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Abstract

Background: Many human muscle wasting diseases are associated with abnormal nuclear localization. During
metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell
death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear
migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation.
Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that
loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear
positioning along the medial axis in late metamorphosis.

Results: To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we
developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm
to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving
nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles.
Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare
nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS
decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower
lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing,
indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also
caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in
control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased
muscle diameter, suggesting that the wider muscle fibre promotes lateral displacement of nuclei from the medial
axis during polar migration.

Conclusions: We developed new nuclear features to characterize the dynamics of nuclear distribution in time-lapse
images of Drosophila metamorphosis. Image quantification improved our understanding of phenotypic abnormalities
in nuclear distribution resulting from gene perturbations. Therefore, in vivo imaging and quantitative image analysis of
Drosophila metamorphosis promise to provide novel insights into the relationship between muscle wasting and
myonuclear positioning.
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Background
Skeletal muscle fibres are large multinucleated cells. Nu-
clei inside of muscle cells (myonuclei) are thought to be
positioned such that the local nuclear-cytoplasmic ratio
remains constant [1]. One reason for this behaviour is
that a nucleus can only support a fixed volume of cyto-
plasm, called a myonuclear domain (MND) [2], due to
the limited distance that proteins can be transported in-
side cells [3]. Therefore, in healthy muscles, nuclei are
expected to be evenly distributed. A quantitative study
on the spatial distribution of nuclei in mice has con-
firmed that the myonuclei are not randomly distributed
and are arranged in a row-like formation, indicating that
the nuclei could be repelling each other to minimize the
transport distance [4]. Unlike healthy muscles, several
studies have revealed abnormal MND sizes in hypertrophic
and atrophied muscles [5, 6]. Centrally positioned nuclei
have been observed in many muscle disorders, including
central nuclear myopathies [7] and muscular dystrophy
[8, 9]. Previous studies have shown that nuclear envelope
proteins play a role in regulating nuclei positioning
[10, 11]. In a study on Drosophila larvae, the KASH
mutants showed impaired locomotion and aggregation
of the myonuclei [12]. Loss of JNK signalling also caused
clustering of nuclei and large regions in muscles devoid of
nuclei [13]. Despite numerous studies on nuclear position-
ing, its role in muscle function remains unclear.
Fig. 1 Schematic diagram explaining different stages of nuclear localization
initial two-row like formation in prepupae to a clustered distribution in mid-p
DIOM undergo histolysis and create muscle debris with nuclei inside them. Th
the myonuclear distribution
Previously, we reported that, during Drosophila meta-
morphosis, which last 4 to 5 days, the nuclei in abdominal
dorsal internal oblique muscles (DIOM), also referred to
as persistent muscles show changes in myonuclear distri-
bution [14]. In larval and prepupal stages, nuclei show an
even distribution within the muscle fibres (Fig. 1). After
head eversion (HE), taking place approximately 12 h after
puparium formation, most skeletal muscles undergo pro-
grammed cell death and become fragmented, while per-
sistent muscles survive into adulthood. We will refer to
nuclei inside the persistent muscles as internal nuclei and
nuclei inside sarcolytes (muscle fragments) as external nu-
clei. In the first 2 days of pupation after HE, persistent
muscles undergo atrophy and their nuclei start migrating
in an anti-polar fashion towards the centre of the muscle.
At mid-pupation, the direction of myonuclear migration
reverses and the nuclei move back to the poles while posi-
tioning themselves along the medial axis of muscles.
While the muscle diameter increases in late pupation, the
nuclei remain anchored in a single-row formation along
the medial axis. Myonuclear migration was also reported
to occur in early myogenesis when mouse myoblasts fuse
with myotubes [15] and Drosophila embryonic myoblasts
fuse with founder cells [16], suggesting that muscle re-
modelling could be interpreted as dedifferentiation of ma-
ture muscles into a myotube-like state. In a pilot forward
genetics RNAi screen, we also identified the first genes
. a In persistent muscles, the nuclear positioning transitions from an
upation, and lastly a one row formation in late pupation. b A sub-set of
ese nuclei form the external nuclei. c Knockdown of Cp1 and Atgs affect
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that play roles in the migration and positioning of nu-
clei in remodelled muscles [14]. Silencing of Cp1, the
gene encoding the homolog of the lysosomal proteases
Cathpesin-L inhibited anti-polar migration in early mi-
gration. Knockdown of several autophagy-related genes
(Atg5, Atg9, Atg12. Atg18) resulted in scattering of nuclei
along the lateral axis in late metamorphosis, giving the ap-
pearance of a double-row formation (Fig. 1c, Additional
file 1: Figures S1 & S2) [14]. To better understand myo-
nuclear distribution and compare the phenotypes resulting
from genetic perturbations more objectively, new methods
for the quantitative analysis of nuclear migration and
localization are required. Spatial pattern analysis has been
used to investigate the sub–cellular localization of centro-
meres [17], nuclei in multi-nucleated muscles [4], and
nuclei in Drosophila embryos [18].
In this paper, we present our spatial pattern analysis

algorithm to study the effects of genetic perturbations
on the distribution of nuclei in remodelled Drosophila
muscles during metamorphosis. Our method consists of
two parts. First, we detect and track nuclei inside remod-
elled muscles expressing Mhc-tau-GFP and Histone-mKO
to label cytoplasm and nuclei in two different colors. Since
we analyse 2D projections of 3D image stacks, we need to
classify nuclei inside muscle regions into slow-moving in-
ternal and fast-moving external nuclei. We demonstrate
high accuracy for the segmentation, tracking and classifi-
cation steps. Second, we calculate static and dynamic
spatial pattern features of slow-moving nuclei correspond-
ing to remodelled muscles. The longitudinal and lateral
nuclear spreads and their changes over time helped us de-
tect significant phenotypic variations between different ge-
notypes that were not discernible by eyeballing. As such,
quantitative analysis of nuclear migration and localization
will improve the depth of phenotypic profiling in time-
lapse image analysis.
Methods
We used the UAS-GAL4 system to achieve targeted ex-
pression of fluorescent proteins and shRNA (small hairpin)
in muscles. Muscle cytoplasm and nuclei were labelled
using MHC-tau-GFP [19] and UAS-Histone 2Av-mKO
[20], respectively. Mef2-GAL4 was used as a muscle specific
driver [21]. All UAS-shRNA (small hairpin) transgenic lines
were obtained from Transgenic RNAi Project (TRiP)
collection [22]. In our experiment, we crossed female
of reporter line MHC-tau-GFP/FM7-GFP; Mef2-GAL4,
UAS-histone-mKO/TM6B Tb with male of UAS-GeneX-
RNAi lines. We examined muscles of non-tubby progeny
with genotype MHC-tau-GFP/+; Mef2-GAL4, UAS-histone-
mKO/UAS-GeneX-RNAi. In our study, we used RNAi lines
of the following genes: Chromator (Control, Bloomington
Stock id: B-36084), Atg9 (B-34901), Atg18 (B-34714), Atg5
(B-34899), Atg12 (B-34675) and Cp1 (B-32932). The cross
was done at 25 °C.
The protocol for sample preparation and microscopy

