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Abstract

Background: The analysis of differential gene expression is a fundamental tool to relate gene regulation with
specific biological processes. Differential binding of transcription factors (TFs) can drive differential gene expression.
While DNase-seq data can provide global snapshots of TF binding, tools for detecting differential binding from pairs
of DNase-seq data sets are lacking.

Results: In order to link expression changes with changes in TF binding we introduce the concept of differential
footprinting alongside a computational tool. We demonstrate that differential footprinting is associated with
differential gene expression and can be used to define cell types by their specific TF occupancy patterns.

Conclusions: Our new tool, Wellington-bootstrap, will enable the detection of differential TF binding facilitating the
study of gene regulatory systems.

Keywords: Transcriptional regulation, Transcription factors binding sites, Digital genomic footprinting, DNase-seq
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Background
Digital DNaseI footprinting is a high throughput adapta-
tion of classical DNaseI footprinting [1]. By subjecting
nuclei to digestion by DNaseI, nucleosome-depleted
genomic regions (accessible chromatin) that are sensitive
to cleavage can be identified as DNase Hypersensitive
Sites (DHSs) [2, 3]. Analyses of the patterns by which
DNase I cuts within DHSs enables the identification of
regions protected from digestion or “footprints”, which
accurately demarcate transcription factor binding sites
(TFBSs) at sub-30 bp resolution [4–10]. However, all
currently available footprinting tools are designed for the
analysis of a single DNase-seq data set at a time and

thus will indiscriminately identify TFBSs that are part of
a variety of different gene regulatory networks, limiting
the ability to link regulatory events to cell- and tissue-
specific processes, such as changes in cell fate or re-
sponse to extracellular signals. For gene expression stud-
ies, a plethora of computational methods have been
developed in order to identify genes that are differen-
tially expressed in different conditions, thereby linking
gene expression to changes in cellular status. However, a
similar methodology that identifies differential transcrip-
tion factor occupancy between DNase-seq datasets has
so far been lacking, and methods such as DiffBind [11],
designed for ChIP-seq are not appropriate for DNase-
seq data. Here we describe the development of a novel
computational tool to identify differential footprints
(DFPs). We show that this tool can be used to link dif-
ferential TF occupancy with differential gene expression
and to identify closely related cell types by virtue of their
TF occupancy patterns.
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Results and discussion
We have developed a conceptually simple and computa-
tionally efficient method, Wellington-bootstrap, for pair-
wise analysis of DNase-seq data sets. Wellington-
boostrap builds on the Wellington method for detecting
footprints in individual data sets [8]. Wellington uses
knowledge of the strand imbalance around the TFBS in-
troduced by the size-selection step in the double-hit
DNase-seq method [12] in order to accurately detect
footprints. This strand imbalance results in a character-
istic pattern of reads aligning to the positive reference
strand directly upstream of the TFBS and reads aligning
to the negative reference strand directly downstream of
the TFBS. With Wellington-bootstrap, footprints in data
set A are detected and at each footprint locus a statis-
tical test is performed testing whether pooling the data
of data set B with A contributes to the footprint pattern
or not. This yields a set of sites that are over-footprinted
in A (under-footprinted in B) and associated DFP scores.
Repeating the analysis with reversed roles for A and B
yields over-footprinted sites in B (under-footprinted in
A). We chose the approach of pooling data at individual
loci in order to avoid biases that may be brought about
by variations in sequencing depth.
Applying Wellington-bootstrap to publically available

