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Abstract

Background: Nuclear segmentation is an important step for profiling aberrant regions of histology sections. If
nuclear segmentation can be resolved, then new biomarkers of nuclear phenotypes and their organization can be
predicted for the application of precision medicine. However, segmentation is a complex problem as a result of
variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), nuclear phenotypes (e.g.,
vesicular, aneuploidy), and overlapping nuclei. The problem is further complicated as a result of variations in sample
preparation (e.g., fixation, staining). Our hypothesis is that (i) deep learning techniques can learn complex phenotypic
signatures that rise in tumor sections, and (ii) fusion of different representations (e.g., regions, boundaries) contributes
to improved nuclear segmentation.

Results: We have demonstrated that training of deep encoder-decoder convolutional networks overcomes
complexities associated with multiple nuclear phenotypes, where we evaluate alternative architecture of deep
learning for an improved performance against the simplicity of the design. In addition, improved nuclear
segmentation is achieved by color decomposition and combining region- and boundary-based features through a
fusion network. The trained models have been evaluated against approximately 19,000 manually annotated nuclei,
and object-level Precision, Recall, F1-score and Standard Error are reported with the best F1-score being 0.91. Raw
training images, annotated images, processed images, and source codes are released as a part of the Additional file 1.

Conclusions: There are two intrinsic barriers in nuclear segmentation to H&E stained images, which correspond to
the diversity of nuclear phenotypes and perceptual boundaries between adjacent cells. We demonstrate that (i) the
encoder-decoder architecture can learn complex phenotypes that include the vesicular type; (ii) delineation of
overlapping nuclei is enhanced by fusion of region- and edge-based networks; (iii) fusion of ENets produces an
improved result over the fusion of UNets; and (iv) fusion of networks is better than multitask learning. We suggest that
our protocol enables processing a large cohort of whole slide images for applications in precision medicine.
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Background
Nuclear morphology is an important step in identify-
ing aberrant phenotypes in hematoxylin and eosin (H&E)
stained histology sections. However, to date, the problem
of nuclear segmentation, for every type of nuclear pheno-
type remains partially unresolved. If nuclear segmentation
is preformed robustly, then malignant phenotypes can be
stratified across a large cohort of histology sections. The
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main challenges originate from technical variations and
biological heterogeneity in a large cohort. Technical varia-
tions refer to non-uniformity in sample preparations (e.g.,
staining), and biological heterogeneity refers to the fact
that no two histology sections are alike. In most cases,
technical variations are also coupled with biological het-
erogeneity, which complicates the construction of a sta-
ble computational model for nuclear segmentation. The
diversity of the nuclear phenotypes originates from many
factors. For example, (i) cancer cells tend to be larger than
normal cells, and if coupled with high chromatin content,
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they may indicate aneuploidy; (ii) nuclei may have vesicu-
lar phenotypes; (iii) nuclei may have high pleomorphism
in tumor sections; (iv) cells may be going through apop-
tosis or necrosis; (v) cell cytoplasm may be lost as a result
of clear cell carcinoma; and (vi) cellular phenotypes may
be altered as a result of macromolecules being secreted
into the microenvironment. Samples of these phenotypes
are shown in Fig. 1. These phenotypes suggest complexi-
ties that are associated with nuclear segmentation as one
of the steps toward profiling of histology sections for diag-
nostics or discovery of new biomarkers. Because of the
complexities associated with vesicular phenotypes, most
of the previous segmentation literature has focused on
nuclear phenotypes having high DNA content. However,
we show that simultaneous delineation of vesicular and
other phenotypes can be achieved with fusion of the deep
learning models.
In recent years, convolutional neural networks (CNN)s

have emerged as the most powerful technique for image
classification [1, 2], and image segmentation [3–5]. CNNs
can be continuously trained and improved as the num-
ber of annotated training samples increases. Furthermore,
their architecture is modular, where each module can
be trained for different image-based representation, and
modules can be integrated to improve the outcome. Typi-
cal applications of CNNs have been used to perform image
classification in the computer vision literature. CNN con-
sists of several layers of convolution operation, where each
convolutional layer is usually followed by max-pooling.
The last layer is a fully connected layer, which maps a high
dimensional vector to a low dimensional probability vec-
tor corresponding to distinct classes. A diversity of CNN
architectures has been proposed based on the depth and
size of the model for the classification ImageNet [2], VGG
[1], and ResNet [6]. The segmentation task can also be
performed by using a sliding window coupled with the
classification for labeling each pixel in the image. How-
ever, this approach has been shown to be either noisy, less
accurate, or time-consuming. To overcome these issues,