has been previously described [23, 24]. Line scanning
Zeiss LSM 5 Live microscope was used to perform live
imaging of Drosophila pupae. 20–30 pupae were imaged
simultaneously using multi location imaging feature of
line scanning microscope. We performed imaging for a
duration of 4–5 days. Images were collected at an interval
of 30 min. We also collected images of pupae at multiple
focal planes. Two color channels were imaged: channel 1
with an excitation laser of 488 nm, band path filter (BP)
500–525; and channel 2 with 532 nm laser line, BP 560–
675. The image acquisition was done with the following
settings: 10× magnification (EC Plan-Neofluar 10×/
0.30 M27), pin hole size of 16.6 μm and frame speed of 2
FPS. The images were of size 1024 × 1024 pixels, and the
physical size of each pixel was 1.25 × 1.25 × 11.08 μm.
The confocal imaging generated LSM files for each time
point. LSM files of every time point of a pupae were
concatenated into an ICS file using custom software [25].
For time series analysis of images, the 3D stacks of ICS
files were converted into their 2D projections using the
maximum intensity projection (MIP) method. The final
result was a multi-tiff file in which each image represents
a time point. This multi-tiff file was used as an input for
nuclear spatial pattern analysis.
Nuclear spatial pattern analysis pipeline
A schematic diagram of the nuclear spatial pattern ana-
lysis has been shown in Fig. 2.
Nuclear region extraction inside persistent muscles
Apart from the nuclei inside the persistent muscles (in-
ternal nuclei), the nuclei inside dead muscle fragments
(external nuclei) are also present in the pupa abdomen,
as shown in Fig. 3a, a’. To calculate nuclear features, we
require only the region occupied by internal nuclei.
Therefore, after nuclear segmentation, removal of exter-
nal nuclei from segmented nuclear regions is an import-
ant step in myonuclear spatial pattern analysis. The
external nuclei which are located outside the persistent
muscles can be removed easily using muscle boundary.
However, it is difficult to remove external nuclei which
appear to be inside persistent muscles due to 2D projec-
tion; while they are actually located above or below the
persistent muscles. We could not use 3D images for re-
moval of external nuclei due to low z resolution. To tackle
these problems, we designed a new algorithm for extract-
ing regions occupied by internal nuclei. Key techniques of
the algorithm are:

1) Muscle Segmentation



Fig. 2 Workflow of the nuclear spatial pattern analysis pipeline. 1
The pipeline takes a multi-tiff time series stack as input. 2 The muscle
cell boundary is extracted using FMAj tool. 3 The colour channel which
contains nuclei is segmented to obtain the nuclear regions. The muscle
boundary is used to remove nuclei which lie outside the muscle cell.
The external nuclei (present inside the fragments of dead muscle) are
identified and removed from the segmentation results to avoid
incorrect feature calculations. 4 & 5 Nuclear spatial pattern features
are calculated using the extracted nuclear regions and these features
are used for time series statistical analysis of the myonuclear
distributions and localization during metamorphosis

Fig. 3 a Examples of internal and external nuclei. b Examples of nuclear cl
a muscle cell between time points t (a) and t + 1 (a’). The rest of the slow
arrowheads show external nuclei located outside muscle cells. b & b’ The y
muscle cells
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As mentioned before, we require the muscle boundary
to remove external nuclei located outside persistent mus-
cles. The color channel of input stack containing muscle
cells is used for segmentation. The muscle boundaries are
obtained by using an imageJ based muscle analysis tool,
FMAj [23]. We also extract morphological features from
muscle boundary to understand the relationship between
nuclear distribution and muscle mass change.

2) Nuclear Segmentation

Due to low resolution of images, it is difficult to ex-
tract boundaries of nuclei when they are close to each
other. For example, a clustered group of nuclei appear as
a large blob of bright fluorescence, as shown in Fig. 3b,
b’. For this reason, instead of detecting each nucleus, we
extract regions where nuclei are located. Each region
can contain one nucleus or multiple nuclei. Nuclear
segmentation is used to detect myonuclei. To avoid in-
correct segmentation due to imaging noise, we first
smoothen the image using a bi-exponential edge preserv-
ing smoother (BEEPS) [26]. This technique smoothens the
high intensity spots near the muscle boundary which
occur due to dual channel imaging, while retaining the
edge information of nuclei.
For segmentation of nuclei, we use the negative

Laplacian of Gaussian (LoG) filter based scheme [27].
The LoG filter has been used previously to find dark
circular spots of radius σ surrounded by bright back-
grounds [28, 29]. The general idea is that after Gaussian
blurring, the intensity distribution of a nuclei form a
smooth ridge and the LoG filter can locate the nuclei by
detecting the peak point of these ridges. We use a negative
LoG kernel (i.e., −Lσ) to enhance bright nuclei surrounded
by a dark background. Here, σ = 6 which is the average ra-
dius of myonuclei in our dataset, is used. In our images,
the LoG filter increases the intensity of the regions where
nuclei are present. We achieve nuclear segmentation by
ustering. a The arrow show the movement of an external nucleus over
moving nuclei inside the muscle cell are internal nuclei. The cyan
ellow arrowheads show the clumping of nuclei in two different
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applying binary thresholding to the filtered image. Any
pixel of intensity 255 was labelled as nuclear region
whereas the rest of the pixels were treated as background.
Figure 4 shows the results of different stages of nuclear
segmentation. Smoothening of image results in decrement
in the number of false positives during segmentation
(Table 1). Also, by using the LoG filter as pre-processing
step, we improve the segmentation of nuclei which have
relatively low intensity as compared to the others.
Since we only want the nuclei present inside the muscle

cells for analysis; after obtaining the segmentation results,
the external nuclei located outside the muscle boundary
are removed, as shown in Fig. 4e. In addition, we have to
remove the external nuclei that appear inside muscles as a
result of overlapping in image projections. We will de-
scribe the classification technique used for removing
external nuclei in the next section.

