Skip to main content
Log in

The Spin/Ssty repeat: a new motif identified in proteins involved in vertebrate development from gamete to embryo

  • Research
  • Published:
Genome Biology Aims and scope Submit manuscript

Abstract

Background

The homologous genes Spin (spindlin) and Ssty were first identified as genes involved in gametogenesis and seem to occur in multiple copies in vertebrate genomes. The mouse spindlin (Spin) protein was reported to interact with the spindle apparatus during oogenesis and to be a target for cell-cycle-dependent phosphorylation. The transcript of the mouse Ssty gene is specific to sperm cells. In the chicken, spindlin was found to co-localize with SUMO-1 to nuclear dots during interphase in fibroblasts, but to co-localize with chromosomes during mitosis. Thus, Spin/Ssty genes might be important in the transition from sperm cells and oocytes to the early embryo, as well as in mitosis.

Results

Here we report the discovery of a new protein motif of around 50 amino acids in length, the Spin/Ssty repeat, in proteins of the Spin/Ssty (spindlin) family. We found that in one member of this family, the human SPIN gene, each repeat resides in its own exon, supporting our view that Spin/Ssty repeats are independent functional units. On the basis of different secondary-structure prediction methods, we propose a four-stranded β-structure for the Spin/Ssty repeat.

Conclusions

The discovery of the Spin/Ssty repeat might contribute to the further elucidation of the structure and function of spindlin-family proteins. We predict that the tertiary structure of spindlin-like proteins is composed of three modules of Spin/Ssty repeats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Oh B, Hwang S, McLaughlin J, Solter D, Knowles BB: Timely translation during the mouse oocyte-to-embryo transition. Development. 2000, 127: 3795-3803.

    PubMed  CAS  Google Scholar 

  2. Schultz RM: Regulation of zygotic gene activation in the mouse. BioEssays. 1993, 15: 531-538.

    Article  PubMed  CAS  Google Scholar 

  3. Telford NA, Watson AJ, Schultz GA: Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev. 1990, 26: 90-100.

    Article  PubMed  CAS  Google Scholar 

  4. Huarte J, Stutz A, O'Connell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli JD: Transient translational silencing by reversible mRNA deadenylation. Cell. 1992, 69: 1021-1030.

    Article  PubMed  CAS  Google Scholar 

  5. Oh B, Hwang SY, Solter D, Knowles BB: Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo. Development. 1997, 124: 493-503.

    PubMed  CAS  Google Scholar 

  6. Oh B, Hampl A, Eppig JJ, Solter D, Knowles BB: SPIN, a substrate in the MAP kinase pathway in mouse oocytes. Mol Reprod Dev. 1998, 50: 240-249. 10.1002/(SICI)1098-2795(199806)50:2<240::AID-MRD15>3.0.CO;2-A.

    Article  PubMed  CAS  Google Scholar 

  7. Howlett SK: A set of proteins showing cell cycle dependent modification in the early embryo. Cell. 1986, 45: 387-396.

    Article  PubMed  CAS  Google Scholar 

  8. Frank-Vaillant M, Haccard O, Ozon R, Jessus C: Interplay between Cdc2 kinase and the c-Mos/MAPK pathway between metaphase I and metaphase II in Xenopus oocytes. Dev Biol. 2001, 231: 279-288. 10.1006/dbio.2000.0142.

    Article  PubMed  CAS  Google Scholar 

  9. Bishop CE, Hatat D: Molecular cloning and sequence analysis of a mouse Y chromosome RNA transcript expressed in the testis. Nucleic Acids Res. 1987, 15: 2959-2969.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Burgoyne PS, Mahadevaiah SK, Sutcliffe MJ, Palmer SJ: Fertility in mice requires X-Y pairing and a Y-chromosomal "spermiogenesis" gene mapping to the long arm. Cell. 1992, 71: 391-398.

    Article  PubMed  CAS  Google Scholar 

  11. Conway SJ, Mahadevaiah SK, Darling SM, Capel B, Rattigan AM, Burgoyne PS: Y353/B: a candidate multiple-copy spermiogenesis gene on the mouse Y chromosome. Mamm Genome. 1994, 5: 203-210.

