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Abstract

Background: Controlling sex ratios is essential for the aquaculture industry, especially in those species with sex
dimorphism for relevant productive traits, hence the importance of knowing how the sexual phenotype is
established in fish. Turbot, a very important fish for the aquaculture industry in Europe, shows one of the largest
sexual growth dimorphisms amongst marine cultured species, being all-female stocks a desirable goal for the
industry. Although important knowledge has been achieved on the genetic basis of sex determination (SD) in this
species, the master SD gene remains unknown and precise information on gene expression at the critical stage of
sex differentiation is lacking. In the present work, we examined the expression profiles of 29 relevant genes related
to sex differentiation, from 60 up to 135 days post fertilization (dpf), when gonads are differentiating. We also
considered the influence of three temperature regimes on sex differentiation.

Results: The first sex-related differences in molecular markers could be observed at 90 days post fertilization (dpf)
and so we have called that time the onset of sex differentiation. Three genes were the first to show differential
expression between males and females and also allowed us to sex turbot accurately at the onset of sex
differentiation (90 dpf): cyp19ala, amh and vasa. The expression of genes related to primordial germ cells (vasa,
gsdf, tdrd1) started to increase between 75-90 dpf and vasa and tdrd1 later presented higher expression in females
(90-105 dpf). Two genes placed on the SD region of turbot (sox2, fxr1) did not show any expression pattern
suggestive of a sex determining function. We also detected changes in the expression levels of several genes
(ctnnbl, cyplia, dmrt2 or sox6) depending on culture temperature.

Conclusion: Our results enabled us to identify the first sex-associated genetic cues (cyp19ala, vasa and amh) at the
initial stages of gonad development in turbot (90 dpf) and to accurately sex turbot at this age, establishing the
correspondence between gene expression profiles and histological sex. Furthermore, we profiled several genes
involved in sex differentiation and found specific temperature effects on their expression.
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Background

Sex was thought to have arisen in a single evolutive
event in the last common ancestor of all eukaryotes,
since sexual reproduction is almost universal and exclu-
sive of this group [1]. Considering its consequences over
the lifespan of an organism and its influence on popula-
tion demography, it is thought that the sex determination
(SD) mechanism should be under strong selection forces
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[2]. However, sex can be established by many different and
fast-evolving mechanisms [3, 4], indicating that SD trig-
gers have emerged several times throughout evolution [5].
Within vertebrates, different sex determining systems
have been described. In therian mammals, with a XX/XY
chromosome system, sex depends on the presence of the
Sry gene, a paralogue of SOX3, on the Y chromosome [6],
while in birds (chicken) with a ZZ/ZW chromosome sys-
tem, the DMRTI gene with a double dosage is required
for testis development [7]. Also, in Xenopus laevis the
DM-W gene, a paralogue of DMRT1, is responsible for
SD [8]. When dmY, belonging to the DM family of
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transcription factors like DMRTI and DM-W, was
found to be the sex determining gene (SDQ) of the fish
Oryzias latipes, a biased and recurrent recruitment of
specific SDGs or families throughout evolution was
suggested [9]. However, later findings in fish do not
seem to support this hypothesis.

Fish, with around 30,000 species [10], is the most di-
verse group of vertebrates and its study has broadened
our knowledge on SD. Fish diversity is also reflected by
the variety of reproductive strategies: unisexuality, differ-
ent types of hermaphroditism and gonochorism; and
also by the diversity of SD mechanisms [11]. In the last
years, an important effort has been made in order to
identify the SDG in several model and aquaculture fish
species. Different productive traits are sex-associated in
farm fish such as growth rate, color, taste and flesh qual-
ity; hence, the interest of the industry in producing
monosex stocks [12]. Detailed information at gene level
is available for only a limited number of fish species. Five
different master SDGs have been identified so far: dmY
/dmrtlby in Oryzias latipes and in O. curvinotus [13],
gsdf in O. luzonensis [14], amhy in Odontesthes hatchery
[15], amhr2 in Takifugu rubripes, T. pardalis and T. poe-
cilonotus [16], and sdY in salmonid family [17]. Recently,
a distant cis-regulatory element of Sox3 necessary for
male determination in O. dancena, a species with a XX/
XY SD system, has also been identified [18], and dmrtl
has been suggested as the SDG in Cynoglossus semilaevis
[19]. However, little information is available, not only on
the SDG, but also on the initial molecular pathways re-
lated to sexual differentiation.

Traditionally, SD has been related to the switching
mechanism of a hierarchical genetic network that causes
the activation of downstream genes involved in gonad
differentiation (GD) leading to the differentiation of tes-
tes or ovaries [20]. Thus, concerning whether the first
difference between sexes is the expression of a gene/s or
the strength of an environmental factor, SD can be gen-
etic or environmental, although both ways can coexist
[12, 21]. In the classical view of SD and GD, the down-
stream genes of the cascade were assumed to be highly
conserved, and only the genes at the top of the cascade
would change by gene duplication (and by the recruit-
ment of a downstream gene) or by allelic diversification,
establishing a new SD mechanism [20]. Nowadays, the
conservation of the downstream cascade has been ques-
tioned [22, 23] and a new view, which considers sex as a
threshold phenotype in which both genetic and environ-
mental factors can act alone or in combination and, im-
portantly, at different times during the period of GD is
gaining support [4, 24]. In this new view, SD encom-
passes not only the initial trigger, be it genetic, environ-
mental or both, but also the whole GD process, and
different factors such as cell proliferation and hormone
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levels would be involved in determining a threshold
which would give rise to a testis or an ovary, thus fitting
to a threshold quantitative trait [4, 12].

