable to several factors. Each

program uses a different method to predict differentially
expressed genes and each is tailored to conduct different
types of analysis. Cuffdiff uses a mixture of distributions
to account for the uncertainty in mapping a read and
the variability in read count while edgeR primarily
focuses on the variability in read count across replicates
[21, 22]. The results from edgeR appear to be more
conservative in our experiment because only 3 genes
were identified as differentially expressed whereas cuff-
diff identified 58 genes. There is also evidence to suggest
that edgeR is not always a more conservative approach;

Table 3 Transcriptome-wide differentially expressed genes identified by cuffdiff analysis (Continued)

ENSECAG00000008809 OAS3 1.51 0.0001 0.0122 yes

ENSECAG00000000500 IF16 1.53 0.0001 0.0122 yes

ENSECAG00000015395 HERC5 1.54 0.0001 0.0122 yes

ENSECAG00000001324 ISG15 1.55 0.0001 0.0122 yes

ENSECAG00000008594 BTN3A1 1.59 0.0001 0.0122 yes

ENSECAG00000006913 N/A 1.90 0.0001 0.0122 yes

ENSECAG00000019949 CYP4F 1.92 0.0001 0.0122 yes

ENSECAG00000017437 MYLPF 2.38 0.0002 0.0371 yes

ENSECAG00000004349 IFIT5 2.54 0.0001 0.0122 yes

ENSECAG00000020407 MYBPC2 2.64 0.0002 0.0371 yes

ENSECAG00000010020 HBB 2.73 0.0001 0.0122 yes

ENSECAG00000023971 TNNT3 4.46 0.0002 0.0371 yes

ENSECAG00000019728 TNNC2 5.11 0.0001 0.0122 yes

ENSECAG00000005487 N/A 8.08 0.0001 0.0122 yes

Plasma membrane

Cytoplasm

Nucleus
Cytokine/Growth Factor

Other

Transcription Regulator

Direct relationship

Indirect relationship

CEBP/E

NLRP3

IL6 CXCL8 TNF

TRPM2

Fig. 2 EdgeR pathway analysis results. TRPM2 was not identified as differentially expressed in the analysis but was added for the purpose of
identifying TRPM2’s link with the differentially expressed genes. Solid arrows indicate a documented direct interaction, while dashed arrows
represent interactions linked through an intermediary. The transcription regulator CEBP/E directly interacts with IL6, CXCL8, and TNF establishing
a link between the homozygous AA TRPM2 horses and expression of immune related genes. The indirect interactions show the relationship of
TRPM2 to the differentially expressed genes and thus suggesting a role for TRPM2 in innate immunity. Figure adapted from IPA generated output
for resolution purposes
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thus, the observed discrepancy might reflect some other
biological or technical property present in the data but
no other metrics suggest this was the case [35]. Also,
cuffdiff uses the alignments from TopHat and a gene an-
notation file to calculate differential expression. This
removes the HTSeq count step and might have contrib-
uted to the differing results. In an effort to maximize the
inferences drawn from our data, we elected to use the
genes identified by cuffdiff to better leverage our data in
elucidating biological pathways and processes playing a
role in susceptibility to R. equi pneumonia.
There are several other factors to consider regarding

RNA-Seq and the outcome of its analysis. RNA-Seq reflects
steady-state levels of RNA, which encompasses the rate of
transcription, rate of degradation, post-transcriptional
phases, and post-translational modifications that may alter
protein function [36]. For example, a 1.3-fold increase in
expression of C/EBP within the AA genotypes group over
the non-AA genotypes is a complex finding, as it is in any
case investigating differentially expressed genes. A first step
in following up on the findings and towards a better under-
standing this gene and pathway as it relates to R. equi
pneumonia would be to confirm the RNA expressions
levels by another method. Also, we do not know whether a
1.3-fold increase in RNA represents a 1.3-fold increase in
the protein level of C/EBP in these horses. A recent study
found that on average only 40% of the variability in protein
levels of the cell could be explained by mRNA levels [37].
This finding demonstrates that the dynamic processes of
transcription and translation cannot be easily generalized
to their functional implications.
Our transcriptome-wide analysis of gene expression

with disease status compared the samples based on a
horse’s phenotypic classification when it was a foal. No
evidence that disease status as a foal was associated with
gene expression as an adult; however, our study was
clearly lacking power and results of absence of evidence
of an association should not be confused with evidence
of absence of an association.
Our study had a number of limitations. This project was

conducted using mature horses and not foals: gene
expression as adults might not reflect the gene expression
of these horses when they were foals and susceptible to R.
equi. The marker genotypes (i.e., AA, AB, and BB), how-
ever, would not have changed and therefore their impact
on functional transcription should remain the same. A
second limitation is that the region of interest’s involve-
ment with and relationship to R. equi infection might be
tissue-specific (e.g., in the lung or in alveolar macro-
phages) and thus not captured or accurately reflected by
RNA-Seq data from whole blood. A third limitation is the
small sample size of the study which was dictated by avail-
able funding. This was particularly true for our secondary
aim comparing gene expression by pneumonia status as a

foal. Nevertheless, previous studies have yielded important
results using fewer horses than this and our results
provide novel, significant findings relevant to under-
standing the pathogenesis and susceptibility of foals
to R. equi infection [18–20].
To the authors’ knowledge, these data represent the

first whole transcriptome assembly of the Quarter Horse
genome. With an average of 33.7 million reads per sam-
ple, we have generated an average of 53.83X coverage of
the Quarter Horse transcriptome. The cufflinks program
estimated over 34,000 genes to be present in the Quarter
Horse genome. Furthermore, cufflinks estimated over
74,500 isoforms of these 34,000 genes to be transcribed.
The RNA-Seq data presented in this report should be
valuable to those interested in the equine transcriptome
because researchers will be able to align their transcrip-
tomic/genomic data with the Quarter Horse transcrip-
tome to further investigate functional implications of
comparative genomics.

Conclusions
Rhodococcus equi is a pathogen that predominantly
affects young foals with often severe and potentially fatal
outcomes. Here we described several differentially
expressed genes, identified using RNA-Seq, associated
with this genotype that are important to innate immune
responses. Specifically, C/EBP was found to be upregu-
lated in horses with the susceptible genotype. This is an
important finding due to the role C/EBP plays in enhan-
cing IL-8 expression as increased concentration of IL-8
at sites of inflammation has been shown to increase
tissue damage. These findings suggest that modulation
of expression of TRPM2 contributes to susceptibility to
R. equi pneumonia and has shed further light on our
understanding of the susceptibility genotype and its rela-
tionship to gene expression.
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