alternative CNN architectures (e.g., FCN[3], UNet[5],
SegNet[7], ENet[4]), based on an encoder-decoder archi-
tecture, have been proposed for region-based segmenta-
tion. The encoder architecture is the same as vanilla CNN,
which consists of several convolution layers followed by
max-pooling. The encoder layers perform feature extrac-
tion and region-based classification of the down-sampled
image. On the other hand, the decoder layers perform up-
sampling after each convolutional layer, to compensate the
down-sampling effects of the encoder, and, to generate
an output with the same size as the input. Some of these
models are symmetric (e.g., the encoder and decoder have
the same depth) and some are asymmetric. In the latter
case, the decoder has the advantage of the smaller num-
ber of convolutional layers for reducing the computational
load.
There are two comprehensive review papers on nuclear

segmentation techniques [8, 9]; therefore, we limit our-
selves to a summary here, which span from simple thresh-
olding to the application of convolutional neural net-
works.
The most popular nuclear segmentation approaches

include thresholding following morphological operations
[10–12], watershed [13], deformable models [14], and
graph-based models [15, 16] or a combination of these
methods. In [11], images are binarized, morphological
operators are applied, and nuclear features have been
computed to profile the tumor morphology. In [13], the
watershed segmentation has been applied to the mag-
nitude of the gradient image, where the initial seeds
have been generated by morphological operations. This
technique is very dependent on the initial seeds, and
over-segmentationmay occur due to non-uniform nuclear
regions. In [14], an efficient active contourmodel was pro-
posed; however, this technique would not work well for
nuclei having a vesicular phenotype. Similar methods have
also been proposed with multi-step graph cut formula-
tion [16], but the key assumption remains about nuclei
with high chromatin content. In [15], Gaussian Mixture

Fig. 1 A subset of nuclear phenotypes is shown. (a) hyperchromatic, (b) pro-necrotic, (c) pleomorphic and invasive, and (d) vesicular
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Model (GMM) of nuclear phenotypes were constructed by
annotating nuclear regions. TheGMMrepresentation was
based on the Laplacian of Gaussian (LoG) response and
the RGB values in the color space. Next, a multi-reference
graph cut method was developed to binarize the image.
Subsequently, each clump of overlapping nuclei was parti-
tioned using geometric reasoning. Because this technique
is model-based, intrinsic variations of DNA content are
captured in GMM. A similar method was proposed in
[17]; however, the threshold parameter was learned by
training an support vector machine (SVM) model. Graph
cut has the additional advantage over SVM since it incor-
porates spatial consistency. In summary, except for the last
two methods, most classical techniques are procedural
and model-free with a large number of free parameters.
Applications of CNNs to medical images have been

recently reviewed [18, 19] and include (i) nuclear detec-
tion and segmentation in pathology images, (ii) tumor
delineation from the MRI data, and (iii) extraction of
anatomical structures from the tomography data. Because
of our focus on pathology, several relevant techniques
on nuclear detection and segmentation, and gland seg-
mentation are summarized below. (a) With respect to
nuclear detection, three strategies are reviewed here. In
[20], a spatially constrained CNN model has been trained
for nuclear detection. The model has been spatially con-
strained by assigning a higher probability to the pixels that
are closer to the centroids of nuclei. A similar approach
has been proposed in [21], where a CNN model is trained
to generate the positions of the nuclei and their corre-
sponding confidence in a given patch. In [22], a CNN
model has been trained with the feature-based represen-
tation of the original image based on the Laplacian of
Gaussian (LoG) filter response. The advantage of the LoG
filter is that it accentuates the blob-shape of nuclei and
provides an approximate location of each nucleus. This
approach has been applied to detect various types of the
nuclear phenotype. (b) With respect to nuclear segmenta-
tion, CNNmodels have been trained for region-based seg-
mentation, semantic-level feature extraction, and nuclear
segmentation. In [23], an active contour model has been
utilized for nuclear segmentation in H&E stained breast
histology sections, and a CNN model has been trained
to extract semantic-level features and to make an initial
classification of the image into the low, intermediate, or
high-grade tumor. Subsequently, the final classification
is refined by integrating semantic-level (e.g., the ratio of
nuclei belonging to different grades), colony organization
level (e.g., the relationship of nuclei within and across
colonies), and pixel-level (e.g., texture) features to train
an SVM. However, the active contour model assumes that
nuclei are well isolated and have high chromatin, which is
not necessarily the case. In fact, for breast cancer, nuclear
atypia is one of the visual representation for grading. In