Turbot is one of the most important species cultured in
Europe, being Galicia (North-West of Spain) the main
production region since the eighties. Production and qual-
ity of farmed fish rely on a deep knowledge of biological
functions, especially those related to reproduction, growth
and disease resistance. In this context, the production of
monosex stocks to exploit sex-associated dimorphisms re-
lated to productive traits, especially growth and sexual
maturation, has been a sought in finfish aquaculture by
different approaches [11, 25]. Turbot shows one of the
strongest sexual growth dimorphisms amongst marine
species and females can reach up to 50 % bigger size than
males [26], thus industry is interested in the production of
all-female populations. In the last years, an important ef-
fort has been devoted to understanding SD and GD in this
species. Analysis on mitotic and meiotic chromosomes re-
vealed the absence of an heteromorphic sex chromosome
pair related to sex [27, 28]. The major SD region was
located on the linkage group (LG) 5 at 2.6 cM of Sma-
USC30 marker (R*=86.1 %) [29], but other minor sex-
related quantitative trait locus (QTLs) were detected at
LG6, LG8 and LG21 [30]. In that study, a ZZ/ZW
chromosome system was established in accordance with
the sex ratios of progenies obtained from hormonally sex-
reversed parents [31]. Temperature also showed a minor
influence on sex ratios in this species [31]. Close to the
sex-associated marker Sma-USC30 several candidate
genes were identified (sox2, dnajcl9, fxrl, atpllb,
fkbp2 and dlgl), but eventually discarded because no
association to sex was detected at the species level, so
the SD gene remains unidentified in turbot [32]. Con-
sidering the lack of information on the SD mechan-
ism of turbot, we determined the expression patterns
of a suite of 29 genes shown to be involved in GD in
other species at the initial critical stages of sex differ-
entiation using a large amount of fish and sampling
times in turbot. In a previous study, we analyzed
reproduction in this species through the use of oligo-
microarrays, spanning a larger age period but in a
lower number of samples and finding several genes
involved in ovary or testis development (Ribas et al.
submitted). In this work, our aim was to study gene
expression at a very specific time point coinciding
with the onset of sex differentiation. We also evalu-
ated the effect of temperature to clarify whether it
has a major role in turbot SD and its possible inter-
action with genetic factors. Our results enabled us to
establish the correspondence between gene expression
profiles and histological sex and to identify the first
sex-associated genetic cues at the initial stages of
gonad development in turbot.
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Results

Sampling and sexing

A timeline of turbot gonad differentiation is shown in
Fig. 1. All of the 180 turbot samples used in this study
were genetically sexed using the Sma-USC30 marker
and, additionally, the 105, 120 and 135 dpf samples were
histologically sexed. Eighty-nine females and eighty-five
males could be genetically sexed because the Sma-
USC30 marker was informative, the remaining six sam-
ples being removed from this analysis since they could
not be sexed. A 7 % sexing discrepancy was observed be-
tween the genetic and histological information in the
samples obtained at 105, 120 and 135 dpf. Sma-USC30
is expected to present a 2 % sex-genotyping error [30],
so in our data the 5 % sex allocation error may represent
sex-reversal events due the action of a secondary QTL
or environmental factors. However, given the reasonable
accuracy of genetic sexing, the sex of samples below 105
dpf obtained through SmaUSC-E30 genotyping was con-
sidered for further analyses.

Males and females did not show length differences both
in the whole dataset and at each age (Mann—Whitney test,
P <0.05) (Additional file 1). However, significant differ-
ences were found at every age between the three tempera-
tures, except at 90 and 120 dpf, where 18 °C-reared
animals did not differ in length from those reared at 23 °C
(Table 1).
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Fig. 1 Turbot gonad differentiation. Main histological and
physiological events along sexual differentiation in turbot. Turbot
images were obtained from http://larvalbase.org/and http://fishbase.se/
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Co-localization of targeted genes with sex-related QTLs

A main SD QTL in linkage group 5 (LG 5) and three
minor ones in LG6, LG8 and LG21 were previously re-
ported in turbot [29, 30]. After establishing the relation-
ship between the turbot map (linkage groups) and the
turbot genome (scaffolds; Figueras et al., unpublished),
11 genes in the subset analyzed here (Additional file 2
for genes and gene functions) could be located in LGs
harboring a SD QTL (Fig. 2). Five genes were found in
LG5 and two of them, sox2 and fxrl, co-localized with
the main SD QTL; arl co-localized with the sex QTL in
LG8; four genes were placed in LG21 and two of them,
sox9a and soxI7, within the confidence interval of the
SD QTL.

Global expression patterns

Samples and genes were hierarchically clustered in a
heatmap using the Pearson correlation coefficient as dis-
tance measure (Fig. 3a). For each sample, rearing
temperature, age and sex are shown in the heatmap.
Some samples are grouped according to sex or age and
can be associated with particular groups of coexpressed
genes. The samples of 60 and 75 dpf are clustered in
two groups (labelled in grey, within two yellow circles)
and they are characterized by the high expression of
sox6, fxrl, wnt4d, hsp27, ptges3, T4_30483 and dmrt2
(yellow circles on the right), but also by the nearly null
expression of tdrdl, vasa, cypl9ala, foxI2 and gsdf, in-
volved in gonad maturation and female differentiation
(yellow circle on the left). These samples are grouped by
age independently of temperature or sex, which do not
seem to represent relevant factors on the diagnostic
genes expressed at these ages. Two different groups of
older fish, one essentially made of females and another
essentially made of males, could clearly be identified.
The female group (black circle on the right) is mainly
associated with the up-regulation of two different clus-
ters of genes: one cluster containing cypl9ala, foxl2,
vasa, tdrdl and gsdf, genes not expressed in undifferen-
tiated individuals, as outlined before; and another cluster
containing dnmtl, dactl, sox19, rdh3 and ctnnbl (black
circle on the left). The male group (blue circles) is asso-
ciated with the expression of sox9, amh, arl, fshb,
cyplla (blue circle at the bottom). These “male” genes
are also highly expressed in a mix of males and females
of around 90 dpf and mostly reared at low temperatures
(blue circle at the top). Some “female” genes (fox/2, gsdf,
vasa, tdrdl) are also expressed to a lower extent in the
male samples, suggesting a role in gonad development
irrespective of sex (next to the blue circle at the bottom).
As previously mentioned, some blocks connected to
rearing temperature can also be seen, but, in general, it
does not seem to be a determining factor for sample
clustering.
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Table 1 Length comparison between temperatures for each age group

Age (dpf) Temperature (°C) Mean length £+ SD (cm) Percentage (%) / 18 °C P value/18 °C
60 15 314+027 91.2 0.020

18 344+0.26 100 -

23 372+0.18 1088 0013
75 15 363+£043 87.8 0.044

18 413+£045 100 -

23 4.73+£038 114.6 0.006
90 15 495+ 044 83.05 0.001

18 590+ 042 100 -

23 6.02+052 101.7 0622
105 15 7.21£0.68 735 0.000

18 9.76£0.51 100 -

23 10.75+£047 109.2 0.000
120 15 8331037 735 0.000

18 1126 +0.70 100 -

23 11.85+0.68 1044 0.103
135 15 9574033 781 0.000

18 1234+ 036 100 -

23 1328 +0.71 108.1 0.003

Table 1: mean length in cm and standard deviation (SD) for each turbot stage-temperature group. The percentage length difference for 15 and 23 °C groups
referenced to the 18 °C group and the p value of 15 and 23 °C temperature lengths compared to18 °C are also shown