DNase-seq data for CD8+ and CD19+ cells we find

37,488 sites with evidence for DFPs. Furthermore, the
Wellington-bootstrap score provides a way to order DFPs
by the extent of footprint differences (Fig. 1). We found
similar results making pairwise comparisons for all
DNase-seq data sets for seven cell types from clinical tis-
sue samples. A large proportion (up to 98.5 %, 43.9 % on
average) of DFPs are found in DHSs that are shared be-
tween cell types, in particular in closely related cell types,
indicating that these differences would be missed by
restricting analyses to the presence or absence of DHSs
(Table 1).
Using Spinal cord and CD4+ cells as example we tested

the ability of DFPs to re-discover known regulatory links
and predict gene expression. In CD4+ cells, the T cell spe-
cific TF T-bet binds T-box motifs and enhances target
gene expression as part of the Th1-differentiation
programme [13]. In spinal cord cells, the TF MAZ is
known to be involved in neuronal development [14].
Among the set of all DFPs located near transcriptional
start sites and over-footprinted in CD4+ cells we identi-
fied the sites containing a match for the T-box motif.
We found that the expression of nearby genes dif-
fered significantly, with the DNase-seq data providing
strong evidence for the presence of protein binding in
CD4+ cells and absence of binding in spinal cord
cells (Fig. 2a, b). Similarly, we found that a link

Fig. 1 Wellington-bootstrap scores differential footprint occupancy between DNase-seq datasets. Wellington-bootstrap was applied at footprint
loci in CD8+ cells to detect over-footprinted sites relative to CD19+ cells. a 53,539 loci were sorted by increasing Wellington-bootstrap score
comparing CD8 vs CD19. Eight thousand seven hundred eighty loci were deemed to be DFPs. Red indicates an excess of positive strand cuts
over negative strand cuts per nucleotide position, and green indicates an excess of negative strand cuts. Common footprints at the top of the
heatmap share similar DNase activity as exemplified in (b) and (d) whereas footprints with increasing differential score towards the bottom of the
heatmap show increasingly differential footprints (c, e, f)
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between binding to MAZ motifs and gene expression
was evident (Additional file 1: Figure S1a, b), demon-
strating the ability of the DFP approach to isolate the
effect of individual TFs from their genomic context.
Previously, comparisons of total read numbers in

DHSs have been used as a means of analysing pairs of
DNase-seq data sets [15]. We identified the set of T-box
motif-containing DHSs in gene promoters with the high-
est increase in read numbers in CD4+ cells compared to
spinal cord cells. While these showed differential expres-
sion of nearby genes, no evidence for differences in
binding was revealed using this approach (Fig. 2c, d).
Similarly, this approach did not reveal the regulatory link
between MAZ binding and target gene expression
(Additional file 1: Figure S1c, d). The cleavage profiles
shown in Fig. 2b, d and Additional file 1: Figure S1b, d
have been corrected for the known sequence preference
of the DNaseI enzyme. Additional file 1: Figure S2 com-
pares cleavage profiles with and without this correction.
Overall, this suggests that unlike DFPs, motif analysis of
DHSs is insufficient to link a given TF to changes in

gene expression, making the use of DFPs a valuable tool
for this purpose.
We sought to further explore the potential of the DFP

approach to reveal cell type-specific regulatory mecha-
nisms. Using differential footprints amongst all pairs of
DNase-seq data sets of seven primary cell types, we de-
termined the relative frequency of motif occurrences for
a set of known TF binding motifs and used this data to
cluster the set of pairs of cell lines as well as the set of
TF binding motifs (Fig. 3). This analysis generated a
number of striking results. Firstly, our DFP methodology
combined with clustering recovered the different cell
types as separate clusters. Moreover, it was able to dis-
tinguish between the different cell types as their specific-
ally occupied DNA sequences clustered together.
Secondly, the analysis gave interesting insights into the
relative role of individual TF families within a given cell
type. For example, high differential C/EBP motif occu-
pancy was a classifier for CD14+ monocytes as well as fi-
broblasts, both of which express CEBPA, but the relative
motif frequency was lower in fibroblasts which agrees with

Table 1 A large proportion of differential footprints occurs in shared DHSs

Cell type A Cell type B DHSs in A DHSs in B DHSs shared
between A and B

Sites over-
footprinted in A

Sites in common
DHSs over-
footprinted in A

Sites over-
footprinted in B

Sites in common
DHSs over-
footprinted in B

CD4 CD8 84,830 60,890 49,365 14,772 10,600 (71.8) 3874 3584 (92.5)