    Article  PubMed  CAS  Google Scholar 

  12. Itoh Y, Hori T, Saitoh H, Mizuno S: Chicken spindlin genes on W and Z chromosomes: transcriptional expression of both genes and dynamic behavior of spindlin in interphase and mitotic cells. Chromosome Res. 2001, 9: 283-299. 10.1023/A:1016694513051.

    Article  PubMed  CAS  Google Scholar 

  13. Laval SH, Reed V, Blair HJ, Boyd Y: The structure of DXF34, a human X-linked sequence family with homology to a transcribed mouse Y-linked repeat. Mamm Genome. 1997, 8: 689-691. 10.1007/s003359900538.

    Article  PubMed  CAS  Google Scholar 

  14. National Center for Biotechnology Information ftp server. [ftp://ncbi.nlm.nih.gov]

  15. ENSEMBL ftp server. [ftp://ftp.ensembl.org]

  16. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sonnhammer ELL, Durbin R: A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995, 167: GC1-GC10. 10.1016/0378-1119(95)00714-8.

    Article  PubMed  CAS  Google Scholar 

  18. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ: Multiple sequence alignment with CLUSTALX. Trends Biochem Sci. 1998, 23: 403-405. 10.1016/S0968-0004(98)01285-7.

    Article  PubMed  CAS  Google Scholar 

  19. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425.

    PubMed  CAS  Google Scholar 

  20. Felsenstein J: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 1989, 5: 164-166.

    Google Scholar 

  21. Eddy SR: Profile hidden Markov models. Bioinformatics. 1998, 14: 755-763. 10.1093/bioinformatics/14.9.755.

    Article  PubMed  CAS  Google Scholar 

  22. Bonfield JK, Smith KF, Staden R: A new DNA sequence assembly program. Nucleic Acids Res. 1995, 23: 4992-4999.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ: Jpred: A consensus secondary structure prediction server. Bioinformatics. 1998, 14: 892-893. 10.1093/bioinformatics/14.10.892.

    Article  PubMed  CAS  Google Scholar 

  24. King RD, Sternberg MJE: Machine learning approach for the prediction of secondary structure. J Mol Biol. 1990, 216: 441-457.

    Article  PubMed  CAS  Google Scholar 

  25. Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000, 40: 502-511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  26. Salamov AA, Solovyev VV: Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol. 1995, 247: 11-15. 10.1006/jmbi.1994.0116.

    Article  PubMed  CAS  Google Scholar 

  27. Rost B, Sander C: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994, 19: 55-72.

    Article  PubMed  CAS  Google Scholar 

  28. Zvelebil MJJM, Barton GJ, Taylor WR, Sternberg MJE: Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J Mol Biol. 1987, 195: 957-961.

    Article  PubMed  CAS  Google Scholar 

  29. Kelley LA, MacCallum RM, Sternberg MJE: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000, 299: 501-522. 10.1006/jmbi.2000.3741.

    Article  Google Scholar 

  30. Shi J, Blundell TL, Mizuguchi K: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 2001, 310: 243-257. 10.1006/jmbi.2001.4762.

    Article  PubMed  CAS  Google Scholar 

  31. Gough J, Karplus K, Hughey R, Chothia C: Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001, 313: 903-919. 10.1006/jmbi.2001.5080.

    Article  PubMed  CAS  Google Scholar 

  32. Karplus K, Barrett C, Hughey R: Hidden Markov models for detecting remote protein homologies. Bioinformatics. 1998, 14: 846-856. 10.1093/bioinformatics/14.10.846.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike Staub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staub, E., Mennerich, D. & Rosenthal, A. The Spin/Ssty repeat: a new motif identified in proteins involved in vertebrate development from gamete to embryo. Genome Biol 3, research0003.1 (2001). https://doi.org/10.1186/gb-2001-3-1-research0003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/gb-2001-3-1-research0003

Keywords

Navigation