PCA analysis on the 180 samples (Fig. 3b) revealed

that histologically sexed males and females (=105 dpf;
referred to as males and females in the figure), could be
in most cases clearly discriminated by their differential
expression. However, younger individuals (60-90 dpf;
only genetically sexed and referred to as genetic males
and females in the figure), appeared fully overlapped in

the PCA, likely because they are still undifferentiated. A
66 % prediction ellipse for each group is shown in Fig. 3b
indicating that if new individuals were added to our ana-
lysis from a certain group, 66 % of them would expect to
be placed inside the corresponding ellipse. Some of the
genetically sexed individuals (60, 75 and 90 dpf) are also
found in the ellipses drawn for phenotypic males or
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Fig. 2 Turbot sex QTLs and target genes. Four turbot linkage groups are shown. Estimated location of the target genes is shown in red. Grey shaded
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Fig. 3 Global expression patterns. a Heatmap of target genes and all gonad samples. Gene names are shown in the bottom of the figure while
gene hierarchical cluster is shown in the top. Log fold change expression values representation ranges from red (highest expression) to light
green (lowest expression). Sample names are not shown, instead each sample is represented by the three colors at the left of the figure which
indicate sex (magenta for females, and blue for males), age (ranging from 60 to 135 dpf corresponding to a scale going from grey to dark green)
and temperature (light blue for 15 °C, yellow for 18 °C and red for 23 °C). Yellow, black or blue circles highlight expression patterns characteristic
of undifferentiated, female or male individuals respectively. b Samples were grouped according to the fold change expression values of the
target genes by a principal component analysis. Samples labeled as “Female” and “Male” and colored in red and purple, respectively, represent
gonad samples which were both genetically and histologically sexed because developing testis and ovaries could be distinguished from each
other. Samples labeled as “GenFemale” and “GenMale” and colored in olive green and light blue, respectively, are gonad samples which were
only genetically sexed because histologically the gonads were still undifferentiated. A 66 % of the samples of each group are expected to be
placed in their respective circles. The arrows with the name of the genes at the end represent how each gene contributes to the two principal

analysis components represented in the figure
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females which, also considering the previous heatmap
results, indicates that turbot GD might start before 105
dpf. Interestingly, about half a dozen genetic males were
included in the female circle. The arrows indicate the
weight of each gene on the two first principal compo-
nents. Among the analyzed genes there is a large group
seemingly contributing to female differentiation (e.g.,
c¢ypl9ala, soxl9, tdrdl, dactl), while the presumed
male-related genes are fewer and not so markedly point-
ing towards male differentiation (sox9, amh, sox2, hhl).
Also, as suggested in the heatmap, some genes are
clearly related to undifferentiated individuals (sox6, fxrl,
wnt4, hsp27, ptges).

Sex differences

Fold change (FC) expression values for those differentially
expressed genes between males and females (genetic sex
for 60 to 90 dpf samples, phenotypic sex for 105 to 135
dpf) were analyzed in relation to age (Mann—Whitney
test; P < 0.05) (Figs. 4, 5 and 6).

Sex differences were first observed at 90 dpf, when
¢ypl9ala (FCgpy=2.0) and vasa (FCgpn=1.2) (Fig. 4)
which were more expressed in females, and amh (FCyyr =
1.1) in males (Fig. 4). These three genes also increased their
expression from 75 to 90 dpf, in both sexes (~5 cm), which
is also observed for fox/2, tdrd1, gsdf (Fig. 4) and sox19 and
rdh3 (Fig. 5). Gsdf expression increased dramatically even
earlier, from 60 to 75 dpf (FC7s5/60 = 4.3, ~2.5 cm). FoxI2 did
not show significant differences in expression in females
until 120 dpf, mainly because its expression decreased
slowly in males (Fig. 4). TdrdI pattern of expression resem-
bled that of vasa, being more highly expressed in females at
105 dpf and onwards. Other genes increased their expres-
sion at 105 dpf (~9 cm length) in females, while their ex-
pression remained low or even decreased in males. Fold
change values of females vs. males at 105 dpf were above
1 for sox19 (FCg=3.8), dnmtl (FCgp=3.1), dactl
(FCg/m = 2.4), rdh3 (FCgn = 1.8), ctnnbl (FCgjp = 1.3), sf1
(FCgm=1.1) and piwi2 (FCg/=2.3) (Fig. 5) and these
differences increased from 105 to 135 dpf, when the FCs
were between 2 and 7 for the seven genes. Fxrl was also
up-regulated in females at 105 dpf (FCgpr=1.2) and
showed a 47 % increase at 135 dpf (Fig. 6), but presented
higher expression levels in undifferentiated individuals, ir-
respective of sex. A similar pattern was also observed for
wnt4, dmrt2 and zarl (Fig. 6), genes which at some point
during sex differentiation, 105-135 dpf (above 10 cm
length), showed a higher expression in females, but its ex-
pression decreased from 75 to 90 dpf (~5 cm, Fig. 6).

In contrast to that observed in females, in our study
there were very few genes in the subset assayed whose
expression were higher in males and, even in these cases,
the differences between males and females were low.
One of them was sox9a for which sex differences
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increased from 105 dpf (FCyyp=1.2, ~11 cm) up to 135
dpf (FCyyr =2.0) (Fig. 6). Another sox family gene, sox8,
highly expressed in undifferentiated individuals in both
sexes, was up-regulated in males at 105 dpf (FCyyr = 0.8),
but the difference remained constant at 135 dpf (Fig. 6).
Two additional genes, fshb and cyplla, showed mean ex-
pression values slightly higher in males, but not significant
(Additional file 3).

Some genes like ptges3, hhl, hsp27 or T4_30483 did
not show sex differences (Additional file 3). Among
these, a gene of the sox family, sox17, showed some
groups of outliers whose expression was not explained
either by sex or by length/age. Other two genes of this
family, sox2 and sox6, did not present any clear expres-
sion pattern along development or by sex, and androgen
receptor 1, arl did not show sex dimorphic expression
either.