[24], a CNN-based model has been proposed for nuclei
segmentation fromH&E stained sections, where the CNN
is trained to classify each pixel to be nuclei or non-nuclei.
In [25], a multiscale convolutional network has been pro-
posed for the segmentation of the cervical cytoplasm and
nuclei. Themultiscale CNN incorporates a pyramid image
representation for initial pixel-based classification. Next
graphcut is applied since CNN does not enforce spatial
continuity. Finally, segmentation results are refined by
morphological operators such as a marker-based water-
shed. In [26], nuclear segmentation has been performed
by converting the RGB image into gray scale, denoising
the image, and applying the CNN to separate background
and foreground. Finally, nuclear segmentation is refined
by morphological operators. A similar approach has been
proposed in [27], a CNN based model has been trained
to provide the initial probability map for nuclear segmen-
tation. Then, a deformable shape model has been applied
to separate overlapping nuclei. In [28], a vanilla convolu-
tional neural network has been proposed, which consists
of 3 convolutional, 3 pooling, and 2 fully connected layers.
This model is not an end-to-end segmentation network,
since there is a single output label for an input image.
Therefore, a sliding window technique is required to com-
pute the segmentation output, which is time consuming.
In [29], a fully convolutional neural network has been pro-
posed for nuclei segmentation. The model architecture
is similar to the UNet [5] model, which is a symmetric
encoder-decoder network. The model has been trained to
segment the nuclear regions and the boundary of nuclei
simultaneously. In [30], we proposed an earlier version of
the fusion framework for segmentation of nuclei, which
integrates the region and boundary information using the
ENet models. (c) With respect to gland segmentation, two
papers are reviewed here. In [31], a multichannel convo-
lutional network has been trained for gland segmentation.
Separate convolutional modules have been used for edge
detection and region segmentation and a shallow CNN
fused the edge and region information. In [32], the FCN
[3] model has been trained for gland segmentation. The
authors applied the concept of multi-task learning to use
the same weights for the region and boundary segmenta-
tion.

Method
The overall strategy is first to identify an encoder-decoder
model that can best delineate diverse nuclear phenotypes,
and then extend this model to improve delineation of
overlapping nuclei. For simplicity, the strategy will use
the same building block at each step. The building block
is a composition of several convolutional, pooling, and
identity layers, as shown in Fig. 2. All convolution oper-
ations are either 3-by-3, 5-by-5, or 1-by-1, where the
1-by-1 convolutions are used for reducing the dimension
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Fig. 2 The building block of the encoder-decoder network utilizes either 5-by-5, 3-by-3, or 1-by-1 convolution. The pooling performs
down-sampling in the encoder module and up-sampling in the decoder module

of the feature maps. The 5-by-5 convolutions are replaced
with 5-by-1 and 1-by-5 convolutions to reduce the com-
putational loads. In the encoder, the pooling performs
down-sampling, while in the decoder the pooling per-
forms up-sampling. We start with a shallow model that
has only 3 blocks for the encoder and 3 blocks for the
decoder, and increase the number of blocks to 10. The
number of feature maps is 32 for the initial block, 64 for
the middle block, and 128 for the last block. Finally, we
will compare proposed models with the ENet architecture
[4], which is shown in Fig. 3.
Having identified nuclear phenotypes with the best per-

forming model, we will then extend this model with
boundary-based representation to delineate overlapping
nuclei. The main goal is to use boundary information to
capture the perceptual boundaries of overlapping nuclei.
Ultimately, we hypothesize that the fusion of the region-
and boundary-based networks, shown in Fig. 4, improves
the overall segmentation results.

Experimental set-up
We have sampled from the whole slide images (WSIs) of
the publicly available brain tumor data from The Cancer
Genome Atlas (TCGA) and a Scandinavian breast cancer
cohort. WSIs have been anonymized with respect to the
patient identity, and a total of 32 WSIs have been selected
for this study. Each WSI (i) belongs to a unique patient,

(ii) is selected to reflect the diversity of the phenotypic
signatures, and (iii) is scanned with a resolution of 0.5
microns per pixel. From each WSI, an image (e.g., a pin-
hole) is cropped and used for annotation. These images
are a superset of a previously annotated cohort [15]. Man-
ual annotations of sampled images have produced approx-
imately 19,000 nuclei with diverse phenotypic signatures
that are released as Additional file 1. The annotated data
are partitioned equally (i.e. 50% -50%) into training and
testing in such a way that (a) there is no overlap, and (b)
the diversity of phenotypic signatures are represented in
both training and testing.

