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Abstract

p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer
research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer
agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules
exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and
PRIMA-1 that can activate p53 have shown their anti-tumor effects in different types of hematological malignancies.
Importantly, nutlin and PRIMA-1 have successfully reached the stage of phase I/II clinical trials in at least one type of
hematological cancer. Thus, the pharmacological activation of p53 by these small molecules has a major clinical
impact on prognostic use and targeted drug design. In the current review, we present the recent achievements in
p53 research using small molecules in hematological malignancies. Anticancer activity of different classes of
compounds targeting the p53 signaling pathway and their mechanism of action are discussed. In addition, we
discuss how p53 tumor suppressor protein holds promise as a drug target for recent and future novel therapies in
these diseases.
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Introduction
p53, ‘guardian of the genome’, was the first tumor suppres-
sor gene to be identified in 1979. p53 functions to elimin-
ate and inhibit the proliferation of abnormal cells, thereby
preventing tumor development [1-4]. The human p53 gene
is located on chromosome 17p and consists of 11 exons
and 10 introns [5]. The central role of p53 in the cells sug-
gests that the loss of p53 function may have severe conse-
quences. The p53 function is lost in an estimated 50% of
human cancers by mutations or deletions in p53 gene [6].
The frequency of mutation in p53 is, however, lower in
hematological cancers than in solid tumors [7-12]. For
example, TP53 is mutated in 10-20% of cases of chronic
lymphocytic leukemia (CLL) [7,8], 3-8% of cases of acute
myeloid leukemia (AML) [8], less than 3% in acute
lymphoblastic leukemia (ALL) [9], and 10-12% cases
of multiple myeloma (MM) [10-12]. Importantly, in
hematological malignancies, deletion/mutation of p53 is
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associated with high risk i.e., more aggressive disease,
worse overall survival and resistance to therapies [7-13]. In
the presence of wild type p53 other mechanisms may affect
the expression and activity of p53 which include elevated
expression of the negative regulators of p53, murine double
minute 2 (MDM2) [14-20]. MDM2 is transcriptionally ac-
tivated by the binding of p53 to a p53-responsive element
within its gene. It then binds to the N-terminal region of p53,
thereby preventing p53 from interacting with the transcrip-
tionalmachinery and inducing its degradation [15,18,20-23].
There are evidences that many anti-cancer drugs in-

duce apoptosis through multiple pathways that are at
least in part dependent upon p53 activation [16-23]. At-
tempts have been made to develop strategies based on
the small molecules to specifically modulate the activity
of p53 proteins. These approaches can be classified into
two categories: those that aim at modulating the activity
of wild-type p53 (Figure 1A) and those that aim at re-
storing wild-type functions in cells expressing mutant
p53 (Figure 1B). The small molecules have been identi-
fied by either cellular or protein assays [20-23]. The
cellular approach involves screening to identify com-
pounds which can cause tumor cell death. An advantage
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Figure 1 Strategies for induction of apoptosis by small molecules targeting p53 in hematological malignancies. (A) Nutlin-induced
apoptosis in cells harboring wild type p53 can be mediated by p53-transcription-dependent and/or -independent pathways. In mutant p53 cell
types, nutlin-induced apoptosis can be mediated by activation of p53 and/or p73. Small molecule RITA activates wild type p53 for the induction
of apoptosis in different types of hematological malignancies including AML, CLL, and MM. However, in MM, RITA-induced activation of p53 can
be mediated by either direct activation of p53 or through activation of the JNK signaling pathway. (B) PRIMA-1Met-induced apoptosis in AML and
CLL cells has been shown to be p53 mutation status dependent. However, it can induce apoptosis in MM cells irrespective of p53 status or even
in the absence of p53. The apoptosis induction by PRIMA-1Met in MM cells in the presence or absence of p53 as suggested by us is mediated by
activation of p73 signaling. Small molecule MIRA-1, which has originally been described as a mutant p53 activator is shown to induce apoptosis
of MM cells independent of p53 mutation status, i.e., it can induce apoptosis in MM cells harboring either wild type or mutant p53.
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of this approach is that the compounds identified e.g.,
nutlin, RITA (Reactivation of p53 and induction of
tumor cell apoptosis) and PRIMA-1 (p53 reactivation
and induction of massive apoptosis) have a desired bio-
logical outcome such as apoptosis and rarely display
genotoxicity [24-27]. However, it is difficult to elucidate
their exact molecular mechanism for apoptosis. On the
other hand, a protein based approach can identify com-
pounds e.g., CP-31398 that directly affect a target pro-
tein. But the compounds may be toxic or may not have
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adequate bioavailability [27-31]. A number of small mo-
lecules with activities fitting within these two categories
have been identified and some of those have already
progressed to advanced preclinical development or early-
phase (phase I/II) clinical trials (Table 1). In this review we
will describe all of these aspects of targeting p53 in
hematological malignancies.