Discriminant analysis

A discriminant analysis considering the earliest dimorphic
expressed genes -cypl9ala, amh and vasa— correctly clas-
sified 100 % of the genetic males and 82 % of the genetic
females at 90 dpf, representing as a whole 91 % of individ-
uals correctly classified (Fig. 7). The remaining 18 % of the
genetic females were grouped as males. These three genes
can constitute a fairly efficient genetic tool for early sexing
of turbot. Furthermore, from 105 dpf onwards (sexed by
histology), the expression of cyp19ala alone is capable of
perfectly discriminating males and females without error.

Network analysis

To further understand the relationships between genes we
performed a network analysis based on gene-to-gene cor-
relations (Fig. 8). A tight cluster with several female up-
regulated genes (e.g., cyp19ala, foxl2, vasa, sox19, ctnnbl)
was found with all their genes inter-connected. Also, sox9
and amh constituted a small male-like cluster together
with fshb and cyplla. The two clusters were connected
through two genes: fxrl, gene located at the main sex de-
termining region of turbot, and gsdf. The absence of some
genes in the network (sox2, sox8, sox17, arl) suggests that
they did not show significant relationships with any other
gene in our analysis and for the chosen correlation thresh-
old. This does not mean that they do not have any role in
sex differentiation, since our study analyzed the expression
of a limited number of genes (29). If more genes were
added, it is possible that these genes could have shown
connection to the network through them.

Temperature effects on gene expression

We found a higher proportion of females at both 15 °C
and 18 °C than at 23 °C, where the male:female proportion
was close to 1:1 (Fig. 9). However, these differences were
not significant (Chi-square test, p =0.11). Genotyping of
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(See figure on previous page.)

Fig. 5 Gene fold change values along gonad development. Sox19, dnmtl, dactl, rdh3, ctnnbl, sf1 and piwi2 fold change values for each sample
plotted according to both its length, in cm, and its age, in days post fertilization. Female samples are shown in magenta and male samples in
blue. In the FC/length figure for each gene non-linear trend lines were calculated by loess regression and genes with significative differences
between sexes at any age point present a pink background if the gene is up-regulated in females or a blue one if it is up-regulated in males.
Genes without sex differences have a white background. In the FC/age figure, error bars represent the standard error of the mean, also an
asterisk marks those age points were the differences in expression between males and females are significant

the SD marker in the main SD QTL in LG5 strongly sug-
gested that some genetic males developed as females: a
total of 16 genetic males were classified as females by hist-
ology. This discrepancy can either be caused by 1)
temperature effects on SD or 2) interaction of a secondary
QTL (located on LG6, LG8 and LG21) with the main SD
QTL in LG5. Further, we analyzed the effects of
temperature on gene expression in males and females sep-
arately and, since turbot length was different between
temperatures in almost every development stage, we
checked if the detected temperature differences in gene
expression were independent of length (Fig. 10) or not
(Additional file 4). Among those genes with length-
independent temperature effects on expression (Fig. 10),
only sox2 showed temperature effects which are not sex
dependent. This gene showed higher expression at 15 and
23 °C, although the difference between 18 and 23 °C was
not significant in females. Among those genes showing
sex-specific temperature effects amh, sox9a and cyplla
were more highly expressed at low temperatures in fe-
males, while sox17 and dmrt2 showed the opposite pattern
with higher expression at 23 °C in females. On the con-
trary, ctnnbl, piwi2, sfl and sox6 were up-regulated at low
temperatures in males, and the four genes showed a very
similar pattern.

Finally, since 90 dpf is the first age where we find sex
dimorphic expression and can be considered the onset
of sex differentiation, we decided to test for temperature
differences at this age which were independent of both
length and sex, since most genes did not show di-
morphic gene expression at this age. A single gene
showed significant differences between temperatures at
90 dpf: ctnnbl (Additional file 5). Ctnnbl highest ex-
pression was observed at 18 °C, while its lowest expres-
sion was at 23 °C.

Discussion

Recently, sex determination and differentiation have
begun to be perceived as a single modular process rather
than a cascade, where sex behaves in many instances as
a threshold-like character [33, 34]. Under this view,
gonad fate depends on several factors acting coordi-
nately, including many genes and possibly also environ-
mental variables. In this sense, and given the interest in
obtaining monosex stocks in many finfish aquaculture
species, understanding the different gene patterns during

early sex differentiation, supposedly the moment where
gonad fate can be more easily controlled or altered, is of
great importance to manipulate sex determination in
order to control sex ratios. In this study we have ana-
lyzed the expression of 29 genes previously connected to
sex differentiation in other species, some of them stud-
ied in fish regarding sex differentiation for the first time.
A total of 21 genes were found to show dimorphic ex-
pression at some point during early sex differentiation in
turbot. The influence of temperature was also assessed,
finding differences between temperatures for 10 genes.
This study has broadened our knowledge of gene expres-
sion patterns during early sex determination in turbot in
particular and in fish in general.

Early sex differentiation and primodial germ cells

Although morphological gonad differences between
sexes were not detected before 105 dpf, the first molecu-
lar signs of sex differentiation were observed between 75
and 90 dpf (5-6 cm length), characterized by an expres-
sion increase of gsdf and tdrdl, but also by the expres-
sion increase and differential expression of cypl9ala,
amh and vasa, which allowed discriminating males (high
amh expression) and females (high c¢ypl9ala and vasa
expression) at 90 dpf. Vasa, tdrdl and gsdf are genes re-
lated to primordial germ cell development. TdrdI pro-
teins were detected in the primordial germ cells of
zebrafish (Danio rerio) at 4 dpf and were involved in
both oocyte and sperm development [35]. Tdrdl was
found to interact with vasa, which is also a highly spe-
cific marker of germ cells [36—40] required for their de-
velopment [41] and conserved along several invertebrate
and vertebrate taxa [42]. While vasa and tdrdl are spe-
cific germ cell markers, gsdf is a teleost-specific member
of the TGF-p superfamily which has been reported to be
expressed in the somatic cells surrounding the primordial
germ cells in rainbow trout and promoting their prolifera-
tion [43]. Gsdf has shown higher levels of expression in
testis in zebrafish, three-spot wrasse (Halichoeres trimacu-
latus) and coelacanth (Latimeria menadoensis) [44—46].
Furthermore, gsdf has been proposed as the male sex de-
termining gene in Anoploma fimbria [47], and a copy
named gsdf’ has been found to be the sex determinant
gene in Oryzias luzonensis, with a higher expression in
males 10 days after hatching [14]. Gsdf has also been
found to be directly up-regulated by dmy, male SDG of
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. Females
© Males

Fig. 7 Discriminant analysis 3D plot. Ninety days post fertilization
samples were plotted in a three dimensions graph according to
their fold change values for cyp19ala, amh and vasa. Female
samples are colored in magenta and males in blue

Oryzias latipes [48], and sox3, male SDG of Oryzias dan-
cena [18] during the first stages of GD. Although gsdf does
not seem to have such a male-like function in turbot, since
it did not present sex dimorphic expression, it seems to be
important for gonad development in both sexes since its
expression greatly increased between 75 and 90 dpf. Even
more, this is the only gene which showed a significant ex-
pression increase from 60 to 75 dpf in our study, consist-
ent with a function as germ cell inductor since its
expression increase precedes that of vasa or tdrdl.