Evaluation
The proposedmethod is evaluated in terms of object-level
Precision, Recall, and F1−score defined bellow.

Precision = #TruePositive
#TruePositive + #FalsePositive

(1)

Recall = #TruePositive
#TruePositive + #FalseNegative

(2)

F1−score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

Where a nucleus has been considered a true positive,
when the intersection over union (IoU) of the ground
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Fig. 3 The complete architecture of the ENet model is shown. The model includes both encoder (light blue) and decoder (dark blue) parts. The
upward and downward arrows indicate up-sampling and down-sampling operations. Right hand arrows show different types of convolution
including normal, dilated, and asymmetric

truth and segmented nucleus is more than 50%. IoU of two
sets of pixels A and B is defined as below.

IoU(A,B) = A ∩ B
A ∪ B

(4)

We have also evaluated segmentation accuracy by its
standard error, which is computed by enumerating over
different permutations of training and testing data.

StandardError = σ√
n

(5)

Where σ is the standard deviation of the difference
between the output and ground truth and n is the total
number of pixels.

Pre-processing and Training of Networks
The training process is preceded by color decomposi-
tion (CD), which decomposes the RGB signal into two
channels of information corresponding to the DNA and
protein contents, where the former channel is used for
subsequent processing. CD is based on a recently pub-
lished method that has been shown to provide superior
results [22].
Trainings of the region- and boundary-based repre-

sentations are independent and is followed by training of
the fusion network. The region-based training relies on
the annotated mask. However, training of the boundary-
based representation is based on computed boundaries
from the annotated masks. The Adam optimization
algorithm [33] has been used for training, and the batch

Fig. 4 Framework for nuclear segmentation consists of three encoder-decoder networks. Two are used for region-based and edge-based
segmentation. The outputs of these two networks are then fused through a third network
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size (e.g., number of samples being processed at the same
time) is set at four due to the limitations of the GPU
memory. The learning rate and L2 weight decay were set
at 5e-4 and 2e-4, respectively. The dropout method is
used to avoid overfitting. The training of each model took
approximately three and a half hours using one GPU card.
The testing time for each 1k-by-1k image is less than 60
ms. The fusion architecture is the same as the region-
and boundary-based models. Moreover, we have used the
same set of parameters for training the fusion network

(e.g., learning rate, the ratio of training and testing
datasets).

Post-processing
The fusion model improves the segmentation results in
a number of ways that includes separation of touch-
ing nuclei; however, not all of the overlapping nuclei
are delineated. Therefore, a post-processing step of the
marker-based watershed method is added because of its
computational simplicity and open source availability.

Fig. 5 Qualitative performance of nuclear segmentation is shown for three different phenotypes. Columns (a), (b), and (c) illustrate the original
image, ground truth, and segmentation results of the proposed model, respectively. Rows 1 and 2 correspond to sections from breast cancer tumor,
and row 3 corresponds to a section from brain tumor. These images show large variations in color and phenotypic signatures. Row 1 shows a section
with distinct stains of pink and blue, rows 2 shows a section with predominantly deep blue stain, and row 3 shows nuclei with vesicular phenotypes
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Results and discussion
Our approach is to evaluate alternative architectures,
starting from shallow to deep networks, and then add
different complementary representations to improve per-
formance. The rationale being that the encoder-decoder
architectures can capture the diverse nuclear phenotypes,
which are extremely difficult with the traditional model-
based approaches. Having segmented complex pheno-
typic signatures, we will then use boundary information to
help in delineating touching nuclei. The design, for both
region- and boundary-based networks, is based on sym-
metric and asymmetric encoder-decoder architectures by
increasing the number of layers and testing the perfor-
mance incrementally. The goal is to inquire whether the
nuclear segmentation problem can be improved with (i) a
shallower network or deeper networks, (ii) the fusion of
networks as shown in Fig. 4, or (iii) multitask learning. All
of our experiments are initiated by the color decomposi-
tionmethod of [22] that was shown to perform better than
the prior state of the art. One of the main benefits of color
decomposition (CD) is that the training set can be reduced
as a result of the dimensionality reduction of the raw data.
To train and validate this architecture, we have annotated
19,000 nuclei from 32 different patients. Annotated nuclei
originate from 32 images, each image is cropped from a
pinhole of a unique whole slide image (WSI), and nuclei
from the same image are never used for both training and
testing.
We have performed a number of simulations, for

