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Background: Serial block face scanning electron microscopy (SBFEM) is becoming a popular technology in
neuroscience. We have seen in the last years an increasing number of works addressing the problem of segmenting
cellular structures in SBFEM images of brain tissue. The vast majority of them is designed to segment one specific
structure, typically membranes, synapses and mitochondria. Our hypothesis is that the performance of these
algorithms can be improved by concurrently segmenting more than one structure using image descriptions obtained

Results: We consider the simultaneous segmentation of two structures, namely, synapses with mitochondria, and
mitochondra with membranes. To this end we select three image stacks encompassing different SBFEM acquisition
technologies and image resolutions. We introduce both a new Boosting algorithm to perform feature scale selection
and the Jaccard Curve as a tool compare several segmentation results. We then experimentally study the gains in
performance obtained when simultaneously segmenting two structures with properly selected image descriptor
scales. The results show that by doing so we achieve significant gains in segmentation accuracy when compared to

Conclusions: Simultaneously segmenting several neuronal structures described at different scales provides voxel
classification algorithms with highly discriminating features that significantly improve segmentation accuracy.

Keywords: Image segmentation, Electron microscopy, Multi-class boosting, Neuron structures

Background
Understanding the structure, connectivity and functional-
ity of the brain is one of the challenges faced by science in
the 21st century. This grand challenge is supported by the
development of multiple and complementary brain imag-
ing modalities such as structural and functional imaging
[1] and light microscopy [2, 3]. At the finest level, recent
advances in SFBEM also support this long term goal [4-6].
They have made it possible to automatically acquire long
sequences of high resolution images of the brain at the
nanometer scale. However, the automated interpretation
of these images is still an open challenge, because of their
inherent intricacy and its huge size (see Fig. 1a).

In this paper we consider the problem of segmenting
mitochondria and synapses that along with membranes
are some of the most prominent neuronal structures (see
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Fig. 1b and c). These structures are of interest to neuro-
science. The identification and quantification of distribu-
tion of synapses provides fundamental information for the
study of the brain [6]. Mitochondria, on the other hand,
play a key role in the cell metabolism, physiology and
pathologies [7]. The accurate segmentation and recon-
struction of neuron membranes is requisite to address the
neural circuit reconstruction problem [8, 9].

Given the complexity of the SBFEM images shown in
Fig. 1, a fundamental step for a successful segmenta-
tion is a good feature representation. In recent years a
broad range of image description features have been intro-
duced in the literature [10]. SBFEM specialized features
like Radon-like [11] and Ray features [12] along with vari-
ous standard computer vision ones such as Histograms of
Oriented Gradients, Local Binary Patterns and different
banks of linear filters are the most usual representations
[10, 13-17]. To further exploit contextual information the
result of extracting these features at different scales is
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A Image stack

b Mapped Mitochondria

Fig. 1 Hippocampus rat neural tissue SBFEM image. a image stack; b 3D reconstruction of mitochondria in the stack; € ground truth labels of
mitochondria (blue) and synapses (red) in the first slice. Membrane labels (green) have been included only for illustrative purposes

usually pooled in neighborhoods around the described
voxels, as in [18] or in the integral channel features [19].
Tu and colleagues [20] use a variant of the integral channel
features to segment brain 3-D magnetic resonance images.
A related approach, termed context cues, was also used by
Becker [14] and Lucchi [16] for segmenting synapses and
mitochondria respectively.

Typical feature vectors have thousands of variables. For
labeling these structures ensemble classification methods,
in particular Boosting and random forests, are the most
popular in EM segmentation approaches, since they can
select the best subset of features on-the-fly, while train-
ing. Random Forest and Boosting classifiers like AdaBoost
and GentleBoost have been used for segmenting synapses
[13, 14, 21], membranes [22] and mitochondria [12, 16, 23].