The expression patterns of vasa, tdrdl and gsdf in
turbot suggested that primordial germ cells start
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proliferating between 75 and 90 dpf in both sexes, either
faster in females or suffering a certain delay in males, as
suggested by vasa and tdrdl expression levels. Another
germ-line specific gene, piwi2, was investigated in our
study, but it showed a different expression pattern and
its induction was limited to females and delayed until
105 dpf. In zebrafish, piwi2 has been found to play a
crucial role in meiosis [49] and perhaps its different pat-
tern of expression in turbot may be related to the onset
of meiosis in female germ cells.

The amount of primordial cells is recognized as one of
the initial differences between male and female gonads
in some fish species like zebrafish [50], medaka [51] and
stickleback (Gasterosteus aculeatus) [52], although not
in others such as loach (Misgurnus anguillicaudatus)
[53] and goldfish (Carassius auratus) [54]. Further, germ
cell proliferation has been found to be associated with
SD in several fish species. In medaka, germ cell prolifer-
ation is inhibited in males when the sex determining
gene, dmY, is expressed at the SD stage before testis dif-
ferentiation [23]. When dmy is not active in XY em-
bryos, germ cells proliferate and enter meiosis as in XX
embryos. Surprisingly, amh does not present a sex di-
morphic expression in medaka during GD [55]. Al-
though the Miillerian ducts are not present in modern
teleosts [56], amh orthologs have been described in fish
and characterized as gonad specific key factors for male
sex differentiation [55, 57, 58]. Yet, even if amh does not
present sex dimorphic expression in medaka, it has been
found to control germ cell proliferation in this species,
and mutations on its receptor (amhril) lead to excessive
proliferation of germ cells which caused male-to-female

Fig. 8 Network representation. Weighed correlation network performed with the fold change expression values of the genes is shown. Genes are
represented as blue circles if they are up-regulated in males at any age, magenta if they are up-regulated in females, or dark green if no differences
were found. Lines connecting genes indicate significant correlations, red lines are positive correlations and blue lines are negative correlations
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Fig. 9 Sex proportions and temperature. Percentage of male and
female turbot, histologically sexed, at 15, 18 and 23 °C. Also, the
percentage of phenotypic females which are genetic males is
shown. No genetic females developed as males. Sample size =30
fish per temperature

sex reversal [59], although phenotypic female XY gonads
still expressed dmY. Furthermore, if these amhrll mu-
tants are depleted of germ cells, testis development takes
place [60]. Thus, amh seems to be a repressor of germ
cell proliferation in medaka and to play a major role in
sex determination. This is also the case in fugu (Fugu
rubripes), where a single SNP in the coding region of
amhrll is likely responsible for SD [16]. This SNP en-
codes a protein with a reduced function and is fixed in
females, which are not sensitive to amh [16]. Also, in
the Patagonian pejerrey, a copy of amh, amhY, has been
found to be the sex determining gene and its action has
been suggested to regulate germ cell proliferation, being
upstream to the autosomal amh and relegating the
former to a function in testicular maturation and/or
spermatogenesis [15].

Interestingly, in the female gonad of zebrafish the
maintenance of c¢ypl9ala expression, but not its activa-
tion, has been related to the presence of the primordial
germ cells [50], pointing towards a model where ambh is
responsible for the control of germ cell proliferation
while germ cells aid to maintain cypl9ala expression.
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Amh and cyp19ala are genes involved in sex differenti-
ation across all vertebrate taxa [35, 61], and have been
reported as male and female like genes, respectively, in
several fish species [62, 63]. In our experiment, cypI9ala
showed higher expression in females and amh in males
at 90 dpf. A threshold expression of amh could be con-
trolling sexual fate. If amh does not reach the required
expression level, primordial germ cells will proliferate
and maintain cypl9ala levels while amh levels decrease.
On the contrary, if amh expression reaches a certain
threshold, germ cells stop proliferating and cyp19ala ex-
pression decreases. Although further data is required,
this hypothesis seems to be consistent with the findings
in turbot and other fish species, and could be a common
mechanism controlling the balance between male and
female gonad differentiation in fish.

Female sex differentiation

Turbot GD is in progress at 105-135 dpf, either towards
males or females, and sex was easily identified by
cypl9ala expression alone at these developmental
stages. Several female up-regulated genes were detected
during this period of GD (foxI2, vasa, tdrdl, soxI19,
dnmtl, dactl, rdh3), while male gene expression pattern
was very similar to undifferentiated fish for the assayed
genes, excluding a few classical male-like genes (ambh,
sox9a, sox8). Foxl2 is a transcription factor that activates
cypl9ala transcription [64] and both genes are strictly
co-expressed in mammals [65]. The expression pattern
of Foxl2 was similar to that previously described for
cypl9ala, vasa, tdrdl and gsdf. Its expression in turbot
is consistent with an activation of cypl9ala; however,
the later decrease of cypI9ala while fox/2 expression is
still high in males suggests other roles for fox/2 not re-
lated to cypl9ala activation at early stages of develop-
ment. Foxl[2 expression has also been described in the
male gonad of tilapia (Oerochromis niloticus), southern
catfish (Silurus meridionalis) and goldfish [54, 64, 66].
Also, cells with cypl9ala expression without fox/2 ex-
pression have been reported in medaka [67]. Although
the authors did not exclude that those cells had earlier
foxl2 expression, at least fox/2 did not seem to be essen-
tial for cypl9ala expression maintenance [67]. FoxI2
seems to be involved in the initiation of the female
gonad development cascade through the activation of
cypl9ala expression in fish, as previously suggested [64],
however foxI2 up-regulation alone is not sufficient for the
activation of ¢ypI9ala and it might have additional roles
important for gonad development both in males and
females.