alternative architectures, and the results are shown in
Tables 1, 2, and 3. The overall approach is to evaluate
a model for region-based segmentation, with a varying
number of layers independently, and then select the best
model for the fusion and comparison with the original
model, i.e., the original asymmetric ENet model. The
contour-based model does not contribute to the segmen-
tation of different phenotypes but helps with separat-
ing adjacent nuclei. Table 1 shows that the ENet, with

the original number of layers, has the best performance.
Table 2 indicates that fused ENet has the best perfor-
mance, on the same dataset, when compared to the pre-
vious approach[15]. Table 3 compares the performance
of the fused ENet with UNet, fused UNet, and multitask
learning. Our observations are summarized below.
Improved delineation for a diversity of phenotypic signa-

tures is observed: One of the main challenges in nuclear
segmentation has been the complexities that are asso-
ciated with alternative phenotypes, as shown in Fig. 5.
The problem is further complicated as a result of tech-
nical variations such as fixation and staining (e.g., the
batch effects). While it is possible to engineer and hand-
craft a model, based on appearance and morphometry of
hyperchromatic nuclei, such an approach does not extend
to other phenotypes, i.e., vesicular ones. At some level,
the encoder-decoder architectures are specialized filters
that learn particular spatial distributions by example. The
net result is that the development costs are shifted more
toward curating a training dataset. More interestingly,
our simulations show that a three-layer encoder-decoder
architecture has the same performance as the deeper
architecture of the ENet. Hence, the intrinsic diversity of
nuclear phenotype, based on their spatial signatures, can
be captured with a few layers.
Color decomposition accelerates training for model con-

struction: Color decomposition in H&E stained images is
difficult for a number of reasons that were stated earlier.
Our recent approach [22] is the best performing color
decomposition thus far. CD offers three advantages. First,
it can accelerate the training time for model construction.
Second, it reduces the required number of training sam-
ples because of the lower dimensionality of data. Third, it
places the attention on pertinent nuclei morphometry and
texture because the DNA content are the primary relevant
information. Figure 6 shows the accuracy as a function of
number of epochs for model construction using RGB and
gray scale image following CD. It is clear that with the

Table 1 Quality of region-based nuclear segmentation remains mostly stationary as a function of increased network complexity

Input size Recall Precision F1-Score Standard Error

3-module encoder, 3-module decoder 0.80 0.89 0.84 1.4524e-06

4-module encoder, 4-module decoder 0.73 0.91 0.80 1.5081e-06

5-module encoder, 5-module decoder 0.74 0.90 0.80 1.5126e-06

6-module encoder, 6-module decoder 0.75 0.90 0.81 1.5325e-06

7-module encoder, 7-module decoder 0.76 0.90 0.81 1.5172e-06

8-module encoder, 8-module decoder 0.77 0.90 0.82 1.5004e-06

9-module encoder, 9-module decoder 0.78 0.90 0.82 1.5131e-06

10-module encoder, 10-module decoder 0.77 0.87 0.80 1.5231e-06

ENet 0.83 0.88 0.84 1.1412e-06

The italic items illustrate the best results
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Table 2 Comparison of nuclear segmentation between different
fusion models and a previously published method

Input size Recall Precision F1-Score Standard Error

Fused-ENet 0.94 0.88 0.91 1.1124e-06

Fused 3-module
encoder, 3-module
decoder

0.79 0.88 0.82 1.6170e-06

Multi-reference
Graphcut (MRG)

0.75 0.85 0.79 unknown

MRG was shown to out-perform other methods that include random forest
The italic items illustrate the best results

fewer number of epochs, the same accuracy was achieved
using CD.
Fusion of region- and boundary-based ENets improves

separation of overlapping nuclei: The simulation results
of Table 1 indicate that the three-layer network and
ENet have the same performance profile for delineat-
ing nuclear regions. The next step is to improve sep-
aration of touching nuclei, and the best performing
networks were selected to be trained with multiple rep-
resentations of region- and boundary-based training fol-
lowed by a fusion network. The results are shown in
Table 2. The intent is to learn perceptual boundaries
that aid in separation of touching nuclei. Interestingly,
the ENet performed better than the three-layers of
encoder-decoder architecture, which suggest that percep-
tual boundaries are higher order information and can
only be learned with much deeper networks. To eval-
uate our approach, we randomly selected 98 touching
nuclei from 16 independent images to conclude that 62
touching nuclei (e.g., 63.2% improvement) are correctly