Although there are some general software tools for seg-
menting neuronal structures [13, 24], the best results for
synapses [14, 21, 25] and mitochondria [15, 16, 26, 27]
have been achieved by algorithms specifically designed
for each of them. In this paper we study whether we can
improve the performance of these approaches by simul-
taneously segmenting more than one structure. In partic-
ular, we will concurrently segment synapses with mito-
chondria and mitochondria with membranes. Since these
structures arise in SBFEM stacks with different sizes, we
introduce a feature selection algorithm to determine the
best scales to describe them. We compare our segmenta-
tions with those that target a single structure. To this end
we select three image stacks and the segmentation algo-
rithms that have reported the best performance in each of
them. To make a fair evaluation we introduce a novel qual-
ity measure tool, the Jaccard Curve, enabling the compar-
ison of several segmentation approaches independently of
the selected operational point of the classifier.

Methods

Image features

We aim to use contextual information to label each voxel.
To this end we use integral channel features based on

extracting the sums over rectangular regions of a set of
feature channels. We obtain these channels by comput-
ing a Gaussian Rotation Invariant MultiScale (GRIMS)
descriptor and an elliptical descriptor at different scales.
We choose GRIMS because they are an excellent descrip-
tor for segmenting mitochondria and synapses [10, 28].
Since vesicles are a good indicator of the existence of
synapses in the vicinity (see the raw image in Fig. 2), we
also include an elliptical descriptor that provides contex-
tual information related to the existence of vesicles.

GRIMS descriptors apply to each image in the stack a
set of linear Gaussian filters at different scales to compute
zero, first and second order derivatives, {s;j : i+j+k < 2},
where

giti+k

L itk
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G, is a Gaussian filter with standard deviation o and
x is the convolution operator. We represent the result
of applying these operators to the image with s;; where
the summation of the subscript indices denotes the order
of the derivatives. The rotation invariant feature vector
at scale o is given by (sooo, 5%00 + S%IO + s%m, Ay A2, A3),
where the first component is the smoothed image, the
second one is the magnitude of the gradient and A;,i =
1...3 are the eigenvalues of the Hessian matrix. The
complete feature vector is the concatenation of all partial
feature vectors at different scales 0j,j = 1. .. n. Hence, the
GRIMS vector has dimension 5#, being n the number of
scales used to describe each voxel (see Fig. 2).

The elliptical descriptor is the result of filtering the
image with an elliptic torus-like kernel. The shape of this
kernel is controlled by the radii r;, r2 and thickness w
parameters. As shown in Fig. 3, the result of convolving
this kernel (left image) with a vesicle-like structure (cen-
tral image) returns low values for the inner parts of the
vesicle.
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Fig. 2 Raw image and four image description features used in our methodology. In the raw image we highlight with blue and red color a synapse and
three vesicles respectively. We can appreciate the elongated shape of the synapse and the small circular shape of the vesicles, next to the synapse

Scales selection

Properly addressing the multi-scale nature of the struc-
tures in the SBFEM images is an important issue to
achieve top segmentation performance. Synapses appear
in our images with various sizes and shapes. Similarly,
mitochondria show up as rougly elliptical structures with
very different sizes (see Figs. 1 and 9). The information
provided by the features defined in the previous section
depends on the size of the image structures and the scales
of the kernels used for filtering. We set the parameters of
the elliptical descriptor as the average radii and width of
a representative set of vesicles in the stack (see Table 1).

However, for a given image stack, it is not clear what is
the most discriminative set of GRIMS scales. An impor-
tant step in our methodology is to establish them. The
standard approach would optimize the segmentation per-
formance using cross-validation over the set of scales.
However, in our problem this is computationally pro-
hibitive. To this end we introduce a new scale selection
algorithm based on a generalization of the well-known
AdaBoost-based greedy feature selection scheme [29] to
the multi-class case. For this purpose we adapt PIBoost
[30], a recently introduced multi-class boosting algorithm
with binary weak-learners (see Algorithm 1).

