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Regulatory network reconstruction reveals
genes with prognostic value for chronic
lymphocytic leukemia
Sally Yepes1*, Maria Mercedes Torres1 and Liliana López-Kleine2

Abstract

Background: The clinical course of chronic lymphocytic leukemia (CLL) is highly variable; some patients follow
an indolent course, but others progress to a more advanced stage. The mutational status of rearranged immunoglobulin
heavy chain variable (IGVH) genes in CLL is a feature that is widely recognized for dividing patients into groups that are
related to their prognoses. However, the regulatory programs associated with the IGVH statuses are poorly understood,
and markers that can precisely predict survival outcomes have yet to be identified.

Methods: In this study, (i) we reconstructed gene regulatory networks in CLL by applying an information-theoretic
approach to the expression profiles of 5 cohorts. (ii) We applied master regulator analysis (MRA) to these networks to
identify transcription factors (TFs) that regulate an IGVH mutational status signature. The IGVH mutational status signature
was developed by searching for differentially expressed genes between the IGVH mutational statuses in numerous CLL
cohorts. (iii) To evaluate the biological implication of the inferred regulators, prognostic values were determined using
time to treatment (TTT) and overall survival (OS) in two different cohorts.

Results: A robust IGVH expression signature was obtained, and various TFs emerged as regulators of the signature in
most of the reconstructed networks. The TF targets expression profiles exhibited significant differences with respect to
survival, which allowed the definition of a reduced profile with a high value for OS. TCF7 and its targets stood out for
their roles in progression.

Conclusion: TFs and their targets, which were obtained merely from inferred regulatory associations, have prognostic
implications and reflect a regulatory context for prognosis.
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Background
Chronic lymphocytic leukemia (CLL) is a heterogeneous
disease with variable clinical manifestations and evolu-
tion [1]. Two major molecular subtypes are recognized,
which are characterized by a high or low number of
somatic hypermutations in the variable region of the im-
munoglobulin genes. This feature is known as the im-
munoglobulin heavy chain variable (IGVH) gene
mutational status and is related to prognostic evolution,
in which patients with an unmutated IGVH status have
a less favorable prognosis than patients with a mutated

IGHV gene [2, 3]. Other molecular biomarkers of pro-
gression in this disease include diverse cytogenetic rear-
rangements, gene mutations, and ZAP-70 expression
[4–6]; however, these events do not appear to be funda-
mental agents in the leukemia process. Due to the im-
portance of the IGVH status in disease course
determination, several expression studies have focused
on comparisons of the mutated IGVH vs. unmutated
IGVH CLL forms [7–9]. However, these studies have
identified genes that are not functionally related and
therefore cannot elucidate biological mechanisms to dis-
tinguish between risk classes. Therefore, searching for
the relevant prognostic biomarker surrogates for IGVH
mutational status remains a necessity.* Correspondence: sl.yepes233@uniandes.edu.co
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Several methods have been developed to identify ex-
pression signatures associated with prognosis. However,
it is worth noting that markers are unstable and study
dependent, often exhibiting poor overlap among studies
and low classification power. According to Bae et al.
[10], it is possible that expression signatures commonly
contain cancer drivers and passengers, of which the latter
are not directly involved in cancer progression. There-
fore, it is of interest to search for regulators, such as
transcription factors (TFs), that are causally responsible
for the implementation of differential expression pat-
terns and to evaluate their relation with progression and
clinical outcome [11–13].
Here, in search of prognostic markers, we applied the

ARACNE algorithm to find TFs that were involved in
the differentiation process between IGVH subtypes. This
algorithm is based on an information-theoretic approach
that predicts potential functional associations among
genes by identifying the statistical dependencies between
their products [14]. ARACNE has been successfully ap-
plied in the search for master regulators and the study
of clinical outcomes in different cancer models, the re-
sults of which can be subsequently validated through
functional experiments. Some applications include the
identification of c-MYC and BCL6 as critical genes in
B-cell tumors [15, 16], master regulators with poor
prognosis in breast cancer [11], cancer risk and master
regulators for FGFR2 signaling [17], neuroblastoma and
tumor progression [18] and multiple myeloma and its
prognosis [19].