Ctnnbl is another female-like gene with a critical
function in female differentiation in mammals, antagon-
izing sox9 and blocking testis development, thus pro-
moting ovarian development [68]. Ctnnbl is the key
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downstream component of the canonical wnt signaling
pathway and our results are in agreement with a con-
served female function of this pathway, which has also
been shown in zebrafish [69] and rainbow trout [70].
However, in turbot, the wnt pathway seems to be at least
partially independent of wnt4. The highest expression of
this gene was found at undifferentiated stages, consistent
with a role in early gonad development in both sexes
also observed in mammals, although with a different
function since in mammals it is responsible for the de-
velopment of Millerian ducts [71]. Wnt4 expression
dropped at 90 dpf irrespective of sex, and later was found
scarcely up-regulated in females. Wnt4 is a key female
gene in mammals which antagonizes fgf9 and down-
regulates sox9 expression [72]. Wnt4 not so clear female-
pattern during GD in turbot is likely related to the ab-
sence of fgf9 in teleosts [46]. No dimorphic wnt4 expres-
sion has been observed in rainbow trout (Oncorhynchus
mykiss) [73], zebrafish [69] or the more distant Rana
rugosa [74]. Wnt4 does not show a conserved function in
female SD throughout evolution, and the results in our
study suggest that it is not involved in the expression of
ctnnbl in the female gonad development and therefore
other WNT proteins could be responsible for activating
the wnt pathway, which seems to have a conserved female
prominent function.

Six genes, dnmtl, rdh3, sox19, dactl, ctnnbl and sfl
showed a similar increasing expression pattern in fe-
males from 105 to 135 dpf. These genes showed high
pair-wise correlation values and also the highest negative
correlations with amh amongst all the assayed genes.
Hence, amh down-regulation may be required for the
activation of genes involved in female gonad develop-
ment. The coactivation of these genes in female differen-
tiation does not seem to be related to a specific pathway
considering their functional diversity, but with the acti-
vation of several concomitant pathways at the beginning
of ovarian development, and their up-regulation is pos-
sibly connected to the down-regulation of ambh.

Male-like genes

Besides amh, we found two up-regulated genes in males
from 105 dpf onwards: sox9a and sox8. Furthermore, the
heatmap and network analyses suggested that cyplla
and fshb are related to male development as well, but
they did not display a dimorphic expression pattern at
any stage. Sox9a is an essential player in sex differenti-
ation and its male-like nature seems to be rather con-
served throughout evolution, but its relevance seems to
be variable [75, 76]. In mammals, this gene is directly ac-
tivated by sry and is responsible and sufficient for fating
the male gonad [77], also activating amh transcription
[78]. In birds, sox9 is co-expressed with amh and in-
duced by the SD gene dmrtl [79]. However, in medaka,
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sox9 is not required for testis development [60]. In
turbot, sox9a dimorphic expression is found later than
that of amh, and its expression is more stable along the
assayed stages, suggesting a less important role in GD in
this species.

Genes in the main SD region

Fxrl is located in the turbot genome very close to Sma-
USCE30 [32], the highest sex-associated marker in this
species, within the main SD region at LG5 [30], thus
representing a potential SD candidate gene. In this ex-
periment, fxrl is highly expressed before the first GD
signs and precedes the expression of cypl9ala and ambh,
although at this time its expression is not sexually di-
morphic. Fxrl is a RNA-binding protein and is an auto-
somal paralogue of finrp (fragil X mental retardation 1),
important for normal female reproductive function and
cognition development in humans. Further, fxrl It has
been related to female gametogenesis in pigs [80] and
Xenopus laevis [81]. In turbot, fxrl position in the func-
tional network, connecting male and female clusters,
and its higher expression at low temperatures, suggest
that further analysis on this gene in younger individuals
looking for a putative dimorphic pattern between sexes
or other type of dimorphic cue are desirable. On the
contrary sox2, also located in the main SD region of
turbot [82], did not present a dimorphic expression pat-
tern and also showed a relatively steady expression along
all the assayed stages, suggesting no role of this gene in
turbot SD.

Temperature effects

A higher proportion of phenotypic females were ob-
tained at 15 and 18 °C, however sex ratio differences be-
tween temperatures were not significant. This effect was
not due to genetic segregation distortion, since genotyping
of the SD marker strongly suggested that some genetic
males developed as females. Although proper male-to-
female sex reversal at low temperatures has not been de-
scribed in fish [83], it has been described in reptiles, with
genetic males developing as females [84, 85]. The influ-
ence of temperature on sex ratio in turbot was previously
reported [31], but it was family-dependent and not always
in the same way: in this study, two families presented a
higher proportion of females than expected at 23 °C while
another family presented more females at 15 °C. In any
case, if temperature effects exist in turbot, they seem to be
limited and family dependent, however further work
should be done to evaluate this issue. Another possible
explanation for genetic males developing as phenotypic
females is the existence of a family-specific genetic
interaction between a secondary SD QTL and the main
SD QTL in LG5, which could be responsible for genetic
males developing as phenotypic females. Independently
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of the mechanism, families with higher proportions of
females could be very interesting for aquaculture, since
it would lead to higher growth rates given the important
sex size dimorphism of turbot.

Nevertheless, temperature effects on gene expression
are very important to explain possible sex ratio shifts
and other effects on sex differentiation. We found
temperature effects on the expression of some of the
genes assayed: amh, ctnnbl, cyplla, dmrt2, piwi2, sfi,
sox2, sox6, sox9a and soxl17. Among these, only sox2
temperature effects were sex independent. This gene
showed higher expression both at 15 and 23 °C, which
may indicate some kind of stress response. Sox2 is a
transcription factor regulating several genes and it is also
involved in the maintenance of stem-cell identity [86].

Among the genes which presented sex dependent
temperature effects, ctnnbl, piwi2, sfl and sox6 showed
higher expression at low temperatures in males. Among
these, ctnnbl is remarkable because it not only occupies
a downstream position in the wnt pathway [87], which
needs to be up-regulated for the development of an
ovary in zebrafish [68], but also because it showed
temperature-dependent expression differences in our
study at 90 dpf, the onset of SD. Genes found upstream
in the wnt signalling pathway are likely regulated by
temperature and responsible for this increase in ctnnbl
expression in turbot. Consistently with our results, ele-
vated ctnnbl expression has been reported connected to
low temperatures in rats [88] and tilapia [89], albeit in
other tissues. A recent study in oyster found a biased
sex ratio towards females related to higher ctnnbl ex-
pression at lower rearing temperatures [90]. Thus,
ctnnbl and the wnt pathway are good candidates for fu-
ture studies aimed at investigating temperature effects
on sex ratios in turbot and possibly other fish.