Fig. 3 Elliptical descriptor. (left) image showing the kernel as grey values, with both radii(ry, r;) and the thickness (w) parameters over-imposed;
(center) image of a vesicle-like structure; (right) response obtained when convolving the vesicle image with the elliptical descriptor kernel
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Table 1 Vesicle descriptor parameters and GRIMS scales selected
for each data set

Data set GRIMS Vesicle parameters

scales n r w

1.2,16,56,6.0 5 5 2
1.6,44,56,64 3 3 1
12,16,20,48 4 4 2

Hippocampus
Somatosensory cortex

Cerebellum

Each PIBoost iteration learns a group of weak-learners
that partially solve a multi-class classification problem.
Each weak-learner separates a group of classes from the
rest, learned as a binary problem in which one of the
groups is treated as the positive class and the rest as neg-
ative. In this context a separator is a classifier formed by
combining the minimal set of weak-learners that solve
a multi-class problem (see Fig. 4). Each separator asso-
ciates weights to training samples [30]. These weights
focus the learning process on a different set of samples at
each iteration thereby encouraging each weak-learner to
be independent from the rest.

For feature selection we modify this scheme producing
a new algorithm (see Algorithm 1). The feature selec-
tion algorithm iterates over all GRIMS scales training
each separator with one scale using the weighted training
samples. In our case, since we consider the simultaneous
segmentation of two structures, we have two positive and
one negative classes, hence, each separator has associated
three weak-learners (see Fig. 4). We classify the training
data with each separator (GRIMS scale) and select the one

S
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Fig. 4 PIBoost separator in a three class problem. It is composed of
three weak-learners (S1, S, S3) separating each class, e.g.
Cy:mitochondrion, C;:synapse, C3:background, from the rest
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with the smallest weighted error. Finally, with the error of
the selected feature we update the weights of the train-
ing data according to the PIBoost scheme [30], so that the
next selected scales are independent from those selected
so far. Algorithm 1 shows this process, where the actual
expression of functions trainSi(F)), €(Fj, Sgi=1..3, Wi)
and W (euin) may be found in [30], Section 4. Table 1
shows the chosen scales for each data set. They were
selected among 50 equally distributed values between 1
and 50. These are the scales used in the experiments in
“Results and discussion” section. So, our feature vectors
have 20 components (4 selected scales, times 5 features
per scale)

Algorithm 1: Feature selection algorithm.
Data:
F = the set of all features at all scales.
S = the set of all separators.
W = weight vector initialized with values Wy = 1/N,
N = number of data instances.
Result: vector with selected features bFeat| i].
1 error =0
2 for all iterations i do

// In each iteration we select one
feature
€min = OQ.
4 for all features j € F do
5 for all separators k € S do
// In our case ke {l,2,3}
6 train Si(F;) with weights W.
7 end for
8 compute error of Fj, €;(Fj, S k=1...3, W7).
9 if €; < €, then
10 bFeat[i] = F;.
11 €min = €
12 end if
13 end for
14 update weight vector Wi11 = W (€in)

15 end for

Once selected the best features and scales, we aggregate
local evidence by computing the integral channel features
on them. In our approach we use cubic regions, as shown
in Fig. 5b.

So, the feature extraction process is as follows. For each
voxel in the stack we obtain the channels by convolving it
with the GRIMS and elliptical filters in a set of selected
scales, 1, . . ., 0, (see Fig. 5a). A feature associated to one
voxel is the sum of the filter responses in a random neigh-
boring cube in a randomly selected channel (see Fig. 5b).
In our approach we extract 1200 features for each voxel in
the stack.
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Fig. 5 Feature extraction process. We apply a set of filters at scales
o1,...,0, to each stack slice. a two filters for one slice, sgoo left, A3
right; b a feature of voxel V; is the sum of the values of one box (in
blue). The feature vector of V; is the concatenation of several

hundreds of such features

Multi-class boosting with integral channel features
We also adopt a Boosting scheme to label each voxel. Our
classifier, Partially Informative Boosting (PIBoost) [30],
is a multi-class generalization of AdaBoost with binary
weak-learners.