In this work, we reconstructed CLL regulatory net-
works using the ARACNE algorithm and used master
regulator analysis (MRA) to identify candidate transcrip-
tion factors that regulate an IGVH mutational status sig-
nature. The IGVH signature was developed through the
identification of differentially expressed genes in a large
number of samples using microarray meta-analysis. The
principal intention here was to evaluate the implications
of the inferred regulators and their targets for patient
survival. Therefore, the candidate expression profiles
were used to evaluate prognosis utilizing two measures
of progression, time to treatment (TTT) and overall sur-
vival (OS).
The genes with prognostic implication identified in

this work may represent reliable markers to predict out-
comes because i) they were obtained through a method
(MRA, which tested the significant intersections be-
tween the regulons that were represented in the ARA-
CNE networks and the signature genes) that used as
query a known prognostic marker in CLL, the IGVH
mutational status, and ii) the genes that were inferred
as key regulators exhibited significance using a Cox
proportional hazards model with outcome indicators. Given
the workflow, the identified genes reflect a regulatory con-
text for prognosis rather than only differentially
expressed genes.

Methods
A schematic description of the network reconstruction
and regulator inference is represented in Fig. 1.

Fig. 1 The workflow used for reconstructing the CLL regulatory networks and for regulator inference

Yepes et al. BMC Genomics  (2015) 16:1002 Page 2 of 12



Dataset
The present study used microarray gene expression data
retrieved from the NCBI Gene Expression Omnibus
(GEO) Database [20]. A total of 474 CLL patients from
eleven studies were included in the differential expres-
sion analysis (Table 1). Each chosen dataset possessed
available raw expression files (CEL files) and information
regarding the subjects’ IGVH mutational status. Five co-
horts with 100 or more CLL patients were used to re-
verse engineer the transcriptional networks.

Data preprocessing and IGVH mutational status signature
Probe level normalization was performed independently
in each cohort using the VSN method [21]. Quality checks
were performed before and after the normalization
process. To obtain a robust result, we applied a gene filter-
ing procedure to each study level, which removed 30 % of
the non-expressed genes based on the mean intensity
values and 30 % of the non-informative genes with a small
variation based on variance.
Usually, different microarray platforms have multiple

probes (or probe sets) that represent the same gene tran-
script; therefore, gene matching is necessary. For probe
summarization, we used the “IQR” method, in which we
selected the probe ID with the largest interquartile range
(IQR) of the expression values to represent the gene.
The number of genes in each study may be different;
thus, we performed gene merging to extract the com-
mon genes across multiple cohorts. Additionally, we in-
cluded some genes that appeared in 80 % of the studies
and were missing in 20 % of the studies. The MetaDE
package in R was used for filtering, matching and mer-
ging procedures [22].

To detect the differential expression between the IGVH
subtypes, we used a microarray meta-analysis approach.
This methodological framework increases the reliability and
generalizability of results [23]. We used the “MetaOmics”
software suite, which contains three unified R packages:
MetaQC, MetaDE and MetaPath [22]. The MetaQC pack-
age [24] was used for determining the meta-analysis inclu-
sion/exclusion criteria. MetaDE was used to apply various
state-of-the-art genomic meta-analysis methods to detect
differentially expressed (DE) genes, including the Fisher
[25], Stouffer, adaptively weighted statistic (AW) [26], max-
imum P-value (maxP), and the rth ordered P-value (rOP)
methods [27]. The R statistical environment [28] was used
to perform all statistical analyses.

Functional enrichment
The MetaPath package, which performs pathway meta-
analysis [29], was used to detect enriched pathways. The
Genecodis server [30–32] was used to perform modular
enrichment analysis. The method obtains co-occurrence
annotations in the KEGG and Panther databases, the P
values are calculated through hypergeometric analysis
corrected by FDR method.

Reverse engineering of the transcriptional networks
After VSN normalization, each cohort was filtered
based on its standard deviation distribution (sd). Probes
with a sd below the shortest interval that contained half
of the data in the distribution were discarded before
the network reconstruction. ARACNE mutual informa-
tion networks [14] were built based on five expression
cohorts. Each network had 100 or more samples and was
processed with different platforms (GSE2466, GSE38611,