CD4 CD14 84,830 109,647 47,887 14,819 6219 (42) 17,932 7663 (42.7)

CD4 CD19 84,830 89,660 43,282 18,525 10,423 (56.3) 19,439 13,018 (67)

CD4 CD56 84,830 69,966 54,739 17,745 14,611 (82.3) 2616 2526 (96.6)

CD4 Spinal cord 84,830 197,751 34,812 24,652 9158 (37.1) 93,152 10,233 (11)

CD4 Fibroblasts 84,830 193,546 40,240 21,473 7087 (33) 118,265 11,741 (9.9)

CD8 CD14 60,890 109,647 32,185 11,602 6529 (56.3) 55,650 12,546 (22.5)

CD8 CD19 60,890 89,660 32,350 8780 5520 (62.9) 28,708 15,549 (54.2)

CD8 CD56 60,890 69,966 51,965 1458 1428 (97.9) 335 330 (98.5)

CD8 Spinal cord 60,890 197,751 27,631 13,128 5444 (41.5) 110,950 11,330 (10.2)

CD8 Fibroblasts 60,890 193,546 30,237 13,734 5894 (42.9) 156,418 15,573 (10)

CD14 CD19 109,647 89,660 36,349 48,031 15,909 (33.1) 27,111 18,140 (66.9)

CD14 CD56 109,647 69,966 33,900 54,850 17,845 (32.5) 7842 5357 (68.3)

CD14 Spinal cord 109,647 197,751 33,141 53,731 13,584 (25.3) 96,856 13,563 (14)

CD14 Fibroblasts 109,647 193,546 45,179 37,641 8383 (22.3) 108,482 12,677 (11.7)

CD19 CD56 89,660 69,966 35,766 31,561 19,315 (61.2) 5553 4130 (74.4)

CD19 Spinal cord 89,660 197,751 31,858 28,993 13,118 (45.2) 97,388 14,826 (15.2)

CD19 Fibroblasts 89,660 193,546 30,831 32,531 13,760 (42.3) 138,301 20,224 (14.6)

CD56 Spinal cord 69,966 197,751 28,731 8633 4404 (51) 110,996 13,892 (12.5)

CD56 Fibroblasts 69,966 193,546 31,469 9237 4769 (51.6) 154,923 20,024 (12.9)

Spinal cord Fibroblasts 197,751 193,546 64,733 24,756 5497 (22.2) 35,202 9461 (26.9)

Number of DHSs and shared DHSs, number of over-footprinted sites, and number of over-footprinted sites located in the overlap of shared DHSs are shown for
pairs of cell types. For closely related cell types most differential footprints tend to be found in common DHSs (e.g. CD4+ vs. CD56+). Developmentally distant cell
types, however, often have a large number of DHSs that are cell type specific, and therefore the majority of differential footprints are in cell-type specific DHSs
(e.g. CD56+ cells vs. fibroblasts)
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the fact that this factor is absolutely essential for monocyte
but not fibroblast development [16, 17]. Another interest-
ing finding was that increased occupancy of PU.1 motifs
was a classifier for both B cells and CD14+ monocytic
cells where this factor plays an important role [18], but a
significant number of such sites were occupied also in T
cells. PU.1 is expressed in hematopoietic stem cells from
which all hematopoietic cells originate, but its expression
is down-regulated in T cells and its overexpression is det-
rimental for their development [19]. There is some over-
lap between the binding specificities of different ETS-
family proteins [20]. It is therefore possible that some of
these sequences are bound by another ETS factor in T
cells. Importantly, gene expression patterns of typical TFs
corresponding to motifs enriched in differential footprints
showed tissue-specific expression, whereby they tended to
be expressed in the cell type in which they were differen-
tially footprinted. Comparable motifs could also be ob-
tained in an unbiased way via de novo motif discovery, as
exemplified for a CD19 versus CD4 differential footprint-
ing analysis (Additional file 1: Figure S4). These motif re-
sults are supported by previous findings in B-cells [21, 22].
To facilitate the wide-spread use of our method, we

provide an implementation of Wellington-bootstrap
alongside a substantial update of pyDNase, including in-
creased performance and parallelised computations. This

is released as open source under the GPLv3 license at
https://github.com/jpiper/pyDNase.