At the m-th iteration and for each separator S, PIBoost
builds a stage-wise additive model

£, = £,1(%) + B, (%),

where f,,(x) € RC is the strong learner and gfn(x) the
trained weak-learner at iteration m for separator S, 83 is a
constant related to the accuracy of the weak-learner, and
¢ is the number of classes in the problem. Each compo-
nent in the vector f(x) represents to what extent x belongs
to each class. f(x) satisfies the sum-to-zero condition,
f(x) "1 = 0, that guarantees that each vector takes one and
only one value from the set of labels [30]. Finally, sample
X is assigned to the class «; associated to the maximum
component of f(x)
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X € a; & i = argmaxf(x)[/],
j

where f(x)[ ] denotes the j-th component of vector f(x).

We also use sub-sampling to optimize the classifier per-
formance [31]. To this end, we train each weak-learner
with a fraction of all training data. Sub-sampling reduces
training time helps to generalize the classification. For the
PIBoost experiments in “Results and discussion” section
we train each weak-learner with 10% of the data randomly
sampled according to their weights. This gives priority to
instances that are hard to classify.

Label regularization

The output of this classification process is noisy. We filter
this noise by optimizing the energy in a Markov Random
Field (MRF) with pairwise terms using the graph cut algo-
rithm [32]. Since the standard graph cut approach is only
valid for binary problems, we solve our three class regular-
ization problem in two ways. First by setting up two one
positive class-against the rest problems. Second using the
af-swap multi-class extension to graph cuts [33].

We define the weights of edges in the graph as fol-
lows. Let us denote with «y,y € {mitochondrion,
synapse, membrane, background} each of the class labels
for a voxel. The unary term of voxel x for class aj, u(x, o))
is given by the minus log of its posterior probability,
u(x,05) = —logP(ej | f(x)). Using the multinomial
logistic expression we get

£
= log Z efoll _ f(x)[/].
i
Since log Y, ef®U ~ max{f(x)}, then, the unary term

weights are given by
u(x, o) = max{f(x)} — f(x)[/]. (2)

For the pair-wise terms we train a new classifier that
learns the probability that a voxel belongs to a border.
Here a border is a thin strip around the edge of mito-
chondria and synapses. This is done by setting up a
PIBoost-based classifier with only two classes ay,y €
{border,no_border}. The weight of the edge connecting
neighboring voxels x and y, p(x, y), is given by

p(xy) = — logp(aborderlf(x))_logp(aborderlf(y»- (3)

Results and discussion

Here we describe the experiments performed to evaluate
the image segmentation method described in the previous
section.
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Quality measure

We use as measure of quality of a segmentation the Jac-
card similarity coefficient between the ground truth and
the result provided by the algorithm evaluated. It is a
widely used image segmentation quality index both in the
computer vision and bio-medical literature [15, 27]. It is
defined as the area of the intersection divided by the area
of the union of segmentations (see Fig. 6). In terms of
classification results it can be expressed as

P

JAC = ——— o,
TP + FP + FN

where TP stands for true positive, FP false positive and FN
false negative. It represents a binary non-symmetric mea-
sure of coincidence of two segmentations. It takes values
between 0 (no coincidence) and 1 (total coincidence). In
our results Jaccard indices are computed from each posi-
tive class (mitochondria, synapses, membranes) versus the
rest. Although this is the most usual way to show results,
other works compute the average Jaccard index of positive
and negative classes [27].

In binary classification problems a threshold value con-
trols how posterior probabilities are converted into class
labels. To compare the performance of two such classi-
fiers independently of the threshold the Machine Learning
community has long agreed on the use of Precision Recall
(PR) or Receiver Operator Characteristic (ROC) curves
instead of accuracy results [34]. Similarly, in image seg-
mentation, simply comparing a Jaccard index may be
inaccurate, since, for example, the same classification
algorithm with a different classification threshold would
exhibit different Jaccards.