Table 1 Cohorts used in this study

Author Platform Samples (mut/unmut) Accession

Mosca L et al. [58] HG_U133A 60 (23/37) GSE16746

Fabris S et al. [59] HG_U133A 60 (24/36) GSE9992

Del Guidice et al. [60] HG_U133A 20 (16/4) GSE15777

Jao Baptista et al. [61] HG_U133_Plus_2 24 (10/14) GSE33135

Saiya-Cork K et al. [62] HG_U133_Plus_2 19 (4/15) GSE26526

Haslinger C et al. [63] HG_U95A 100 (51/49) GSE2466

Seifert M et al. [64] HuGene 1.0 ST 9 (4/5) GSE36907

HG_U133_Plus_2 10 (5/5)

Stamatopoulos B et al. [53] HG_U133_Plus_2 14 (8/6) GSE12734

Mukherjee P et al. [65] HG_U133_Plus_2 22 (10/12) GSE29605

Fabris S et al. [66] HuGene 1.0 ST 136 (76/60) GSE38611

Ronchetti D et al. [67] HuGene 1.0 ST 211 (127/83) GSE46261

Chuang HY et al. [68] HG_U133_Plus_2 130 (NA) GSE39671

Herold T et al. [49] HG_U133_Plus_2 107 (NA) GSE22762

Su AI et al. [40] HG_U133A 126 (normal samples) GSE1133
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GSE39671, GSE22762, and GSE46261). ARACNE was
used to infer the targets of 807 TFs that were represented
in the gene expression profile. The algorithm uses
information-theoretic methods to analyze physical tran-
scriptional interactions between the TFs and their targets.
ARACNE uses expression data to compute pairwise mu-
tual information (MI) and employs a computationally effi-
cient Gaussian kernel estimator. First, it eliminates
interactions that are below a minimum MI threshold, and
then the Data Processing Inequality (DPI) theorem is used
to eliminate interactions that are considered sampling er-
rors. R scripts from the original protocol calculated the
kernel width and MI threshold parameters. The P value to
determine the MI threshold and the DPI tolerance were
set to 0.05 and 0 %, respectively. One hundred bootstrap
datasets were used to create the bootstrap networks to ac-
commodate the microarray data noise and the MI estima-
tion error. A consensus network was then constructed by
retaining edges that were supported across a significant
number of the bootstrap networks. The entire process was
also executed in normal tissues (GSE1133) as negative
controls. The ARACNE algorithm was implemented in
the Perl language by using the original procedure that was
proposed by Margolin et al. [14], who also described the
mathematical formulation of the algorithm.

Regulator analysis
Master regulator analysis (MRA) [33] of the recon-
structed networks was used to identify (TFs) that regu-
late an IGVH mutational status signature. Enrichment
was evaluated using the Fisher’s exact test (FET); there-
fore, for each TF, the statistical significance of the inter-
section between the TF targets, which was represented
in the ARACNE-generated network, and the list of dif-
ferentially expressed genes was computed with the FET.
These generated TFs were selected as candidate regula-
tors of IGVH status. To avoid the possibility of finding
non-specific CLL regulators and to exclude those that
were directly involved with proliferation, we ran an
MRA on both the CLL IGVH signature, to query a
healthy tissue network, and a proliferative gene signature
that was developed by Venet et al. [34], which is known
as a meta-PCNA signature. To validate the power of the
process for detecting significant regulons, we compared
the common TFs among the reconstructed networks.
MRA was performed using geWorkbench, a free, open-
source genomic analysis platform [35].

The clinical relevance and survival analyses
We applied the Global Test [36] to determine the associ-
ation between expression profiles and survival. For cases in
which a significant association with patient outcome was
observed, the gene list was reduced to derive a smaller
prognostic signature with the intention of providing a

profile with potential clinical use. The smaller signature
was constructed using Cox proportional hazards models
and clustering analysis as proposed by Goeman JJ and Finos
L [37]. Briefly, the methodology is based on regression
models in which the distribution of the response vari-
able (overall survival or time to treatment) is modeled
as a function of the covariates (expression values)
[36]. The covariates were ordered in a hierarchical
cluster with the absolute correlation distance and the
method average linkage. To reduce the profile or
“zoom” in on the significant results, the process dis-
cards non-significant branches from the dendrogram
with the corresponding covariates. The MLInterfaces
package [38] was used to construct an SVM (support
vector machine) [39] to assess the predictive power of
the reduced profile. We used a 218-sample training
set that was chosen at random from patients with
good and poor prognoses and a 218-sample test set
to calculate the classification error.
Pairwise t-tests were applied with Bonferroni P value

corrections to compare the relative expression levels
between two groups.