3) Nuclear Tracking and Classification

In order to remove the external nuclei from the seg-
mentation results, we designed a new methodology to
classify external and internal nuclei based on their
movements. There is a significant difference in the
movement of these two types of nuclei. The external
nuclei move faster (25–37 μm/h) than internal nuclei
(0–12 μm/h). In our classification methodology, we use
such a motion characteristic to differentiate between
external and internal nuclei. First, we obtain the tracks
of nuclei based on a proximity criterion and then clas-
sify these tracks on the basis of a cost function derived
from nuclear movement in each track.
Various studies were done on tracking nuclei previ-

ously [30–32]. However, these problems were custom-
ized for tracking nuclei during cell division. On the
other hand muscles have multiple nuclei and they don’t
undergo division. Combined with various issues in our
dataset like indistinguishable nuclei due to their adhering
Fig. 4 Results of different stages of myonuclear segmentation. The figure s
image smoothening using BEEPS (b), LoG filtering (c) and thresholding (d).
muscle cell boundary, we remove the external nuclei located outside musc
muscle cell boundary
to each other, missing nuclei in many time points due to
movement of muscles during imaging, etc.; makes it a
unique problem which cannot use the previous nuclei
tracking techniques. In the followings, we discuss our ap-
proach on nuclear tracking and classification in detail.

Step 1: Generating tracks of nuclei First, we use con-
nected component analysis on the nuclear regions extracted
in previous section, to detect and label blobs [33, 34]. Each
blob can contain one nucleus or multiple nuclei. We use
these labelled nuclei to generate tracks. However, in our
dataset, it is impossible to track a nucleus from beginning
to the end of time series. As mentioned before, at certain
time points the nuclei are so close to each other that it is
difficult to distinguish them, and due to this issue, we get
incomplete tracks of nuclei. Therefore, instead of trying to
track nuclei throughout the development, we generate mul-
tiple smaller tracks. For example, we are tracking a nuclei
n1 and the track number is k1. At a time point T = t, n1
comes close to another nucleus/group of nuclei and form a
large clump of high intensity (individual nucleus not vis-
ible). At time point T = t + 1, a nucleus separates from the
group of nuclei. However, we are not sure whether it is nu-
cleus n1 or other nucleus from the group. In order to avoid
this discrepancy, we call this separated nucleus n2 and cre-
ate a new track k2. In this manner, we create multiple tracks
of the same nucleus over a period of time. The tracks are
created based on the nearest neighbour approach. For a nu-
cleus at time point t, its nearest neighbour at time point
t + 1 is found using the minimum distance between cen-
troids of nuclei as criterion. Similarly, for each nucleus at
time point t + 1, its nearest neighbour at time point t is
found. We observed three types of relationships between
nuclei in adjacent time points as shown in Fig. 5a, a’.
Case I: Nucleus n1 from time point t is the nearest

neighbour of nucleus n1’ from time point t + 1 and nu-
cleus n1’ from time point t + 1 is the nearest neighbour
of nucleus n1 from time point t. Therefore, they have a
hows the input image for nuclear segmentation (a) and the results of
The bright spots in (d) are the regions occupied by nuclei. Using
le cells (yellow arrowhead) as shown in (e). The white contour is the



Table 1 Nuclear segmentation performance evaluation

True positive False positive False negative False positive rate False negative rate

Otsu thresholding without LoG filter 846 0 108 0 0.11

LoG based segmentation with BEEPS smoothening 1180 29 0 0.024 0

LoG based segmentation without BEEPS smoothening 1180 334 0 0.221 0
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mutual relationship, indicating that these two nuclei are
the same.
Case II: Nucleus n1 from time point t is the nearest

neighbour of nucleus n2 from time point t + 1, but nu-
cleus n2 is not the nearest neighbour to nucleus n1. This
indicates that n1 is a group of nuclei instead of single
nucleus and n2 is a nucleus that has broken off from
group of nuclei n1 (Fig. 5a). Here, ‘broken off ’ refers to
separation of nuclei which are very close to each other.
Case III: This is the opposite of case II. Nucleus n1’

from time point t + 1 is the nearest neighbour to nu-
cleus n2 from time point t; however, nucleus n1’ is not
the nearest neighbour of nucleus n2 (Fig. 5a’). This
would indicate that n1’ is a group of nuclei that was
formed by joining nucleus n2 with another nucleus.
Here, joining refers to two or more nuclei adhering to
each other, making them indistinguishable.
Next, we explain the approach used to generate tracks