Here we introduce the Jaccard Curve (JCC) as a means
of comparing the performance of two segmentation algo-
rithms independently of their classification threshold. In

Fen®

Jacc =

Fig. 6 Jaccard similarity coefficient. (left) in blue the ground truth
segmentation of a mitochondrion, in red the result obtained with an
automated segmentation algorithm; TP is the intersection of red and
blue regions, i.e. the correctly segmented piece of mitochondrion; FN
is the only blue area, i.e. the part of mitochondrion segmented as
background; FP is the only red area, i.e. the background segmented
as mitocondrion; TN is the rest of the image, i.e. the correctly
segmented background; (right) representation of the Jaccard
coefficient as the relation between the purple and green areas

Page 6 of 13

the horizontal axis of the JCC we represent the proportion
of pixels below the positive class score threshold, i.e. the
percentage of pixels in the image labeled as background.
In the vertical one we plot the Jaccard of the segmentation
obtained when labeling in the positive class all voxels with
a score higher or equal to the threshold (see Fig. 7). We
plot the JCC by sorting all voxels according to their score
and evaluating the Jaccard of the segmentations at differ-
ent thresholds. The higher the JCC curve, the better the
segmentation.

The evaluation of membrane segmentation using the
Jaccard index has been criticized because it is commonly
believed that small deviations in the detected membrane
locations are acceptable, which however will cause large
errors in the estimated Jaccard index. Alternative more
robust metrics such as the Rand F-score(F;) and Informa-
tion Theoretic F-score(F;:) have been recently proposed
[35]. For membrane segmentation we will also use these
these metrics.

Experiments

In our experiments we have used three serial section
electron microscopy data sets comprising different labels,
SBFEM acquisition technologies and levels of anisotropy
(see Table 2). The first two stacks, Hippocampus and
Somatosensory cortex, were acquired with FIB-SEM
microscopes. The have synapses and mitochondria labels
manually annotated by expert neuroanatomists'. The
Hippocampus stack has perfectly isotropic voxels with
very high resolution. The rat Somatosensory Cortex one
has a coarser resolution with slightly an-isotropic voxels.
Finally, the Cerebellum stack?, was acquired with a SBF-
SEM microscope. It has mitochondria and membranes
labels with the largest anisotropy factor [28].

For our analysis we select the algorithms reporting the
best results for each of the selected stacks. We com-
pare our algorithm with the AdaBoost-based approach of
Lucci et al. for segmenting mitochondria [36], and Becker
et al. for segmenting synapses [14]. We also compare
our algorithm with the Bayesian approach of Marquez
et al. [28], that segments both structures. To this end,
we use the code provided by the authors. For the exper-
iments with AdaBoost we trained the algorithm with
1200 decision stumps based on context cues [14, 16]. For
the Bayesian approach we trained a classifier with Gaus-
sian class-conditional distributions and GRIMS features
as described in [28]. Finally, for PIBoost we conducted 50
iterations training 150 decision tree weak-learners. The
input to this classifier are pooled features in cubes of size
5 x 5 x 5 voxels computed on the channels extracted from
GRIMS and elliptical descriptors on the set of selected
scales, as described in “Methods” section. In all our exper-
iments we used the first block of consecutive slices of each
stack for training, and the rest for testing (see Table 2).
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Fig. 7 Example of a Jaccard curve obtained with the results of the segmentation of two synapses. We selected a hard-to-segment patch to see the
segmentation improvement with different thresholds. In the vertical axis we represent the Jaccard (JAC), whereas in the horizontal the percentage
of pixels segmented as background. We can see how the higher the threshold () the less elements are segmented as synapse

Since the number of voxels from the background class is
much larger than that of the two other positive classes,
when training PIBoost we randomly discard half of the
background voxels.

In Fig. 8 we show the JCC curves resulting from the
segmentation of mitochondria, synapses and membranes
in each of the previously described image stacks. Tra-
ditionally, segmentation results have been compared by
choosing an appropriate classification threshold for the
classifier and computing the Jaccard for the result. This
is equivalent to selecting an operation point in the JCC.
This operation point for Boosting algorithms is given by
a sgn() function, i.e. a zero classification threshold [31],
whereas in the Bayesian classifier case it is a Maximum
a Posteriori (MAP) rule [31]. In the first two columns
of Table 3 we give the Jaccard index resulting from seg-
menting the image at this operation point. Moreover, in
each curve in Fig. 8 we show with a red dot the oper-
ation point for each classifier. In some circumstances,
such as for example when classes are very unbalanced,

Table 2 Data sets used in the experiments

the zero threshold of Boosting algorithms may be fine-
tuned [29]. This threshold is an important parameter for
reproducibility and should only be estimated on a separate
validation set, never in the test set. In our analysis we do
not adjust it since the JCC already provides information
for all thresholds.