Results
The IGVH mutational status expression profile
Using a combination of CLL expression profiles, we used
a microarray meta-analysis approach to obtain an IGVH
mutational status signature. After preprocessing and
quality control, we obtained 12,487 genes in 436 CLL
patients from eight different cohorts, which included
218 unmuted and 218 mutated IGVH samples.
GSE26525 and GSE36907 were determined to be of

lower quality after six quantitative quality control (QC)
measures were taken into consideration; therefore, they
were removed from the meta-analysis. The QC measures
utilized were proposed by Kang et al. [24] and included:
covering the internal homogeneity of coexpression struc-
tures among studies, the external consistency of coexpres-
sion patterns within a pathway database, and the accuracy
and consistency of expressed gene detection or enriched
pathway identification. Each QC index was used to iden-
tify low-quality studies and to determine whether they
should be excluded from the meta-analysis.
The Fisher P-value method detected a significant num-

ber of genes and was used in the meta-analysis for differ-
ential expression. Table 2 shows the top 20 genes with
differential expression between the IGVH statuses as de-
termined using the Fisher method, and these are listed
in order of statistical test and significance level. The total
list of genes that were determined with statistically sig-
nificant differences can be found in Additional file 1:
Table S1. Figure 2 shows the expression distribution of
the first 20 differentially expressed genes that were
found with the meta-analysis with respect to IGVH
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status. Significant differences between the sample groups
were observed for all the top genes (P > 0.001, two-tailed
pairwise t-test with Bonferroni corrections).
Using a modular enrichment analysis with the KEGG

and Panther pathways and the list of differentially
expressed genes (p < 0.05), the following co-occurrence
annotations were found with low significant P values:
pathways in cancer, focal adhesion, T cell receptor signal-
ing, angiogenesis, and MAPK signaling. Pathway detection
using the MetaPath package and collections from the mo-
lecular signatures database (MSigDB) showed a significant
result for the GO terms that were related to extracellular
signaling (q-value >0.2). The following terms were found
to be statically significant: proteinaceous extracellular
matrix, extracellular region, extracellular space, extracellu-
lar matrix, and extrinsic to membrane.

Reconstruction of the CLL transcriptional networks and
regulator analysis
In Table 3, we list the datasets that were used for the
regulatory network reconstructions, including the num-
ber of probes after filtering, which ensured the use of
highly variable probes, and the large number of interac-
tions (edges) and targets (nodes) found in each network
after the reconstruction.
To improve the specificity of the regulator analysis, we

conducted control processes. We used the IGVH status
signature to query a healthy tissue network (GSE1133)
[40] and used it as a control to detect regulators that
were not tissue-specific. In addition, to exclude the
regulators that were involved with proliferation, we
performed the MRA within the CLL networks using
as query a PCNA proliferative gene signature [34].
No inferred TF was enriched in the healthy control
networks, nor were any TFs involved with the prolif-
erative signature that was tested. Therefore, the speci-
ficity checks confirmed that the TFs involved in the
prediction were related to CLL pathology.
The MRA identified a relatively small number of regu-

lators in each network, and some variation was observed
among them (Table 4). In total, 35 TFs were identified
after taking into account all networks. With respect to
the pathways enriched within this group of TFs, a co-
occurrence annotation was found for Wnt signaling
(0.00018). In spite of this variation, the following TFs
emerged as regulators in at least four networks: CERS6
(80 targets), TCF7 (95 targets), and MYBL1 (59 targets).
The number shown in parenthesis includes the targets
in total for all the networks. Overlap among these se-
lected regulators and their targets was found, in which
20 to 28 target genes were shared; consequently, mul-
tiple genes in the IGVH signature were co-regulated by
several TFs (Additional file 1: Table S2).