Other two genes showed the opposite pattern in females,
with higher expression at higher temperatures: dmrt2 and
sox17. Dmrt2 was upregulated during gonad development
and also expressed in germ cells in the swamp eel (Mono-
pterus albus) [91], while in Rana rugosa it was expressed in
the developing gonad during SD without any dimorphic
pattern, suggesting a function both in testicular and ovarian
differentiation [92]. Sox17 has been associated with ovarian
development in Dicentrarchus labrax [93], although it did
not present dimorphic expression in turbot and so, appar-
ently, it is not related to female differentiation in this spe-
cies. Yet, this gene seemed to have a peak of expression at
90 dpf in both sexes, so it could have some function in early
gonad development in turbot for both males and females.
In the swamp eel, sox17 was also expressed both in testis
and ovary [94].

Temperature effects are gene and sex specific. Given the
labile nature of SD in fish related to specific morpho-
genetic thresholds, several genes could be responsible for
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sex ratio shifts. As seen in this study, several genes in-
volved in sex show expression differences due to
temperature, and so these genes are potential candidates
for sex ratio alterations.

Conclusions

Turbot sex differentiation is ongoing at 90 dpf and sex
can be distinguished by the expression levels of three
genes when fish are 5-6 c¢cm length: ¢yp19ala, amh and
vasa; while later females are easily discriminated by the
expression of cypl9ala. The first molecular signs of sex
differentiation are the dimorphic expression of these
three genes and an increase in the expression of vasa,
gsdf and tdrdl, connected with primordial germ cells,
suggesting their proliferation from 75 to 90 dpf and an
important role in sex differentiation. The primary sex
determining gene of turbot remains unknown, since nei-
ther sox2 nor fxrl, genes located in the main SD region
of turbot, showed expression patterns clearly consistent
with this role. Our data suggest that female development
has more complex machinery and is strongly regulated,
suggesting the involvement of both methylation and
splicing mechanisms. Furthermore, we have observed
that temperature affects the expression of several genes
and suggest that the Wnt/fB-catenin pathway could be a
likely candidate to explain possible temperature-induced
sex ratio shifts.

The present study, analyzing the expression pattern of
many genes related to sex differentiation, has revealed
that turbot sex differentiation is a complex process with
many factors involved. These results are more compat-
ible with a view of sex determination as a network where
the activation or repression of several genes can affect
gonad fate. This view of sex determination as a threshold
character could help us to understand temperature ef-
fects during sex differentiation.

Methods

Rearing conditions and sampling

Turbot fertilized eggs were obtained at the IEO (Instituto
Oceanogréfico de Vigo, Spain) from a stock of wild
spawners obtained at Celeiro (Galicia, North-West of
Spain) and adapted to captivity. Turbot eggs were incu-
bated in a 140 L cylindrical-conical tank at a temperature
of 13-14 °C until hatching (5 days post fertilization, dpf).
Hatched larvae were transferred to a 6 fiberglass cylin-
drical tanks (500 L) with an initial density of 30 larvae/L.
The tanks were divided in three groups (2 tanks/group)
and temperature was gradually adjusted to 15 °C (cold
group), 18 °C (ambient group) and 23 °C (warm group).
Water temperature was monitored 6—8 times per day.
After metamorphosis the fish were transferred to 6
flat-bottom tanks and the temperatures maintained
until the end of the experiment. Gonad samples were
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taken at 60, 75, 90, 105, 120 and 135 dpf. This period
was chosen based on a preliminary analysis on the ex-
pression GD key genes (cypl9ala, amh, sox9a, vasa,
foxl2) every five days from 5 dpf, which did not show
any expression changes before 90 dpf. We started our
sampling 30 days earlier trying not to miss the expres-
sion of a possible sex determining gene. Ten fish per
temperature and age were sampled and gonads dis-
sected as accurately as possible considering the size of
the fish. A total of 180 samples were used in this study:
6 ages x 3 temperatures/age x 10 fish for each age-
temperature combination. In fish of 105 dpf and older,
gonads were hemi dissected, one used for quantitative
PCR (qPCR) and the other one for histological sexing.
Animals were treated according to the Directive 2010/63/
UE of the European Parliament and of the Council of 22
September 2010 on the protection of animals used for ex-
perimentation and other scientific purposes. All experimen-
tal protocols were approved by the Institutional Animal
Care and Use Committee of the University of Santiago de
Compostela (Spain).

Sexing by histology and molecular markers

Samples for histological analysis were kept in 4 %
paraformaldehyde buffer overnight, rinsed with PBS
the next day and stored in 70 % ethanol until fur-
ther analysis. Samples were dehydrated and embed-
ded in paraffin, cut at 7 pm thick and stained with
hematoxylin-eosin for the determination of pheno-
typic sex. Additionally, all samples were genetically
sexed using the SmaUSC-E30 marker, which demon-
strated a ~98 % accuracy for the identification of
genetic sex in turbot [30]. To establish the associ-
ation between sex and alleles at this marker, parents
and grandparents of each family were genotyped,
and the expected genotypes of male and female off-
spring obtained following [32].