From the analysis of the JCC curves in Fig. 8 we can
see that, in general, the approach presented in this paper,
based on the PIBoost classification algorithm and a set
of pooled GRIMS features, achieves equal or superior
performance to all other approaches in all stacks and
structures.

In the segmentation of both mitochondria and synapses
context information plays a key role. For this reason the
AdaBoost and PIBoost approaches, both based on pooled
channel features, achieve the best performance on both
structures in the perfectly isotropic Hippocampus stack
(see Fig. 8a and Table 3). The Somatosensory and Cere-
bellum stacks are increasingly an-isotropic. In this case
most of the close context information across slices is

Dataset Labels Voxel size (nm) Train (voxels) Test (voxels)
Hippocampus Mit & Syn 5x5x5 1024 x 653 x 165 1024 x 653 x 165
Somatosensory cortex Mit & Syn 147 x 147 x 20 366 x 494 x 100 366 x 494 x 113
Cerebellum Mit & Mem 10 x 10 x 50 700 x 700 x 20 700 x 700 x 26

We denote the annotated labels in each data set as synapses (Syn), mitochondria (Mit) and membranes (Mem). We select train and test sets from consecutive slices in the

stack. We use approximately half of each stack for training and the rest for testing
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Fig. 8 Mitochondria, synapses and membranes JCCs for the Hippocampus (a), Somatosensory (b) and Cerebellum (c) SBFEM image stacks. In each
curve we show with a red dot the zero threshold operating point for Boosting classifiers and MAP point for the Bayesian one. JCCs let us compare
the segmentation performance regardless of the operating point. The higher the curve the better the segmentation algorithm
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Table 3 Quantitative segmentation results for mitochondria, synapses and membrane on the Hippocampus, Somatosensory Cortex

and Cerebellum stacks evaluated with the Jaccard index

Segmentation

Two-class regularization

aB-swap regularization

Mitochondria Synapses Mitochondria Synapses Mitochondria Synapses
PIBoost 0.70 0.36 0.73 0.41 0.76 0.34
AdaBoost [14, 16] 0.62 0.07 0.71 0.30 - -
Bayesian [28] 045 032 0.46 0.29 0.49 0.28
Hippocampus Stack
Mitochondria Synapses Mitochondria Synapses Mitochondria Synapses
PIBoost 0.54 035 0.57 041 0.57 031
AdaBoost [14, 16] 0.51 0.30 0.55 039 - -
Bayesian [28] 046 0.18 047 0.17 052 0.28
Somatosensory Cortex Stack
Mitochondria Membrane Mitochondria Membrane Mitochondria Membrane
PIBoost 0.52 0.36 0.57 0.31 0.56 031
AdaBoost [14, 16] 0.36 0.22 0.55 029 - -
Bayesian [28] 0.51 0.34 0.55 0.21 0.52 0.28

Cerebellum Stack

lost and pooled channel features become less informative.
Hence, segmentation performance degrades, specially for
mitochondria. However, since GRIMS channels acquired
at different scales also provide some local context infor-
mation, the segmentation algorithm based on PIBoost
degrades to a lesser extent (see Table 3).

Finally, the segmentation of membranes on the most an-
isotropic Cerebellum stack (see Fig. 8c) does not depend
on context but on local appearance. This is due to the
fact that membranes are distributed all over the stack and
have very different context. In this case, the algorithms
based on GRIMS, PIBoost and Bayesian approaches, pro-
vide the best performance in the classification stage. We
have also evaluated membrane segmentation results using
the Rand F-score(F,) and the Information Theoretic F-
score(Fi) [35] (see Table 4). Here again the approach
based on combining the simultaneous segmentation of the
two possible classes, PIBoost, outperforms the rest.