The clinical relevance of regulators with respect to
survival
Expression profiles were tested to evaluate their relation-
ship with outcome using the GSE22762 (n = 107) and
GSE39671 (n = 130) datasets. As seen in Table 4, some
TF targets were found in common in the reconstructed
networks. CERS6, TCF7 and MYBL1 stood out, suggest-
ing a unifying process in CLL progression. Therefore, we
focused on these regulons for interpretation. Every pro-
file (TF targets) independently tested exhibited signifi-
cance for survival with the following respective P
values for OS and TTT: TCF7 (P = 4.21e-08, P =
0.0046), CERS6 (P = 3.13e-06, P = 0.015) and MYBL1
(P = 5.04e-5; P = 0.002).
Then, we tested whether CERS6, TCF7, MYBL1 and

their targets as a group, which included a total of 166
genes, could be related to patient outcomes. We found a

Table 2 The top differentially expressed genes obtained with
the meta-analysis

Gene Regulation in poor prognoses Corrected P-value

CRY1 Up 4.78e-19

LPL Up 4.78e-19

ZBTB20 Down 4.78e-19

SEPT10 Up 4.78e-19

COBLL1 Down 4.78e-19

NRIP1 Down 4.78e-19

DMD Up 4.78e-19

ZAP70 Up 4.78e-19

LDOC1 Up 4.78e-19

WSB2 Up 4.78e-19

CLEC2B Up 4.78e-19

PCDH9 Up 4.78e-19

TCF7 Down 4.78e-19

PHEX Up 4.78e-19

SLAMF1 Down 4.78e-19

BCL7A Up 4.78e-19

PFKP Up 4.78e-19

ATOX1 Up 4.78e-19

USP6NL Down 4.78e-19

FUT8 Down 4.78e-19

SPG20 Up 4.78e-19

TGFBR3 Up 4.78e-19

CERS6 Up 4.78e-19

FLNB Up 4.78e-19

P2RX1 Up 4.78e-19

MYBL1 Down 4.78e-19

RNF41 Up 4.78e-19

IFI44 Up 4.78e-19

FADS3 Up 4.78e-19
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Fig. 2 Expression distribution for the mutated and unmutated IGHV samples with respect to the top 20 differentially expressed genes (total
samples: 436). The y-axis represents relative expression (normalized sample values divided by the mean of each gene across all samples). The
x-axis represents the IGVH status of the unmutated (yellow) and muted (green) patient groups. The boxplot bars indicate the lower and upper
quartiles, the central bars indicate the mean, the whiskers indicate one standard deviation of the mean, and the box widths are proportional to
the sample size. All genes were observed to be significantly different (p > 0.001)

Table 3 Metrics of the reconstructed networks

Dataset accession No. of samples Array platform No. probes (original array /after filtering) Nodes Edges

GSE2466 100 HG_U95A 12,626/8,879 6,494 27,207

GSE38611 136 HuGene 1.0 ST 32,321/22,454 17,271 110,952

GSE39671 130 HG_U133_Plus_2 54,675/39,255 12,115 78,351

GSE22762 107 HG_U133_Plus_2 54,675/38,868 16,471 169,016

GSE46261 211 HuGene 1.0 ST 32,321/12,968 12,289 57,587

GSE1133 126 HG_U133A 22,283/13,941 9,428 51,609
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significant difference for OS (P = 2.46e-07) and for TTT
(P = 0.00548). In Table 5, genes associated with OS sur-
vival are listed in order of significance, as well as the dir-
ection of their regulation, and genes with statistical
significance in both cohorts are underlined. TCF7 had
prognostic value in both cohorts, and it was the second-
most statistically significant gene in the GSE22762 co-
hort. Additionally, NRIP1 and PDE8A were at the top of
the list. All three genes were downregulated with respect
to poor prognosis. Enrichment analysis using the 166
genes showed that focal adhesion (2.3e-08) and T cell re-
ceptor signaling (2.6e-06) were the most implicated
pathways, and the MAPK and Wnt signaling pathways,
among others, were also detected with significant cor-
rected P values.
We next reduced the expression profile to develop a

smaller prognostic gene signature using a Cox proportional

hazards model. From the 166 genes, the procedure reduced
the profile to 20 genes with positive or negative associations
with survival. As shown in Fig. 3, the genes are ordered in a
hierarchical clustering graph, which only shows the signifi-
cant branches of the reduced profile. Notably, NRIP1 had
the highest statistical significance, followed by TCF7, and
the high expression of both genes was associated with sur-
vival. In other words, low expression was associated with a
poor prognosis.
To determine whether the CERS6, TCF7 and MYBL1

expression levels were related to IGVH mutational sta-
tus, we used pairwise t-tests to analyze the complete
dataset that was previously used for the meta-analysis.
We found that TCF7 and MYBL1 expression was signifi-
cantly lower in the unmutated IGVH status patients
than in the mutated IGVH status patients. Moreover,
CERS6 expression was higher in the unmutated patients,