from the relationships between nuclei in adjacent time
points. At the first time point of time series stack, every
Fig. 5 Nuclear tracking. a Two nuclei which formed a clump n1 at time po
therefore n1’ is added into the track containing n1. Whereas, n2 starts a ne
Since n2 does not have mutual closeness to n1’; the track containing n2 te
b The diagram shows an example of tracks generated by nuclei movemen
than the internal nuclei
nucleus starts a new track. If a nucleus has mutual rela-
tionship with another nucleus from the next time point
(Case I), the track continues. However, if a nucleus has
one way relationship with a nucleus in the next time
point (Case III), its track terminates. New tracks are cre-
ated when a nucleus does not have a mutual relationship
with any nucleus in previous time point (Case II) (Fig.
5a, a’). We represent the tracks in the form of a T by X
table; where T is the time point and X is the total num-
ber of tracks. It contains the labels of nuclei. Each nu-
cleus in a time point has a unique label. These unique
labels are generated by finding connected components
in the image (binary image containing nuclear region as
255 and background as 0) and labeling each component/
nuclear region. The labels are assigned based on the lo-
cation of nuclei along the y axis. Therefore, if there is a
difference in the sequence of nuclei along y axis in sub-
sequent time points, the same nuclei will have different
labels. If external nuclei are also present, the labels of
nuclei change. Track 2 in Additional file 1: Table S1 has
int t, separate at t + 1. n1 and n1’ are mutually closest to each other;
w track. a’ Two internal nuclei n1 and n2 at t form a clump at t + 1.
rminates at t. Whereas, n1 forms a track which contains n1’ and n1”.
t between three time points. The movement of external nuclei is larger
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different labels at many time points for the same nu-
cleus. In the case of track 1, the nucleus is closest to x
axis and there are no nuclei in its proximity; therefore
its label does not change in subsequent time points.
We are able to track the nuclei accurately when their

movement between adjacent time points is close to zero.
However, that is not the case throughout pupal develop-
ment. The movement of muscle cells varies during the
development of pupa. Between 12 and 40 h after head
eversion, due to fast movement of muscle cells, the dis-
tance covered by internal nuclei in adjacent frames is
high (>10 pixels/12.4 μm distance between centroids of
muscle cell in consecutive time points). Between 40 to
90 h after head eversion, muscles move slowly. In order
to correctly track the nuclei between two consecutive
time points, we adjust the position of nuclei at one of
the time points to compensate the movement of muscle
cells. First, we find the amount of displacement muscle
cell undergo, by measuring the displacement of its
centroid in two consecutive time points. For example,
centroid of muscle cell moved x pixels horizontally and
y pixels vertically between time point t and t + 1. Next,
we translate the image at time point t horizontally by x
pixels and vertically by y pixels, so that the nuclei at
time point t and t + 1 align with each other. This align-
ment facilitates the tracking process by reducing the
number of incorrect matching of nuclei between con-
secutive time points.

Step 2: Distinguishing internal from external nuclear
tracks The movement of internal nucleus is much
slower than the movement of external nucleus. We ex-
ploit this property to classify these two types of nuclei.
Intuitively, if a track belongs to an external nucleus, then
the average movement of nucleus between consecutive
frames should be higher as compared to a track which
belongs to an internal nucleus. A schematic diagram in
Fig. 5b shows the difference between the track of an in-
ternal and external nucleus. Therefore, we design a cost
function which is an indicator of the nuclei motion. For a
track x of length nx which starts at time point ts and ends
at time point te, the cost function M(x) is given as

M xð Þ ¼ 1
nx

Xi¼te

i¼tsþ1
Di � 1−Oið Þ ð1Þ

where Di is the distance between centroid of nuclei in
consecutive time points and Oi is the percentage overlap
between nuclei in consecutive time points. Higher value
of cost function indicates higher possibility of the track
belonging to an external nucleus and vice versa. The
overlap factor (Oi) increases the cost when the overlap
between nuclei is low.
After obtaining the cost function for every track, we
classify them based on a cost cut-off. Tracks whose cost
function is higher than a threshold λ are classified as
tracks of external nuclei. The external nuclei from these
tracks are removed from the segmentation results (Fig.
6). Since, the position of nuclei is normalized according
to the movements of muscle cells during calculations;
the threshold λ should be same for every time series
stack. We obtain the value of threshold by performing
accuracy tests on training datasets, which will be dis-
cussed in the results section.
Nuclear spatial pattern feature
During certain time points, it is impossible to identify
the location of each nucleus because multiple nuclei
adhere to each other and form a large clump of high
intensity. In these cases, extraction of nuclear region
generates a blob (connected components) which con-
tains many nuclei. For this reason, we cannot use point
pattern analysis [18] to study nuclear distribution, but
have to design a different approach which uses complete
nuclear structure inside muscles as compared to only cen-
troids for nuclear pattern feature generation. We design
three new features which quantify different types of nu-
clear distributions, i.e. nuclear spatial density index,
longitudinal nuclear spread and lateral nuclear spread.
Before analysing the nuclear distribution, we rearrange
the nuclear structure along the straightened medial axis
of the muscle cell.
Rearrangement of nuclei in straightened muscle cell
Aligning the nuclei along the straightened medial axis of
muscle cell helps to provide a spatial reference for com-
paring nuclei from different samples. We assume that
the medial axis of muscle cell is straight and adjust the
position of nuclei according to the changes in the curva-
ture of the medial axis (Figs. 7 & 8a-a”). The straightening
algorithm is as follows:

1) Find the centroid of a nucleus.
2) Find the smallest distance (dx) to the centroid from

the medial axis of muscle cell. Let the point at the
medial axis which has the least distance from the
centroid be m.

3) Find the length of medial axis (dy) between the start
of medial axis and point m.

4) Find the angle (α), i.e. the angle between the tangent
at point m of medial axis and y axis.

5) Assuming that the start point of straightened medial
axis lies at x = X, y = 0, then the new coordinate of
point m is P(X,dy) and the centroid of the nucleus is
P(X ± dx, dy). X is a constant number such that
X ± dx is never negative. The sign in X ± dx



Fig. 7 Rearrangement of nuclei in straightened muscle cell for comparing nuclei from different samples. a1-a3 The figure shows various steps
involved in rearrangement of a nucleus along straightened muscle medial axis i.e. calculation of new coordinates of nucleus and medial axis (a1),
translation of nucleus to new coordinate (a2) and rotation of nucleus about its centroid (a3). b Rearranged nuclei along medial axis are shown
for two muscles with different shapes

Fig. 6 Results of nuclear classification. a The images show the result of nuclear segmentation for five time points selected from a pupa expressing
Atg9 RNAi. DIOM muscle from 3rd segment of pupa abdomen was used for this analysis. The segmented nuclei contain both internal and external
nuclei. The white arrow and oval arrow indicates an external and internal nucleus. b The labels of nuclei at each time point are shown. Nuclei which
have same colour in subsequent time points belong to same track. The details of nuclear tracks are shown in Additional file 1: Table S3. c The images
show results of nuclear classification. The contours of classified external nuclei are removed from the segmentation results
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Fig. 8 Example showing differences in nuclear spatial density due to change in cell size. (a-a”) NSD: Nuclear Spatial density. The figure shows
straightening of nuclei with respect to the medial axis of nuclei. It compares the nuclear spatial density index for straightened (a”) and un-straightened
nuclei (a’). b-b” The value of nuclear spatial density is lower for densely packed nuclei (b) as compared to evenly distributed nuclei (b”)
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depends on whether the nucleus is located on left or
right side of medial axis.