After classifying each voxel we regularize the result-
ing labels with two standard graph-cut-based algorithms.
This regularization usually boost the performance and

Table 4 Quantitative segmentation results for membrane
Cerebellum stack evaluated with the Rand F-score(JF;) and
Information Theoretic F-score(Fj:) metrics

F; Fit
PIBoost 0.93 0.91
AdaBoost [14, 16] 0.81 0.84
Bayesian [28] 0.83 0.82

Cerebellum Stack

visually improves the results for large and regular regions
such as mitochondria (see Fig. 9). However, with thin
and elongated structures like synapses and membranes,
graph-cut regularization can be detrimental. This may be
appreciated in the regularized results for membranes in
Table 3. Some approaches use a regularization scheme
that has been specifically conceived for the segmenta-
tion problem addressed. This is the case, for example, of
the regularization approach used for segmenting mito-
chondria in [16]. In the case of multi-class classifiers
like PIBoost and Bayesian, our proposed regularization
scheme uses both the multi-class «f-swap algorithm and,
by posing it as two bi-class problems, the two-class graph-
cut. The former is similar to the regularization used
in [28]. For the two-class AdaBoost algorithm we use
a graph-cut-based regularizer. Analyzing the segmenta-
tion results before and after regularization lets us make a
fair comparison with [14], that uses no regularizer. How-
ever, as discussed above, for mythocondria segmentation,
the approach in [16] uses a different type of regularizer.
With this specially conceived regularization scheme [16]
achieves on the Hippocampus stack a Jaccard of 0.74,
slightly better than the result with our standard grap-cut-
based scheme, but still behind 0.76 achieved with PIBoost
using af-swap (see first row in Table 3).

In the next experiment we further analyze the reason
why our algorithm achieves a good segmentation accu-
racy. To this end we select the Hippocampus stack, for
which the AdaBoost-based approach of Lucci et al. [16] is
the state-of-the-art for mithocondria segmentation. The
first row in Table 5 shows the results for the AdaBoost
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Fig. 9 Segmentation results for each stack and algorithm after regularization. Best qualitative appreciation of segmentation differences among
algorithms and image stacks by zooming in the electronic version of the paper

classifier with the integral channel features on the set of
channels described in [16] with a zero-threshold classifi-
cation. Only by changing the channels to GRIMS and the
elliptical descriptor, we get a small improvement for mito-
chondria and an large improvement in synapses. This is

Table 5 Hippocampus segmentation results (Jaccard) for due to the fact that the elliptical descriptor and GRIMS
different classifier, features and GRIMS scales features provide multi-scale information fundamental for
Classifier Features Mitochondria Synapses  the estimation of synapses, specifically those near the bor-
AdaBoost EPFL (14, 16] 0618911 0071279  ders of the stack. By changing the two-class classifier for a
AdaBoost GRIMS4EI 0622995 0282041  multi-class Boosting approach we get a new improvement

PlBoost GRIMSAE] 0691545 0347415 in performance for bot.h structurgs, as shown in the third
CRIMSAE| row of Table 5. The final boost in performance for our

PiBoost e 0.705145 0364175  approach comes from selecting the best GRIMS scales, as
Scale Selection shown in the last row.
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The results for synapses segmentation in the Hippocam-
pus stack in Table 5 are worse than those in [14]. Here
we analyze this discrepancy. The poor result in our exper-
iment is caused by two factors. First and foremost, the
fact that the zero threshold operation point is particularly
harmful for this problem (see Fig. 8a). The reason for this
is that AdaBoost performs poorly on highly imbalanced
classification problems, such as synapses segmentation.
PIBoost, on the other hand, achieves better performance
because it was conceived to address the imbalanced sit-
uations arising in multi-class classification [30]. Second,
the information provided by the context cues features
degrades in those voxels near the borders of the stack,
since many of the cubes straddle the stack limits (Fig. 5b
graphically depicts this problem). This is in part alleviated
by the local information provided by the GRIMS. To eval-
uate the impact of these issues on the results we peel off
from the Jaccard index computation in the stack the 10
voxels thick outer rind. In this case the Jaccard increases
to 0.37. If we further overfit the test data and select the
best operation point, the performance goes up to 0.54,
comparable with that in [14].