Table 4 Transcription factors in CLL regulatory networks after MRA

Network GSE46261 Network GSE39671

Master regulator FET P-value Inter-section set Mode Master regulator FET P-value Inter-section set Mode

CERS6 9.01E-36 40 + EGR3 7.36E-17 39 -

TCF7 1.17E-28 37 - CERS6 8.80E-17 47 +

TLE1 1.66E-16 22 + PHTF1 1.22E-11 37 +

ZNF135 3.97E-15 21 + AEBP1 4.51E-10 30 +

MYBL1 4.33E-13 22 - NR2F6 4.58E-08 20 +

ELK3 3.59E-10 16 + MYBL1 7.17E-08 26 -

AEBP1 1.11E-09 16 + ZNF91 8.43E-08 16 -

GFI1 3.00E-09 13 + TFDP1 3.64E-07 16 +

NCOR2 4.86E-08 12 + TCF7 5.57E-07 42 -

TRPS1 6.00E-08 11 + APEX1 2.00E-06 24 +

TSHZ2 3.55E-07 16 - ZNF354A 3.26E-06 10 +

ARID5B 6.01E-07 9 - SMARCA4 6.54E-06 39 +

NOD2 7.06E-07 17 + Network GSE38611

EGR3 1.20E-06 9 - MYBL1 3.80E-07 6 -

ZNF236 2.13E-06 8 + CERS6 5.90E-06 4 +

HOXB2 2.76E-06 9 + Network GSE22762

BRIP1 3.27E-06 15 - TCF7 3.01E-23 49 -

MTA1 6.51E-06 14 + EGR3 5.25E-14 23 -

Network GSE2466 CERS6 1.21E-11 21 +

KLF7 2.11E-13 23 - MYBL1 3.38E-10 24 -

AFF1 1.79E-08 16 - TCF7L2 3.82E-10 31 -

TCF3 1.26E-07 21 + MYBL2 8.67E-10 23 +

TCF7 1.77E-05 18 - AEBP1 1.89E-09 16 +

TLE1 2.72E-05 8 + TFEC 6.31E-08 12 -

RUNX3 5.22E-05 13 - PHTF1 8.18E-08 29 +

ZNF135 1.10E-04 8 + PBX3 7.17E-07 14 +

KLF10 1.85E-04 6 + EP400 7.72E-07 17 +

CERS6 1.85E-04 6 + PPARD 5.82E-06 25 -
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indicating that these genes play an important role in dis-
ease prognosis (Fig. 4).
An SVM classifier was constructed for the common

regulators (TCF7, CERS6, and MYBL1) and their targets,
and the top 50 IGVH signature DE genes. We compared
the dataset previously used in the meta-analysis (436

samples) with the classification error rates from the con-
fusion matrix. The regulators and the 50-gene signature
performed similarly, although a slightly lower error was
observed in the signature (0.09174312 vs. 0.05504587).
These classification errors indicate that the regulators
and their targets exhibited prognostic utility.

Table 5 Transcription factors and targets with significant overall survival associations in cohort GSE22762

GENE Regulation in poor prognoses P-value GENE Regulation in poor prognoses P-value

NRIP1 Down 1.89E-10 BCL7A Up 9.31E-04

TCF7 Down 1.67E-06 SNED1 Down 1.09E-03

PDE8A Down 7.10E-06 DOK2 Down 1.10E-03

CD247 Down 7.67E-06 ARSD Up 1.14E-03

SORL1 Down 4.27E-05 RASGRP1 Down 1.27E-03

ATOX1 Up 5.07E-05 LHFPL2 Down 1.54E-03

P2RX1 Up 6.37E-05 EGR3 Down 1.65E-03

NME1 Up 8.27E-05 HLADMA Up 1.85E-03

NMB Up 1.12E-04 LRMP Up 1.96E-03

GMDS Up 1.17E-04 DIP2C Up 2.06E-03

IL2RB Down 1.34E-04 TMED3 Up 3.24E-03

AAK1 Down 1.61E-04 MYBL1 Down 3.29E-03

ME2 Up 1.76E-04 PHEX Up 3.81E-03

SERPINF1 Up 3.00E-04 UGT8 Up 4.98E-03

FARP1 Up 3.27E-04 SDC3 Down 5.25E-03

NUCB2 Down 3.58E-04 SFTPB Up 6.06E-03

HOMER2 Up 5.74E-04 PEBP1 Up 6.34E-03

SLC16A6 Down 5.75E-04 LPL Up 6.98E-03

SYNJ2 Down 9.05E-04 LDOC1 Up 7.04E-03

SLAMF1 Down 9.20E-04

Genes with significant time to treatment associations in cohort GSE39671 are underlined