Table 3 Comparison of nuclear segmentation between the
fused ENet with UNet, fused UNet, and multitask learning

Input size Recall Precision F1-Score Standard Error

UNet 0.86 0.81 0.83 1.2786e-06

Fused-UNet 0.89 0.86 0.87 1.1921e-06

Multi-task UNet 0.87 0.77 0.81 1.3117e-06

ENet 0.83 0.88 0.84 1.1412e-06

Fused-ENet 0.94 0.88 0.91 1.1124e-06

Multi-task ENet 0.89 0.83 0.86 1.2690e-06

The italic items illustrate the best results

separated by fused ENet. The remaining touching nuclei
can be delineated with themarker-based watershed. Qual-
itative representations of the fused ENet for delineat-
ing touching nuclei are visualized, for two test images,
in Fig. 7.
High speed segmentation is enabled: The proposed

model is time efficient and capable of performing instant-
based segmentation. The efficiency is the result of (i)
the model design and architecture, and (ii) using a GPU
card for computations. The encoder-decoder architec-
ture of the model allows for segmentation of the input
image in one forward pass. In addition, small convo-
lution operations (e.g., 1-by-1, 3-by-3, 5-by-1, 1-by-5)
reduce the computational cost. The fusion network has
been implemented on a server with a single GPU card.
The processing time for an image of size 1k-by-1k is
approximately 60 ms.
Integration of nuclear detection does not improve seg-

mentation results: We evaluate the performance of the
fusion model by applying the nuclear detection results

Fig. 6 Color decomposition (CD) accelerates the training time for model construction as a function of the number of epochs required to achieve the
same accuracy. Training accuracy as a function number of epochs when the input is represented as (a) an RGB image, and (b) gray scale following CD
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Fig. 7 Integration of region-based and edge-based segmentation helps to separate touching nuclei. (a) shows two examples of touching and
overlapping nuclei, (b) and (c) are the output probability map of the region-based and edge-based segmentation models, and (d) indicates the
output probability map of the fusion model

with the region- and boundary-based information. The
nuclei detection has been performed by using the method
proposed in [22]. Our analysis indicated that the seg-
mentation accuracy is not improved by adding the
detection results.

Conclusion
There are two intrinsic barriers to nuclear segmentation
in H&E stained images. These are (i) the diversity of phe-
notypes and (ii) overlapping nuclei that form perceptual
boundaries.We have demonstrated that some of these two
issues can be largely resolved by the fusion of encoder-
decoder architectures. The overall approach consists of
color decomposition, training models for the region- and
boundary-based representations, and a post-processing
step. Color decomposition generates a single relevant
gray scale image corresponding to the nuclear dye; hence,
reducing the required number of training samples. This
is significant since annotation is laborious and expensive.
The encoder-decoder architecture enables region-based
segmentation of complex nuclear phenotypes, which
also includes the vesicular phenotype. Furthermore, by
fusion of contour-based information, separation of adja-
cent nuclei is partially enabled. Some of the outstanding
issues are in the choice of model (e.g., UNet, ENet) and
the required number of layers for capturing the pheno-
typic diversities. We showed that by using the ENet for
region-based segmentation, the learning rate plateaus as
a function of increased number of layers, and the sym-
metric three layers network has the same performance
of the original 17-layer asymmetric ENet. However, a
fusion of region- and boundary-based models, with the

original ENet, produces better results. In addition, (a)
fusion of ENet performs better than the fusion of UNet,
and (b) fusion has a better performance than multitask
learning. The latter result must be due to the fact that
sharing learned weights hinders the performance profile.
The main insight is that there is a considerable amount of
application-specific and data-specific variations that has
a direct impact on the choice of model. Hence, a signifi-
cant amount of simulation is needed for model selection.
One of the main limitations of our approach is that the
segmentation of touching nuclei is not fully resolved
with the fusion of boundary- and region-based models.
As a result, we still have to use the watershed method,
which suffers from a number of limitations. Although
we integrated and tested the detection step, from our
previous work [22], segmentation was not improved. We
suggest that perceptual boundaries are much higher level
processes, which cannot be captured with the current
network architectures and is the subject of our continued
research. Finally, segmentation is fast and of the order of
20ms for an image size of 360-by-480 pixels running on a
server with one GPU card. As a result, whole slide images
can be processed efficiently and rapidly.

Additional file

Additional file 1: Supplementary materials. (ZIP 120,330 kb)
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