6) Next, Translate the nucleus to point P(X ± dx, dy)
and rotate the nucleus by an angle α.

7) Repeat steps 1–6 for each nuclei inside the muscle
cell.

1) Nuclear spatial density

As mentioned earlier, it has been previously shown
that there is an association between nuclear localization
and muscle mass change. To confirm this hypothesis, we
design a feature that measures the nuclear spatial density
with respect to the cell size.

Nuclear spatial density NSDð Þ¼ Area of convex hull of nuclei
Area of muscle cell

ð2Þ

A straightened nuclear structure is used to calculate
the convex hull. The convex hull of a nuclear region is
the smallest convex set which contains that region [35].
If nuclear spatial density is close to 1, the nuclei are lo-
cated close to the muscle boundary and are distributed
more evenly. Alternatively, a low value of NSD indicates
that the nuclei formed a cluster and occupied a small
part of the muscle cell. In Fig. 8, the sample b has the
smallest NSD, resulting from clustering of the nuclei. In
sample b’, although the nuclei are more spread out, the
NSD is not as high as in sample b”. This is because sam-
ple b’ has a larger cell size than sample b”.

2) Longitudinal nuclear spread

Longitudinal nuclear spread characterizes the polar
and anti-polar migration of nuclei. It is defined as the
distance between the extremes of the nuclei along the
medial axis and denoted as Ln. The normalized migra-
tion of nuclei along the medial axis/normalized longitu-
dinal nuclear spread NMlon is defined as:

NMlon ¼ Ln=Lc ð3Þ

where Ln is the longitudinal nuclear spread and Lc is the
length of the muscle cell (Fig. 9a). A high NMlon indi-
cates that the nuclei are close to the poles of the muscle
cell and a low value indicates that they are far.

3) Lateral nuclear spread

Lateral nuclear spread characterizes the movement of
nuclei away from the medial axis of muscle during late
stages of pupal development. The lateral nuclear spread
Mlat is defined as:



Fig. 9 Schematic diagram explaining the derivation of nuclear
pattern features. a Normalized longitudinal nuclear spread. b Normalized
lateral nuclear spread
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Mlat ¼ 1
u

Xi¼u

i¼1
Wni ð4Þ

where Wni is the width of the nuclear structure at the ith

location on the medial axis, and u is the number of sam-
ples taken along medial axis (Fig. 9b). All of the samples
are collected at equal interval along medial axis. A high
Mlat indicates an increase in the distance between nuclei
along the width of muscle i.e. two-row formation of
nuclei.
In order to quantify the influence of muscle mass change

on lateral displacement of nuclei, we also designed normal-
ized lateral nuclear spread. Normalized lateral nuclear
spread NMlat is defined as:

NMlat ¼ 1
u

Xi¼u

i¼1
Wni=Wci ð5Þ

where Wci is the width of muscle cell at the ith location
on the medial axis. A high NMlat indicates that the nu-
clei are close to the boundary of the muscle cell. A few
examples of the values of longitudinal nuclear spread
and lateral nuclear spread are shown in Fig. 10.
Fig. 10 Comparison of nuclear pattern features of a muscle at three differe
samples. At +71 h, the muscle has highest Mlon and NMlon because the nuc
Whereas, the muscle has highest Mlat at +17 h; because the nuclei are more s
similar at three time points. This indicates that at these three time points, the
Implementation of algorithm
The nuclear pattern analysis algorithms were imple-
mented in Java and incorporated as a part of the FMAj
tool. We have used two external libraries: Mexican hat
filter [27] and hull and circle plugin [35]. The nuclear
analysis module in FMAj is divided into three sections:
nuclear segmentation, nuclear classification and nuclear
feature generation. Nuclear segmentation is performed
on complete image. Whereas, nuclear classification is
performed on nuclei inside muscles using muscle
boundaries. The nuclear features generated by FMAj are
stored in a MySQL database. The analysis of the features
was done in excel and FMAj.

Results
Evaluation of nuclear segmentation
We evaluated the performance of segmentation at object
level rather than pixel level. We manually counted the
false negative, false positive and true positive by compar-
ing the segmentation results with original image. False
positive (FP) is the count of segmented objects which
were not nuclei. True positive (TP) is the count of seg-
mented objects which were nuclei. False negative (FN) is
the count of nuclei which were not segmented. We eval-
uated the segmentation results for 140 time points that
were selected from two Atg9 samples. We used two pa-
rameters for evaluation:

False negative rate ¼ FN= FNþ TPð Þ
False positive rate ¼ FP= FPþ TPð Þ ð6Þ

The false negative rate is the ratio of false negative and
the total number of actual nuclei; whereas, the false
nt time points. The muscle shown in the figure is from a control
lei are closer to the poles of the muscle cell than at other time points.
pread out along the width of muscle. The value of NMlat is approximately
spread of nuclei with respect to width of muscle is similar
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positive rate is the ratio of false positive and the total
number of nuclei segmented.
The performance of thresholding segmentation with

LoG filtering is compared with thresholding (Otsu) with-
out LoG filtering in Table 1. As shown in Table 1, LoG
based method has zero false negative rate and 0.024 false
positive rate. It means that LoG based method correctly
segments every nuclei; however it also segments some
non-nuclei high intensity spots (imaging noise). In com-
parison, Otsu thresholding without LoG filtering has
false negative rate of 0.11 which is not suitable for
spatial pattern analysis. The results of LoG based seg-
mentation without bi-exponential smoothening is also
shown in Table 1. The false positive rate is higher in the
case of segmentation without smoothening as compared
to with smoothening. This verifies that smoothening of
our images is necessary to remove imaging noise.
Evaluation of nuclear classification
λ = 7 is used for nuclei classification in our dataset. In
order to find the correct λ for our dataset, we used a
training dataset to calculate the performance of classifi-
cation for different thresholds. We calculated following
Fig. 11 Performance evaluation of nuclear classification at different thresho
the performance of nuclear classification at different thresholds using follow
negative rate (c). Each series in the graph represents a different muscle cel
highest and error rates are lowest. This threshold value is used for nuclear
classification at different stages of pupal development using following para
(f). Large movements of internal nuclei results in low accuracy and high er
after +50 h due to slow movement of internal nuclei
parameters for classification performance evaluation: ac-
curacy, false positive rate and false negative rate.