Fig. 3 Reduced profile with a high value for OS. The profile was obtained using proportional hazards models constructed for 3 regulators: TCF7,
CERS6, MYBL1 and their targets. The direction [green: positive (POS); red: negative (NEG)] and survival correlation significance (P values on the
y-axis) are indicated
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Discussion
To identify prognostic markers in CLL, a robust IGVH
mutational signature was generated and used to infer its
upstream TFs through mutual information networks and
master regulator analysis. Given the large number of
samples used and the heterogeneous spectrum of gen-
omic aberrations represented, the integrated information
allowed us to bring together various molecular events
that underlie CLL and to compare patients only by their
IGVH mutational status.
Because the IGVH mutational status is a good survival

predictor, genes that are differentially expressed in mu-
tated versus unmutated subtypes are also meaningful in
prognosis. The top differentially expressed genes found
in this study have been previously associated with IGVH
status [7–9]. Genes such as LPL, CRY1, ZBTB20,
SEPT10, COBLL1, NRIP1, DMD, LDOC1, and ZAP70
were found in the top DE list and have been shown to
have CLL prognostic value [41, 42].
The differentially expressed genes between the IGVH

subtypes were preferentially enriched with the pathways
that are related to extracellular signaling. As was shown
in the pathway meta-analysis, no specific differences be-
tween the subtypes at the specific pathway level were
observed; therefore, it is possible that a significant over-
lap in the molecular characteristics in the IGVH sub-
types were present. Previous expression profiling that
was conducted with small patient numbers showed a
common gene expression signature and reduced number
of differentially expressed genes between IGVH subtypes
[7, 8]. Although the number of differentially expressed

genes increased in our meta-analysis approach, no differ-
ence was observed in the particular pathways beyond
the terms related with extracellular signaling. These
findings suggest that both subtypes of the disease are de-
rived from a common origin or common transformation
mechanism. It has previously been suggested that the
IGVH subtypes derive from progenitors that are remin-
iscent of antigen-experienced B cells given the similar
expression profiles [7], a model supported by frequent B
cell receptor repertoire skewing and stereotypy [43].
The modular enrichment analysis executed directly

with all the differentially expressed genes, improved the
resolution of the pathway analysis, co-occurrence anno-
tations were found with low significant P values for:
pathways in cancer, focal adhesion, T cell receptor sig-
naling, angiogenesis, and MAPK signaling. The pathways
involved suggest the cellular origin of CLL. Encounter of
naive B cells with antigen may progress either through a
T cell-dependent reaction or in T cell-independent im-
mune response. Possibly the mutated IGVH subtype is
derived from the post-germinal center, generating mem-
ory B cells that have undergone somatic hypermutation
of IGHV genes, unlike the unmutated subtype, which
has not passed through the germinal center reaction,
leading to the formation of antigen-experienced B cells
harboring unmutated IGHV genes [2]. The expansion of
CLL cells may be due to the accumulation of genetic le-
sions that confer higher aggressiveness, as well as inter-
actions with the micro-environmental and antigens
through the BCR, that promote signaling associated with
cell proliferation and apoptosis inhibition [43].

Fig. 4 TCF7, CERS6, and MYBL1 expression levels from the integrated dataset (total samples: 436). The y-axis represents relative expression
(normalized sample values divided by the mean of each gene across all samples). The x-axis represents the unmutated (yellow) and muted
(green) IGVH statuses. The boxplot bars indicate the lower and upper quartiles, the central bars indicate the mean, the whiskers indicate one
standard deviation from the mean, and the box widths are proportional to the sample sizes. All genes were significantly different (p > 0.001,
two-tailed pairwise t-tests with Bonferroni corrections) between the sample groups
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Some differences in the chromosomal rearrangements
between the subtypes, such as 17q and 11q deletions, as
well as mutations in the ATM, are thought to be associ-
ated with the unmutated subtype, while less severe
changes, such as 13q deletions, are associated with the
mutated IGVH subtype. Additionally, the use of certain
VH genes suggests differences in antigenic stimulation
(i.e., VH 1–69 in the non-mutated subtype vs. VH 3–7,
4–34 in the mutated subtype) [44]. Nonetheless, it is not
clear if the differences mentioned above are caused by
the mutational IGVH status or are associated with it.
CERS6, TCF7, and MYBL1 stood out as common reg-