RNA isolation and cDNA synthesis

Upon dissection, samples for qPCR were immediately em-
bedded in RNAlater for preservation (Qiagen, Valencia,
CA). Total RNA was extracted by homogenization in
TRIzol (Invitrogen, Paisley, UK) following the manu-
facturer’s protocol. Extracted RNA was treated with
RNase-free Recombinant DNasel (Roche Diagnostics,
Mannheim, DE) and RNA concentration was assessed
by spectrophotometry and its quality checked using
an Agilent 2100 bionalyzer (Agilent Technologies,
Santa Clara, US). RNA (1.2 pg) was reverse transcribed by
random primers using Affinity Script Multiple
Temperature cDNA Synthesis Kit (Agilent Technologies)
following the manufacturer’s protocol and then diluted 1:2
with nuclease-free water.
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Quantitative PCR
The 29 target genes were selected by: i) their importance
for GD in other fish species; ii) previous data from our
group in turbot [82, 95]; and iii) previous results from
Ribas et al. (submitted) (Additional file 2). The 29 target
genes are: amh, arl, ctnnbl, cyplla, cypl9ala, dactl,
dmrt2, dnmtl, fig-h, foxl2, fshb, fxrl, gsdf, hhl, hsp27,
Ihx8, piwi2, ptges3, rdh3, sfl, sox2, sox6, sox8, sox9a,
sox17, sox19, tdrdl, vasa, wnt4 and zarl. (GenBank NCBI
database accession numbers available in Additional file 6).
qPCR was performed on a Stratagene Mx3005P ther-
mocycler (Agilent Technologies) using Brilliant III
Ultra-Fast SYBR Green QPCR Master Mix in a final vol-
ume of 12.5 pL following the manufacturer’s protocol
with 1 puL of ¢cDNA per reaction. Specific primers for
targeted genes were designed using Primer3 [96] from
sequences obtained from the turbot EST database
enriched with sex differentiation-related organs (gonad
and brain [97]). When possible, primers were designed
spanning different exons (Additional file 6). Primer con-
centration was 300 nM and each sample was run in du-
plicate. The cycling parameters were: 50 °C for 2 min,
95 °C for 10 min, followed by 40 cycles of amplification
at 95 °C for 15 s and 60 °C for 1 min. After amplifica-
tion, a dissociation step was performed raising the
temperature from 65 to 95 °C to create a melting curve
and ensure the presence of a single amplification prod-
uct. Specificity for each primer pair was also confirmed
by PCR product sequencing. In every PCR plate, non-
template controls were included to confirm the absence
of contamination. In addition, the same three samples
were run in triplicate in every plate in order to correct
inter-assay variation. qPCR data were obtained by the
MxPro software (Agilent Technologies) and quantifi-
cation cycle values (Cq) calculated for each replicate
and then averaged to obtain the final Cq value. Three
reference genes (ubq, rps4, rpll7) were used for
normalization and LinRegPCR software [98] was used
for efficiency determination following the recommen-
dations in [99]. qPCR was performed in all the 180
samples for every gene. Samples with missing Cq values or
inconsistencies between replicates (Cq difference > 1 cycle)
were removed. Raw Cq values were transformed to the
final fold difference values (FD) following the equations
present in [100]. Briefly, Cq values were normalized using
the reference genes, efficiency corrected, log transformed
and finally mean centered to obtain mean centered fold
change values which were used for statistical analysis. All
expression data is in Additional file 7, presented together
with all the data collected for every sample.

Statistical analysis
Statistical analyses were performed using R (version
3.0.2) [101]. Pearson correlations for the heatmap were
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obtained using the “cor” function. Principal component
analysis (PCA) was computed by the “prcomp” function.
Length and gene expression differences between sexes and
ages were checked by Mann—Whitney tests (P <0.05)
since our data mostly did not conform to a normal distri-
bution. Discriminant analysis was performed using the
“Ida” function on the “MASS” package [102]. A Chi-
square test was performed to assess if sex ratio difference
between temperatures were significative. Multiple regres-
sion (p <0.05) was used to assess temperature effects on
gene expression, introducing temperature and length in
the model. The gvlma function of the gvlma R package
was used to check if our dataset met the assumptions of
the multiple regression. Furthermore, we performed two
additional tests for every temperature significant effect on
gene expression: i) a moderation analysis, to check if
length was modulated by the temperature, a temperature-
length interaction term was added to our model checking
if the new model improved the previous one; and ii) a me-
diation analysis by Sobel test, to explore if the detected
temperature effect on gene expression is partially or fully
explained by size differences between individuals.

Co-localization of targeted genes with sex-related QTLs
Several SD related QTLs were previously reported in
turbot [30], and therefore, we considered relevant to es-
tablish the mapping position of the targeted genes re-
garding these QTLs in the last turbot map [29]. For this,
we established the correspondence between the turbot
linkage groups and the scaffolds of the recently se-
quenced turbot genome (Figueras et al., unpublished)
using the mapped markers and their sequences. Target
gene sequences were located in the turbot genome using
local blast [103] and then placed in the linkage map
using the correspondence between linkage groups and
scaffolds as far as accurately depending on the availabil-
ity of markers in the vicinity.

Weighted correlation network analysis

Weighted correlation network analysis was performed in
R (version 3.0.2) [101] using the WGCNA package [104]
following the author’s tutorial. Co-expression networks
were built for our genes and Cytoscape 3.0.2 was used to
visualize the network [105]. This allowed us to obtain in-
formation about the functional relationships between
the target genes.

Availability of supporting data

The data set supporting the results of this article (ex-
pression values for every gene in each sample and the
data collected for every sample) is included in the
Additional file 7.
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Additional files

Additional file 1: Male and female length by age. Mean length
(centimeters) by age (days post fertilization) is shown in a boxplot for
males and females separately. Females are represented in magenta and
males in blue. (PNG 6 kb)

Additional file 2: Brief information on the genes studied by qPCR.
A brief description on why each assayed gene was chosen for this study
is presented along with supporting references. (DOCX 28 kb)

Additional file 3: Genes without sex dimorphic expression. Fold
change values for those genes without significant differences between
males and females at any age. Fold change values for each sample were
plotted according to both its length, in cm, and its age, in days post
fertilization. Female samples are shown in magenta and male samples in
blue. In the FC/length figure for each gene non-linear trend lines were
calculated by loess regression. In the FC/age figure, error bars represent
the standard error of the mean. (PNG 138 kb)

Additional file 4: Genes showing temperature differences also
influenced by growth. Mean fold change gene expression values at 15,
18 and 23 °C in the whole dataset are shown for males (light blue
background) and females (pink background). Error bars represent
standard deviation. Significant differences between temperatures are
indicated by *(0.01 < p < 0.05), **(0.001 < p < 0.01), ***(0.0001 < p < 0.001)
or ***(p <0.0001). Red asterisks indicate that fish length has an influence
on the temperature differences. (PNG 956 kb)

Additional file 5: Temperature effects on ctnnb1 expression at 90
dpf. Mean fold change gene expression values at 15, 18 and 23 °C at 90
dpf are shown for ctnnb1. Error bars represent standard deviation.
Significant differences between temperatures are indicated by *(0.01 <p
<0.05) or **¥(0.001 < p < 0.01). (TIFF 478 kb)

Additional file 6: PCR primers. Forward and reverse primers for each
amplified gene are shown. Furthermore, GenBank accession numbers for
template sequences for primer design and amplicon size are shown.
(DOCX 16 kb)

Additional file 7: Complete dataset. Expression values for every gene
for each sample, together with sample age, length, weight, rearing
temperature, genetic sex and histological sex. (XLSX 82 kb)
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