Accuracy ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ ð7Þ

We measured the false negative, false positive, true
negative and true positive by comparing the classifica-
tion results with a ground truth which was generated
manually using FMAj [23]. False positive (FP) is the
count of external nuclei which were falsely classified as
internal nuclei. True positive (TP) is the count of correctly
classified internal nuclei. False negative (FN) is the count
of internal nuclei falsely classified as external nuclei. True
negative (TN) is the count of correctly classified external
nuclei. The performance evaluation was done for 6 differ-
ent muscle cells from different genotypes i.e. two samples
from control, Atg9 and Atg12; data was generated from at
least 50 time points per muscle cell. We visualized accur-
acy, false positive rate and false negative rate for these 6
muscles in a graph as shown in Fig. 11a-c. The threshold
at which accuracy was highest and error rates were mini-
mum was selected for classification of nuclei (Shown by
black dotted line) i.e. λ = 7.
ld values and different development stages. a-c The graphs compare
ing parameters i.e. accuracy (a), false positive rate (b) and false

l. The black dotted line indicate the threshold value at which accuracy is
classification. d-f The graphs compare the performance of nuclear
meters i.e. accuracy (d), false positive rate (e) and false negative rate
ror during between +20 and +50 h. In comparison, accuracy is high
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Thus, we measured the performance of our nuclear
classification algorithm at λ = 7, for the same 6 muscles
which were used for calculation of λ. The results are as
follows: average accuracy = 96.9 ± 1.2%, average false
positive rate = 1.2 ± 0.2%, average false negative
rate = 2.1 ± 1.3%. A comparison of nuclear classification
performance evaluation during different stages of pupal
development is shown in Fig. 11d-e. It can be observed
that the accuracy of nuclear classification suffers due to
the large movements of internal nuclei between 20 h
and 50 h after head eversion. Whereas, during later
stages of pupal development, the reduction in movement
of internal nuclei results in high accuracy and low false
positive and negative rates.

Results of Myonuclear spatial pattern analysis
We previously described the effects of genetic perturba-
tions on nuclear migration remodeled muscles [14].
Here, we used the nuclear spatial pattern analysis algo-
rithm to quantify nuclear distribution in Cp1shRNA,
AtgsshRNA and control muscles. To compare different
genotypes, we calculated the nuclear features for each
genotype and performed a non-parametric Mann-Whitney
U test. The significance test was performed for nuclear fea-
tures at every time point. We plotted −1*log10(P-val) for
each time point where nuclear features had been calculated.
Value of −1*log10(P-val) above 1.3 (P-val = 0.05) is consid-
ered significant. We used head eversion (HE) as a temporal
reference to compare different samples. Time was repre-
sented as hours (h) after head eversion. DIOM muscle from
3rd segment of pupa abdomen was used for this analysis.
We have also compared the properties of nuclear tracks be-
tween different genotypes like start and end time of track,
length of track, nucleus speed etc. (Additional file 1: Table
Fig. 12 Comparison of change in longitudinal nuclear spread during polar
shows the mean of difference in the longitudinal nuclear spread Ln betwee
(b). The error bars show the 95% confidence interval. During anti-polar mig
Atg5, Atg9 and Atg18 compared to control. Therefore, at the end of anti-polar
large in above mentioned Atg genes. However, during polar migration, the to
different from control. This would indicate that the reduced expanse of n
due to positioning of nuclei at large distances from poles at beginning of pol
the small change in expanse of nuclear structure as compared to control. *P <
S2). It shows that external nuclei display high speed and
large movements compared to internal nuclei irrespective
of genotype.

Cp1 participates in the anti-polar/polar migration of
nuclei
Quantitative nuclear pattern analysis confirmed that the
knockdown of Cp1 affected anti-polar nuclear migration
in early pupation (Additional file 1: Figure S1c, d). In
control muscles, anti-polar migration reduced the ex-
panse of nuclei along the medial axis (Ln) by ~97.5 μm
between +28.9 h (205.8 μm) and +46.6 h (108.4 μm)
(Additional file 1: Table S3, Fig. 1a, b). By contrast, Cp1
silencing resulted in reduction of Ln by ~58.6 μm between
+23.5 h (209.8 μm) and +54.1 h (151.3 μm) (Fig. 12a). Un-
like control, where nuclear polar migration increased the
value of Ln by ~82.6 μm between +46.6 (108.4 μm) h and
+72.1 h (190.9 μm); Cp1 RNAi did not show polar migra-
tion. Due to decreased anti-polar migration in Cp1 RNAi,
the values of Ln are significantly different for control and
Cp1 RNAi between +42 h and +52 h (Fig. 13a, b).
The normalized longitudinal nuclear spread (NMlon),

indicated that the reduction in expanse of nuclei along
medial axis of muscle (Ln) in Cp1 RNAi is due to short-
ening of muscle cells. This phenomenon was confirmed
by very small change in values of NMlon for Cp1 RNAi
between +32.5 h and +60 h (Fig. 13c). Between +32.5 h
and +45 h, NMlon values changed only by 0.2
(0.82 ± 0.07–0.84 ± 0.05) for Cp1 RNAi as compared to
0.27 (0.83 ± 0.05–0.55 ± 0.13) for control. Similarly, be-
tween +45 h and +60 h, NMlon values changed only by
0.2 (0.84 ± 0.05–0.85 ± 0.02) for Cp1 RNAi as compared
to 0.28 (0.55 ± 0.13–0.83 ± 0.03) for control. The signifi-
cantly high values of NMlon for Cp1 RNAi as compared
and anti-polar migration between different genotypes. The graph
n different genotype for anti-polar migration (a) and polar migration
ration, the movement of nuclei towards the muscle centre is higher in
migration the distance between extreme nuclei and poles is significantly
tal distance moved by nuclei towards poles in Atgs is not significantly
uclei in Atgs compared to control during polar migration (Fig. 14) is
ar migration. The reduced anti-polar migration in Cp1 is also shown by
0.05, **P < 0.01, ***P < 0.001, ns = not significant (P > 0.05)