Anti-tumor activities of nutlin in hematological
malignancies
Of the small molecules that inhibit the protein–protein
interaction between p53 and MDM2, the first reported
was nutlins [24]. Nutlin is a nongenotoxic compound
which binds to the p53-binding pocket in the MDM2
protein, thus releasing p53 from the negative control of
MDM2 leading to effective p53 stabilization and activa-
tion in cancer cells with wild type but not mutant or de-
leted p53 [24,30,31]. Since its discovery, nutlin has been
one of the most investigated small molecules in the field
of cancer therapy and has shown considerable promise
Table 1 Small molecules used for targeting p53 in various
hematoloigcal malignancies

Hematological malignancy Small molecule Potential target

Leukemia

ALL Nutlin MDM232-34

RITA p5382

JNJ-26854165 p53, E2F199

AML *Nutlin MDM235,38,42,43,46

MI-219 MDM248

RITA p538

*PRIMA-1 p538,82,88,93

JNJ-26854165 p53, E2F199

CLL Nutlin MDM254-56,58-60

RITA p538

PRIMA-1 p538,92

CML Nutlin MDM261,62

MI-219 MDM261

Lymphoma

HL Nutlin MDM267,68

MCL Nutlin MDM269-72

Birkitt’s lymphoma Nutlin MDM276

B Cell lymphoma MI-219 MDM274

Follicular lymphoma MI-319 MDM278

Myeloma Nutlin MDM263-65

RITA p5384, JNK87

PRIMA-1Met p53, p7394

MIRA-1 p5396

Halofuginone p5397

*in phase I/II clinical trials.91,101.
in this area. In pre-clinical studies, nutlin alone or in
combination with chemotherapeutic drugs has displayed
increasing potential for the treatment of blood malig-
nancies [32-79].

Preclinical studies of nutlin in ALL and AML
Nutlin induced cytotoxic and apoptotic response in
both ALL [32-34] and AML [35-49] cells including the
cell lines and/or patient samples with little effect on
normal CD34+ hematopoietic progenitor cells [35].
Nutlin-mediated killing of ALL cells harboring wild type
p53 and over-expressing MDM2 is clinically very much
significant since all patients with leukemic cells over-
expressing MDM2 are usually resistant to conventional
therapy and have a poor prognosis [32]. Nutlin-induced
apoptosis in AML cells can be mediated by both p53-
transcription-dependent and -independent pathways
[35] (Figure 1A). Moreover, nutlin displayed synergistic
responses in AML cells with several anti-leukemic
agents including a Bcl2 antagonist (ABT-737) [36],
MEK inhibitors (PD98059) [37] and (AZD6244) [38], re-
combinant TRAIL [39,40]; FI-700, an FLT3 inhibitor
[41], a vitamin D metabolite (1-25D) [42], HDAC inhibi-
tor (valporic acid) [43], PI3K/mTOR inhibitor (PI-103)
[44], perifosine (an Akt inhibitor) [49], and sorafenib, a
second generation protein kinase inhibitor which is in
phase I clinical trial [45].

Cytotoxic response of nutlin in CLL and chronic myeloid
leukemia (CML)
Studies have shown that selective p53 activation with nutlin
variably induced apoptosis in both low- and high-risk sub-
types of B-CLL [50-60] and CML [61,62] patient cells. Not-
ably, nutlin induced cytotoxicity toward B-CLL cells at
concentrations that were less toxic toward normal B lym-
phocytes, peripheral blood mononuclear cells (PBMCs),
and bone marrow (BM) hematopoietic progenitor cells
[54]. In addition to conventional p53 transcriptional
pathway, nutlin also induced apoptosis in CLL cells by
mitochondrial pathway (Figure 1A) [58,60].