Conclusions
In conclusion, we introduce a fundamental and useful
method for differential footprints, provide a tool for the
detection of DFPs, and reveal the potential of this ap-
proach to map regulators to context-specific gene ex-
pression. Applying this methodology will be highly
relevant for classifying closely related cell types, both in
the normal, but also the diseased state and to assess the
relative importance of specific TF families for each state.
Wellington-bootstrap is applicable to any pair of DNase-
seq data sets obtained with comparable experimental
protocols including perturbation and time course experi-
ments, making it a widely applicable approach for the
identification of transcriptional regulatory hierarchies.

Methods
DNase-seq data and peak-finding
DNase-seq data from the NIH Roadmap Epigenomics pro-
ject [23] were downloaded from the Short Read Archive
(accessions CD4: SRX214041, CD8: SRX204403, CD19:
SRX342324, CD14: SRX252602, CD56: SRX204402, spinal
cord: SRX121287, fibroblasts: SRX135564) and were
aligned to hg19 using Bowtie 2.2.0 [24] using the default

Fig. 2 Differential footprints reveal links between TF binding and gene expression. a Differential gene expression (p < 0.005, Mann–Whitney U test) of
all genes that have a differential CD4 footprint containing a match for the T-box motif in their promoter. b Average bias-corrected DNase-seq cleavage
profiles (red: positive strand cuts, green: negative strand cuts) centred on T-box motifs in promoters of genes from (a) show evidence for binding of
T-box motifs in CD4+ cells, but not in spinal cord cells. Genes over-footprinted for T-box in CD4+ cells are also over-expressed, confirming a known
lineage-determining link. c Differential gene expression of all genes that have a differential CD4+ DHS containing a match for the T-box motif in their
promoter. d Average bias-corrected DNase-seq cleavage profiles centred on T-box motifs in promoters of genes from (c) do not show evidence for
binding in either cell type. The differential expression observed in (c) cannot be linked to TF binding using differential DHS scores alone
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parameters. DNase hypersensitive site detection for all
DNase-seq data was performed using HOMER’s find-
Peaks.pl tool [25] with the parameters “findPeaks -region
-size 500 -minDist 50 -o auto -tbp 0”.

Differential footprinting – Wellington-bootstrap
Wellington-bootstrap first determines Wellington foot-
prints in the primary dataset. At each footprint locus the
data from the comparator dataset is added and the

Fig. 3 Analysis of differential footprints in the haematopoietic system reveals cell-type specific transcription factor networks. Differential footprints in
42 pairs of cell types and matches to known motifs inside differential footprints were determined using DNase-seq data from the NIH Roadmap
Epigenomics project. Coloured boxes represent motif frequency with red indicating higher than average frequency. Hierarchical clustering was applied
to rows and columns. Red arrows highlight members of the ETS family of transcription factors. BioGPS gene expression of typical tissue-specific TFs
corresponding to motifs enriched in DFPs is shown to the right, with GAPDH as a positive control (bottom). The result correctly groups cell types and
reveals known and likely regulatory factors
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Wellington footprint score for the pooled data evaluated.
Wellington-bootstrap then assesses if the change in foot-
print score is a consequence of the increase in read
numbers after pooling reads or if the data from the com-
parator dataset makes a contribution to the footprint
structure. To do this, the comparator data is randomly
shuffled 1000 times, pooled, and the Wellington foot-
print score evaluated (see example in Additional file 1:
Figure S3). Shuffling is done in a strand independent
manner, randomising the positions of the counts of 5′
DNase cuts per base pair on the positive and negative
strand. The score of pooled data without shuffling is
assessed against the bootstrap distribution and the per-
centile used as the differential footprinting score. Low
scores indicate non-differential footprints, high scores
differential footprints. Figure 1 shows that sorting by this
score orders pairs of footprints in an intuitive manner
enabling the user to retrieve the most differential foot-
prints while choosing the stringency. 10 was used as the
threshold in this work. The role of the two datasets is re-
versed and the computation repeated to obtain both
over- and under-footprinted sites.
It was initially thought that flexibility would be re-