ulators in at least four networks, all three TFs have
been implicated in the cancer process. CERS6 is in-
volved in pro-apoptotic responses [45], epithelial-to-
mesenchymal transition, plasma membrane fluidity and
cell motility [46].
TCF7 is a member of a family of HMG-box-containing

factors that are known to associate with β-catenin in the
nucleus to mediate Wnt signaling. The Wnt signaling
pathway is activated in CLL, and our data strengthens
its role in prognosis. Uncontrolled Wnt signaling may
contribute to the defective apoptosis that characterizes
this malignancy [47]. Recent evidence regarding the role
of TCF7 in CLL has been reported; in multivariate ana-
lyses of CLL patients, Kienle et al. [48] found evidence
for the role of TCF7 in genetic risk defined by IGHV sta-
tus, V3-21 usage, 11q-, 17p- and survival. Herold et al.
[49] proposed an eight-gene prognostic score for CLL
that included TCF7, NRIP1, and PDE8A for the predic-
tion of survival and TTT. Here, we observed that these
three genes were highly associated with survival using a
completely different methodological approach and the
same cohort (GSE22762). Conversely, Bou et al. [50]
proposed a risk score combining with NRIP1 and
TCF7 expression to identify high-risk patients. There-
fore, the involvement of these genes in disease prog-
nosis is significant.
The TCF7 targets inferred in this work were compared

with the results of Wu et al. [51], who found that this
TF was implicated in self-renewal and differentiation
switch in early hematopoietic precursors. The authors
used ChIP-Seq analysis to identify target genes bound by
TCF7 in a multipotential hematopoietic cell line. Thirty-
nine inferred targets in our work were identified by
ChIP-Seq analysis in the above-mentioned work. Of
these, the following are part of the reduced profile:
BCL7A, CD247, GMDS, LHFPL2, NME1, NRIP1, and
TCF7. To some extent, these results validate the inferred
interactions.
Another regulator that was consistently found in sev-

eral networks was MYBL1. This is a TF that plays a role
in B-cell hematological malignancies [52]. Stamatopou-
los et al. [53] found that MYBL1 expression predicted

overall survival in CLL patients in the context of ZAP70
expression. As evident in the IGVH signature developed
here (Table 2), MYBL1 was under-expressed in the
unmutated subtype, emerged as a key regulator in the
process of regulator inference (Table 4), and was associ-
ated with poor prognosis (Table 5). Interestingly, MYBL1
is specifically expressed by centroblasts [54]; therefore,
this gene may be involved in the centro-germinal reac-
tion and may support the cellular origin of CLL. On the
other hand, common mechanisms should operate in
CLL and diffuse large B-cell lymphoma (DLBCL) be-
cause, for example, some cases of DLBCL occur in a
CLL background (Richter’s Syndrome). Interestingly,
MYBL1 is part of a gene expression-based risk score in
DLBCL [55], and it is included in outstanding molecular
signatures developed for molecular subclassification in
DLBCL [56, 57].
It is recognized that the overlap between the expression

studies, particularly with respect to the prognostic signa-
tures, is not perfect and contains only a few genes. Prog-
nostic signatures have proven to be study dependent and
inconsistent. Lim WK et al. [11] argued that genes in
prognostic signatures act as passengers rather than drivers
of the phenotypic differences. The genes that are most dif-
ferentially expressed among the phenotypic states tend to
be downstream from the determinants of the differences.
Due to the complex interplay of regulatory interactions,
these downstream genes are unstable. Therefore, it is of
interest to search for transcription factors that regulate
prognostic signatures.

Conclusions
Regulatory network reconstructions allowed us to iden-
tify candidate regulators for an IGVH signature and un-
cover markers with prognostic implications. Moreover,
with the nature of the methodological process, our re-
sults provide some insight into the regulatory programs
that are involved.
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