Anti-myeloma activity of nutlin
We and others have demonstrated potent anti-myeloma
activity of nutlin by molecular and functional analysis of
the p53 pathway in MM cell lines, primary MM patient
samples and in the cells of the bone marrow microenvi-
ronment [63-65]. We explored the molecular mechanisms
for nutlin-induced apoptosis in MM cells and provided
the evidence for association of both p53-transcription-
dependent and -independent pathways (Figure 1A) [65].
Our study supports the concept that the transcriptional
and mitochondrial functions of p53 are equally important
for nutlin-triggered apoptosis, perhaps depending on can-
cer cell types and their local micro-environments [65,66].
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Anti-tumor activity of nutlin in lymphoma and adult T-cell
leukemia (ATL)
Among different lymphoma models, nutlin has been
shown effective in inducing wild type p53-dependent
apoptosis of Hodgkin’s lymphoma (HL) [67,68], mantle
cell lymphoma (MCL) [69-72], ALK-positive anaplastic
large cell lymphoma (ALCL) [73], B-cell lymphoma
(BCL) [74,75], Burkitt’s and follicular lymphoma [76-78],
and adult T cell leukemia [79]. Interestingly, when com-
bined with geldanamycin (an HSP90 inhibitor) nutlin
exerted its apoptotic activity in both p53 wild type and
mutant HL cells since geldanamycin-induced apoptosis
in HL cells was p53-independent [68]. MDM2 inhibition
by nutlin successfully induced intrinsic mitochondrial
apoptotic activation through increased expression of
Noxa in refractory MCL cells, which had limited sensi-
tivity to bortezomib alone. The Nutlin/bortezomib com-
bination enhanced Noxa protein expression in mutant
p53 cells but not in wild type p53 MCL cells [71]. Similar
to our observations in MM [65], nutlin-induced apoptosis
in ALCL cells involved both p53-mediated transcriptional
and non-transcriptional mechanisms [71,73]. Recently, by
both in vitro and in vivo evidence Drakos et al. demon-
strated that nutlin induced cell cycle arrest and apoptosis
in DLBCL cells with functional p53, t(14;18)(q32;q21)
translocation, and Bcl2 over-expression [75]. Importantly,
combined treatment with nutlin and doxorubicin syner-
gistically inhibited the growth of ALCL or DLBCL cells
harboring either wild type or mutant p53 [73,75]. These
studies also demonstrated that nutlin induced increased
expression of p73 in MCL, ALCL, or BCL cells harboring
mutant p53 [72,73,75]. Activation of p53 by nutlin re-
sulted in both cellular senescence and apoptosis in ATL-
related cell lines harboring wild type p53 suggesting that
cellular senescence might be an important event in p53-
dependent cell death in ATL cells [79].

Targeting p53 by RITA
RITA (also known as NSC 652287) was identified
through a screening assay based on a library. Upon bind-
ing to p53, RITA reactivates it and induces apoptosis by
disrupting the interaction with MDM2 [25,30]. Although
the IC50 values for RITA vary depending on tumor cell
type, growth inhibition is clearly more effective in wild
type p53-expressing cells [25,30,80-87].

Anti-leukemic activity of RITA
Among hematological malignancies, anti-tumor activity
of RITA was first described in a panel of CLL and AML
patient samples [8]. This study described a constitutive
activation of the p53 pathway leading to cell cycle arrest
and apoptosis by RITA in CLL and AML cells harboring
wild type p53 [8]. However, RITA acted synergistically
with fludarabine in CLL cells irrespective of p53 status
and with PRIMA-1 in AML cells with or without p53
deletion [8].

Anti-tumor activity of RITA in MM and MCL
Anti-tumor activity of RITA in MM cells was first de-
scribed by our group in 2010 [83]. Our in vitro studies
demonstrated that RITA displayed potent anti-myeloma
activities in MM cells harboring wild type p53 without
killing normal cells [83]. The in vitro observation was
further confirmed in xenograft mouse model of MM
where we have demonstrated significant inhibition of
tumor growth and prolongation of survival in mice bear-
ing MM tumors [84,85]. RITA was initially thought to
bind with amino terminal domain of p53, inducing a
conformational change of the protein and increasing its
half life and its accumulation in tumor cells. However,
the results of a recent nuclear magnetic resonance
(NMR) study indicated that RITA might affect p53 func-
tion by other mechanisms, not involving binding to its
N-terminal, such as interaction with other binding pro-
teins and cofactors [86]. In keeping with this theory, most
recently we provided the evidence that RITA targeted
c-Jun N-terminal Kinase (JNK) for the induction of apop-
tosis in MM cells suggesting that RITA might function as a
multi-target molecule [87] (Figure 1A). Further studies are
needed to identify the specific binding targets for RITA.
Interestingly, study by Jones et al. provided the evidence

that continuous exposure of MCL and MM models to two
different MDM2 inhibitors MI-63 and nutlin resulted in
p53 point mutations as a mechanism of acquired drug re-
sistance, and that RITA might overcome this resistance by
restoring p53 function [81]. This study, therefore, suggests
simultaneous restoration of p53 function and MDM2 in-
hibition as a rational strategy for clinical translation. In
support of this, we showed that RITA in combination with
nutlin displayed synergistic cytotoxic response in MM cells
[83]. The combination of RITA with MI-63 resulted in syn-
ergistic response in both MCL and MM cell lines resistant
to MI-63 or nutlin [81]. In addition, our studies showed
that RITA exerted synergistic response in combination with
current chemotherapeutic agents such as doxorubicin or
dexamethasone or with the JNK activator 2-Cyano-3,12-
dioxooleana-1,9-dien-28 oic Acid (CDDO) [87].