Fig. 13 Longitudinal nuclear spread quantifies the effect of Cp1 knockdown on anti-polar migration. a & c Graphical comparisons of Ln (Distance
between the extremes of the nuclei along the medial axis) and normalized longitudinal nuclear spread NMlon between control and Cp1 mutant.
Due to absence of anti-polar movement of muscles around +50 h in Cp1 mutants; the value of both Ln and NMlon is high as compared to control.
b & d Significance graph. For each population, statistics were derived from 5 to 7 DIOM1. The muscles were from segment 3 of abdomen. The
graph on top show average values of the features. The horizontal dotted lines in the significance graphs represent the p-value 0.05
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to control between +40 h and +57 h indicate that the
knockdown of Cp1 resulted in absence of anti-polar mi-
gration (Fig. 13d).

Silencing of Atg9 and Atg18 increases the anti-polar
migration and decreases the polar migration of nuclei
RNAi of Atg5, Atg9 and Atg18 affected myonuclear mi-
gration. While knockdown of all Atgs RNAi did not
block anti-polar and polar nuclear migration (Additional
file 1: Figure S2), the silencing of Atg9 and Atg18 re-
sulted in prolonged anti-polar migration of nuclei (7.5 h
(median) delay for Atg9 RNAi and 4 h (median) delay
for Atg18) and larger anti-polar movement of nuclei (be-
tween +27.4 h and +53 h for Atg9 and between +22.4 h
and +48.1 h for Atg18) as compared to control (between
+28.9 h and +46.6 h) (Fig. 14a, b). The reduction in value
of Ln during anti-polar migration in Atg5, Atg9, Atg18 and
control was ~130.8 μm, ~133.9 μm, ~164.4 μm and
~97.5 μm; this indicates that nuclei are farther from poles
in Atg5, Atg9 and Atg18 as compared to control (Fig. 12a,
Additional file 1: Table S3). Knockdown of Atg9 and Atg18
also reduced the polar migration of nuclei (Between +55 h
and +72.5 h for Atg9 and between +50 h and +72.5 h for
Atg18), resulting in larger distances between pole and
nearest nucleus (Fig. 14a, b). The value of Ln at the end
of polar migration in Atg9, Atg18 and control was
~141.6 μm, ~162.4 μm and ~190.9 μm approximately;
this indicates reduced polar migration in Atg9 and Atg18
(Additional file 1: Table S3). However, it is important to
note that in spite of lower longitudinal nuclear spread in
Atgs, there is no significant difference between the changes
in longitudinal nuclear spread (between start and end of
polar migration) in Atgs and control as shown in Fig. 12b.
The significant difference in NMlon between the con-

trol and Atg9 and Atg18 RNAi after +50 h and +46 h re-
spectively proved that the polar/anti-polar migration of
nuclei in Atg9 RNAi and Atg18 RNAi is not affected by
muscle contraction/elongation (Fig. 14c, d). The effects
of silencing Atg5 and Atg12 on nuclear migration are
not as prominent as Atg9 and Atg18 silencing. In both
Atg5 and Atg12, the values of Ln is significantly less than
control at the end of polar migration (~169 μm at
+72.1 h for Atg5, ~177.1 μm at +72.2 h for Atg12 and
~190.9 μm for control), although not as low as Atg9 and
Atg18; this indicates reduced polar migration (Additional
file 1: Table S3). Also, there was no significant difference
in the values of NMlon in Atg5 and Atg12 RNAi during
the polar migration. These findings indicate that the de-
creased polar migration caused by silencing of Atg5 and
Atg12 could be due to contraction of muscle cells.

Lateral myonuclear displacement Atg knockdowns
correlates with increased diameter of muscles
As previously reported [14], loss of autophagy resulted
in nuclei being arranged in two rows in late metamor-
phosis as compared to single row formation in control
muscles. We used lateral nuclear spread (Mlat) and nor-
malized lateral nuclear spread (NMlat) to quantify the
lateral movement of nuclei perpendicular to the medial
axis of muscles. In Atg9 and Atg18 RNAi, the value of



Fig. 14 Nuclear pattern features quantifies the effect of loss of autophagy on nuclear distribution. The figure compares following nuclear pattern
features y in muscles expressing Atg5 RNAi, Atg9 RNAi, Atg12 RNAi, Atg18 RNAi and control: (a) Ln. (c) Normalized longitudinal nuclear spread. e Lateral
nuclear spread. g Normalized lateral nuclear spread. The graphs show average values of the features. b, d, f, h Significance graph. For each population,
statistics were derived from 5 DIOM1 (Segment 3). The horizontal dotted lines in the significance graphs represent the p-value 0.05
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Mlat was significantly higher in controls after +53 h and
+50 h, respectively; suggesting that nuclei moved away
from the muscle’s medial axis and arranged in a two-row
formation (Fig. 14e, f ). Interestingly, we did not observe a
similar trend in NMlat for Atg9 and Atg18 RNAi (Fig. 14g).
We found the values of NMlat were significantly lower for
Atg9 RNAi compared to controls between +50 h and
+70 h (Fig. 14h). This indicates that between +50 h to
+70 h, the nuclei were located away from the muscle cell
boundary as compared to control, even though they were
arranged in two rows. However, after +70 h, values of
NMlat were not significantly different between control and
Atg9 RNAi. Whereas, in Atg18 RNAi, the value of NMlat

were not significantly different from control throughout
pupal development. Therefore, the lateral displacement of
nuclei might be dependent on the change in muscle width
in Atg9 and Atg18 RNAi. The increase in width of muscle
cell due to loss of autophagy could be increasing the dis-
tance between nuclei resulting in two-row formation. In
case of Atg5 and Atg12, the lateral displacement features
were unable to statistically prove the two-row formation,
despite being confirmed visually, indicating a lower pene-
tration of the phenotype.