quired regarding the width of the footprint and its pos-
ition in the two datasets. Whilst initial methods were
developed to take this into consideration, we found that
this provided no improvement to the method, yet
yielded a significant speed decrease. This analysis has
been implemented in the wellington_bootstrap.py script
as part of pyDNase 0.2.0.

Differential DHSs – Fig. 2 and Additional file 1: Figure S1
Differential DHSs (ΔDHS) scores were calculated ac-
cording to the method proposed by He et al. 2012 [15]
and the implementation used here has been provided as
dnase_dshs_scores.py in pyDNase 0.2.0. DHSs
were then filtered to those that were within 2 kb of a
single TSS using the hg19 UCSC knownGene gene model,
and the DHSs showing the top and bottom n = 1000
ΔDHS scores were chosen as the differential DHSs.
Equivalent results were obtained using the following alter-
native choices for n: 50 (matching the number of DFPs
used in Fig. 2a,b), top 476 and bottom 300 (corresponding
to two standard deviations difference to mean ΔDHS
score), 1403 (corresponding to top and bottom 10 %).

RNA-seq analysis
RNA-seq data were downloaded from the Short Read
Archive (accessions CD4: SRR643766, spinal cord:
SRR980477) and FPKM was estimated using Tophat
2.0.11 [26] and Cufflinks 2.1.1 [27] with the Illumina
iGenomes UCSC hg19 knownGene GTF file.

Motif analysis – Fig. 3
The annotatePeaks.pl script of the HOMER package was
used to find occurrences of known motifs in peaks.
Wellington-bootstrap was applied to compute 42 sets of
differential footprints for all ordered pairs of the seven
cell types used (CD4/CD8 T-cells, CD56 NK cells, CD19
+ B cells, spinal cord cells, fibroblasts, CD14+ mono-
cytes). To analyse motif frequencies in differential foot-
prints motif search was done within the differential
footprint coordinates extended by 10 bp either side.
Relative motif frequencies were calculated as

Relative frequency motif i in comparison

j ¼ nij=Mj
� �� CΣ jMj=Σjnij

� �
;

where C is a scaling constant, nij is the number of differ-
ential footprints in set j (j = 1,2,…,42) that are occupied by
motif i (i = 1, 2,….,I), I is the total number of motifs used,
and Mj the total number of differential footprints in each
subset j (j = 1,2,…,42). A matrix was generated and motif
scores displayed as a heatmap after hierarchical clustering
with Euclidean distance and complete linkage. Blue indi-
cates low relative frequency; red/black indicates high rela-
tive frequency. Heatmaps were generated using Mev of
the TM4 microarray software suite [28].

Gene expression of transcription factors in all tissues
HG_U133A microarray expression data from BioGPS
[29], covering 84 normal tissues as well as penis foreskin
fibroblasts (GEO accession number GSE4521) were re-
trieved, concatenated and normalized via R using the
normalizeQuantiles function of limma [30]. Heatmap
images were obtained via Java Treeview [31].