Concerning the computational cost at run-time, the
multi-class Boosting approach is computationally more
efficient than the AdaBoost binary solution. However, the
Bayesian approach is, by a large margin, the fastest algo-
rithm. We have made these performance experiments on
a computer with an Intel Xeon CPU at 2.40 GHz, 96 GB
RAM. The PIBoost solution involves 3 separators, com-
posed of 50 trees of depth 10. So, the classification of one
voxel involves 3 separators x50 trees in each separator
%10 inner node decisions in each tree. This is a total of
10 x 50 x 3 = 1500 image measurements to classify one
voxel. This classifier takes 90.4 min to label the test images
in the Hippocampus stack. The AdaBoost binary solution
is based on two classifiers, one for each positive class, each
composed of 1200 decision stumps. Hence, to classify one
voxel we have to sample 1200 x 2 = 2400 image values.
This means that his classifier requires 128.7 min to label
the test images in the Hippocampus stack.

The Bayesian approach trains a multi-class classifier
with a feature vector of 5 features x4 scales, 5 x 4 = 20
features. It uses 2.7 min to label the test images in the
Hippocampus stack.

Conclusions

In this paper we have presented an algorithm for segment-
ing mitochondria, synapses and membranes in SBFEM
images of brain tissue.

We have shown that the segmentation accuracy in
SBFEM images can be improved by simultaneously ana-
lyzing several neuronal structures. We successfully tack-
led this problem using PIBoost [30], a boosting algorithm
for class-imbalanced problems.
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We have also verified that when the set of segmented
structures have different sizes, selecting a good set of
scales for image description significantly improves the
segmentation accuracy. To this end we have introduced a
new multi-class feature selection algorithm.

Following previous results in the literature [14, 16, 28],
we have also confirmed the importance of context
for segmenting neuronal structures. Although pooled
channels with standard image features [14, 16] pro-
vide excellent performance in the central part of an
isotropic stack, we have proved that GRIMS provide bet-
ter overall performance both in isotropic and anisotropic
stacks due to their capacity to represent multi-scale
information.

Considering the computational cost of the classifiers,
if accuracy is the main requirement in the segmentation
process, then PIBoost should be the selected classifier,
since it provides the best accuracy at computational cost
lower than AdaBoost. However, if computational effi-
ciency is the main issue, then the statistical approach in
(28] is, by a far margin, the fastest.

The results in this paper are relevant to the neuroscience
research community when confronting the reconstruction
of the “synaptome” [9]. Firstly, because the methodology
introduced in the paper is general and may be applied
to segment different neuronal structures, possibly using
other imaging modalities. Secondly, because when the
number of neuronal structures to segment grows, if the
segmentation problem is addressed one structure at a
time, the computational requirements also grow, at least,
linearly. However, using a simultaneous segmentation
approach, the number of required features and, hence, the
computational cost, increases at a slower pace, since many
of these features may be shared by several structures.
Moreover, since these features are selected to discriminate
among a large group of structures they are more general
and also achieve better segmentation accuracy, as we have
confirmed in our experiments.

Endnotes

!The Hippocampus stack was annotated at the Ecole
Polytechnique Fédérale de Lausanne (EPFL) under the
supervision of Prof. Graham Knott. The Somatosensory
stack was annotated at the Cajal Cortical Circuits labo-
ratory, Universidad Politécnica de Madrid (UPM), under
the supervision of Prof. Javier de Felipe.

2More information online in the Cell Centered
Database (http://ccdb.ucsd.edu) with ID 8192.
Abbreviations
GRIMS: Gaussian Rotation Invariant MultiScale descriptors (described in the
paper); JCC: Jaccard Curve (defined in the paper); MRF: Markov Random Field;

PR: Recision-Recall curve; ROC: Receiver Operator Charateristic curve; SBFEM:
Serial Block Face Electron Microscopy
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