The anti-polar/polar migration and lateral displacement
of nuclei affect the spatial density of nuclei in muscles
During early stages of pupal development, differences in
spatial density of nuclei were observed between Atgs
(Atg5, Atg9 & Atg18) and control. In Atg5 RNAi, signifi-
cant reduction in NSD was observed between +25 h to
+42.5 h compared to control. This observation could be
the result of larger anti-polar migration and smaller lateral
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displacement of nuclei with respect to width of muscle.
Significant reduction in spatial density of nuclei was also
observed in Atg9 (between +30 h to +40 h) and Atg18 (be-
tween +35 h to +40 h). We also observed that the spatial
density of nuclei with respect to the muscle area in Atg9
and Atg18 was significantly lower than the control be-
tween +50 h to +70 h and +50 h to +65 h respectively
(Fig. 15a, b). It indicates that the knockdown of both Atg9
and Atg18 increased the area devoid of nuclei in muscles.
Since, the lateral displacement of nuclei increases between
+50 h to +70 h in Atg9 and Atg18 RNAi; the reduced polar
migration could be the reason for low spatial density of
nuclei (NSD) with respect to the muscle area. As opposed
to other Atgs, Atg12 knockdown did not affect the spatial
density of nuclei with respect to the muscle area despite
the two-row formation. Increased polar migration during
later pupal development could be one of the reasons be-
hind the control like nuclear spatial density in Atg5 and
Atg12 RNAi as compared to Atg9 and Atg18 (Fig. 14a, b).

Discussion
We previously found that muscle atrophy in remodelled
muscles is accompanied by extensive myonuclear migra-
tion [14]. To better understand the process of nuclear
migration in muscle cells, we designed an algorithm to
extract a set of nuclear spatial pattern features. Apart
from the semi-automated muscle segmentation, all the
Fig. 15 Nuclear spatial density index quantifies the nuclear
distribution with respect to the muscle mass change. a The figure
compares average nuclear spatial density index of nuclei in muscles
expressing Cp1 RNAi, Atg5 RNAi, Atg9 RNAi, Atg12 RNAi, Atg18 RNAi
and control. b Significance graph. Statistics were derived from the
same DIOM1 used in previous two figures. The horizontal dotted lines
in the significance graphs (bottom panels) represent the p-value 0.05
processes including nuclear segmentation and tracking
are performed in a fully automated fashion, thus enab-
ling a more reproducible analysis of sizeable time-series
image data. Nuclear classification results have been im-
proved by introducing a tracking based algorithm which
exploits the differences in motion of external and internal
nuclei to classify them. Also, the adjustment of position of
nuclei based on muscle cell displacement reduced the
classification errors caused by large movements of the
muscle cell. In some cases, abrupt change in shape of
muscle does affect the nuclear tracking result. If the shape
change is only between two time points, our algorithm
handles this case by creating a new track for the affected
nuclei. Therefore, the results of classification are not af-
fected. However, if muscle keeps changing shape for larger
duration of time, the performance of classification algo-
rithm will decrease. In our dataset, such cases are very
few. In the future, further work can be done to improve
the methodology of nuclei adjustment based on displace-
ment of muscle cell centroid. In order to reduce the effect
of muscle cell shape change in adjustment of nuclei, a
shape matching using criteria like chamfer distance could
be used to align muscle cells.
Multiple nuclear spatial pattern features have been de-

signed, each catering to a specific type of nuclear distri-
bution. The nuclear spatial density index measures how
densely the nuclei are packed; however, they cannot
quantify the localization of the nuclei in the muscle cell.
To accomplish this, we have designed new features that
can quantify the distribution of nuclei along the medial
axis and along the width of the muscle cell, termed
longitudinal nuclear spread and lateral nuclear spread
respectively.
In this study, the abnormal nuclei arrangement in Cp1

and Atgs RNAi has been analyzed statistically using nu-
clear spatial pattern features. According to the myonuc-
lear domain theory, nuclei should be evenly distributed
in healthy muscle [36], which is a phenotype we ob-
served in Cp1 mutant; whereas central positioning of
nuclei, which has been associated with Central nuclear
myopathies, was observed in control and Atgs RNAi dur-
ing the mid-pupal stage. Knockdown of Atg9 and Atg18
RNAi resulted in more densely packed (longitudinally)
nuclei as compared to control. This indicates that Atg9
and Atg18 help in the central positioning of nuclei by
regulating their anti-polar migration. We also observed
that the effect of silencing of genes on nuclear migration
is more prominent in Atg9 and Atg18 as compared to
Atg5 and Atg12. Atgs were also involved in positioning
of nuclei along the width of muscle. In order to under-
stand how these genes alter the nuclear spatial pattern,
further analysis is required. However, it is clear that the
metamorphosis in Drosophila provides a good platform
to study nuclear migration and localization in muscles.
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Conclusion
Understanding the association between the dynamics of
myonuclear localization and change in muscle mass re-
quires extensive quantitative analysis of a large number
time series images collected in vivo. We achieved it by
combining time lapse in vivo imaging of Drosophila
metamorphosis with a semi-automated nuclear pattern
analysis algorithm. We developed new nuclear features
to characterize the dynamics of nuclear distribution in
time-lapse images of Drosophila metamorphosis. Image
quantification improved our understanding of pheno-
typic abnormalities in nuclear distribution resulting from
gene perturbations. Further analysis on larger number of
genes is required to understand in depth the molecular
mechanisms behind the myonuclear localization pat-
terns. Therefore in vivo imaging and quantitative image
analysis of Drosophila metamorphosis promise to pro-
vide novel insights into the relationship between muscle
wasting and myonuclear positioning.

Additional file

Additional file 1: Sample table of nuclear tracks, results of anti-polar/
polar migration analysis and figures showing myonuclear distribution
phenotypes observed in previous study. (DOCX 5608 kb)
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