De novo motif discovery
The findMotifsGenome.pl script of the HOMER package
was used to perform de novo motif discovery in CD19
versus CD4 differential footprints.

pyDNase 0.2.0 – cutting bias correction
In order to plot cut bias corrected average DNase cleav-
age plots, the DNaseI 6-mer cutting bias data from
naked genomic data from the IMR90 cell line and for
each region an ‘expected count’ was calculated using the
‘predicted count’ formula from He et al. 2014 [32]. The
observed cuts at each base pairs were then divided by
the expected counts. Bias correction modes have been
added to the plotting scripts in pyDNase that can be
invoked with the ‘-b < genome.fa>’ option. The
BAMHandlerWithBias class in pyDNase provides
underlying access to the bias correction for power users.
In this we have provisioned the ability for the user to
supply a Variant Call Format (VCF) file so that the
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reference DNA sequence can be corrected using SNPs
present in the sample being analysed if desired.

pyDNase 0.2.0 – other new features and improvements
pyDNase 0.2.0 represents a major release for pyDNase,
bringing several improvements. The core Wellington algo-
rithm was reimplemented in C, and the underlying code
structure was refactored in order to allow for parallelisa-
tion of Wellington score calculation. On a dual 2.66Ghz i7
Xeon workstation with 8 cores, footprinting a single data-
set takes approximately 30 min, compared to up to 20 h
previously on a single core – this performance increase
scales linearly with number of cores utilised. In addition, a
number of analysis scripts have been added to the pyD-
Nase library for calculating ΔDHS scores, calculating
Wellington-bootstrap scores, annotation of BED files with
Footprint Occupancy Scores, and the annotation of a BED
file with DNase cuts. A comprehensive DNase-seq foot-
printing tutorial has also been added to assist those new
to DNase-seq analysis and DNase-seq footprinting. Full
details can be found at the pyDNase github repository
(https://github.com/jpiper/pyDNase).

Data access
All software is released as open source under the GPLv3
license at http://jpiper.github.io/pyDNase/.

Additional file

Additional file 1: Figure S1. Differential footprints reveal links between
TF binding and gene expression. (a) Differential gene expression (p < 0.005,
Mann–Whitney U test) of all genes that have a differential spinal cord
footprint containing a match for the MAZ motif in their promoter. (b)
Average bias-corrected DNase-seq cleavage profiles (red: positive strand
reads, green: negative strand reads) for MAZ sites in promoters of genes
from (a) show evidence for binding of MAZ motifs in spinal cord cells, but
not in CD4+ cells. Genes over-footprinted for MAZ in spinal cord cells are
also over-expressed, confirming a known lineage-determining link. (c)
Differential gene expression of all genes that have a differential spinal cord
DHS containing a match for the MAZ motif in their promoter. (d) Average
bias-corrected DNase-seq cleavage profiles for MAZ sites in promoters of
genes from (c) show evidence for binding in both cell types. The differential
expression observed in (c) cannot be linked to differences in TF binding
using differential DHS scores alone. Figure S2. Bias correction refines profiles
of average cutting. For T-box-containing loci of differential footprints used in
Fig. 2b average DNaseI cleavage profiles are shown before (a, c) and after (b,
d) correcting for the sequence specificity of DNaseI cleavage using a 6-mer
model (He et al., 2013). Plots (b) and (d) are the ones shown in Fig. 2b.
Figure S3. Example of a footprint deemed non-differential. (a) Red (green)
bars represent numbers of 5′ ends of reads aligning to the positive (negative)
reference strand. Vertical black lines indicate footprint region. (b) Bootstrap
distribution for data shown in (a). Nucleotide positions in CD19 data were
randomly shuffled and the distribution of Wellington footprint scores after
pooling the shuffled CD19 data and the fibroblast data was determined. Blue
vertical bar shows the Wellington score after pooling data without shuffling.
Green: Wellington footprint score in fibroblast data. Red: footprint score in
CD19 data. As pooling without shuffling yields a better footprint score than
pooling with shuffling the footprint is considered non-differential. Figure S4.
Example of de novo motif discovery in differential footprints. HOMER de novo
motif discovery results in footprints differentially enriched in CD19 versus CD4

lymphocytes. The top 6 motifs are shown sorted by increasing p-value.
(DOCX 545 kb)
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