Other small molecules targeting p53-MDM2 interaction
Among the other small molecule MDM2 inhibitors exam-
ined in hematological malignancies are MI-63, MI-219,
and MI-319 [48,61,69,74,78,81]. MI-63 showed synergistic
response with gemcitabine in MCL cells [69]. A most
recent study demonstrated that MM or MCL cell lines re-
sistant to either MI-63 or nutlin showed cross-resistant to
the other, and were less sensitive to bortezomib, doxorubi-
cin, cisplatin, and melphalan, but not to RITA. Exposure
to resistant cells (MM and MCL) to RITA induced cell
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cycle arrest and activation of p53-transcriptional targets,
supporting a restoration of p53 activity. Combination of
RITA and MI-63 showed re-sensitization of resistant MM
or MCL cells to MI-63 [81]. Similar to nutlin, MI-219
binds to MDM2 with a high affinity, activated the p53
pathway and selectively inhibited cell growth in cancer cell
lines with wild type p53. Anti-tumor activities of MI-219
have been described in AML [48], CML [61], and B-cell
lymphoma [74]. Since MI-219/319 achieved an excellent
oral bioavailability, it was tested in mouse xenograft
models of human follicular lymphoma where MI-319
treatment resulted in inhibition of tumor growth and pro-
longation of survival [78]. These results suggest that MI-
63, MI-219 or MI-319 may be considered as a promising
cancer therapy with possible future clinical applications.

Restoration of wild type conformation of mutant p53
Targeting mutant p53 by small molecules appears as an
even greater challenge than activating wild type p53 in a
tumor cells. Various strategies for reconstitution of wild-
type p53 function in tumors have been successfully devel-
oped and some have even reached the clinic. Screening
approaches have led to the identification of small mole-
cules which can restore p53 function in tumor cells
[21-23,26,27]. Here we will focus on two initially reported
mutant p53 reactivating drugs (PRIMA-1/PRIMA-1Met,
and MIRA-1) and describe their anti-tumor activities in
hematological malignancies.

PRIMA-1
PRIMA-1 is a low-molecular weight compound that
can restore wild-type conformation of mutant p53 and
specific DNA binding, consequently triggering apoptosis
in tumour cells carrying mutant p53 [21,26,27,88]. Both
unfolded mutant p53 and unfolded wild type p53 can be
refolded by PRIMA-1 [89]. The identification of PRIMA-1
as an anti-tumor agent goes back to 2002 in a Swedish
Lab where it was found that PRIMA-1 had preferential
growth inhibitory activity on different type of human can-
cer cell lines carrying mutant p53 [21,26,27,90]. This dis-
tinguishes PRIMA-1 from anticancer drugs commonly
used in treatment of malignant disease [90]. It takes about
10 years for this drug to come into its successful clinical
trial in 2012 [91] in a hope to make it a promising anti-
cancer drug.

Anti-leukemic activity of PRIMA-1/ PRIMA-1Met

PRIMA-1 was initially tested on 60 human tumor cell
lines including lymphoma tumor cell lines [26,90]. A few
years later, Nahi et al. reported the effect of PRIMA-1 in
leukemic cells from CLL and AML patients with or
without p53 deletion [88,92]. There were no obvious dif-
ferences in cytotoxic response of PRIMA-1 between
hemizygous p53 deleted and non-deleted CLL samples
[92]. However, PRIMA-1 was more cytotoxic to AML
cells with hemizygous p53 deletion/mutation [88]. Several
studies including ours showed that normal hematopoietic
cells were relatively resistant to PRIMA-1 in the concen-
trations used to kill tumor cells [92-94]. PRIMA-1 has
been shown to display synergistic or additive response in
combination with fludarabine in CLL [92] and AML [93].
The methylated analog of PRIMA-1, PRIMA-1Met, has
even greater potency [27], leading to its development as a
candidate therapeutic drug under the code name APR246
which is in phase I/II clinical trial [91].

Anti-myeloma activity of PRIMA-1Met

The therapeutic concept is that PRIMA-1Met may select-
ively rescue mutant p53 and induce apoptosis in cancer
cells, leaving wild-type p53 in normal cells mostly un-
affected [26]. However, so far there is little information
on how PRIMA-1Met affects p53 in cancer cells with no
mutation. At first sight, PRIMA-1Met activates wild type
p53 appears to contradict claims that the drug is specific
for mutant p53 [26,27]. However, there are good bio-
chemical reasons to propose that the drug operates as
an all-around rescuer of inactive p53, independent of
p53 mutation status. In some cancer cells, p53 protein
activity may be disrupted by other mechanisms with
functional consequences equivalent to mutation. How
such a functionally disrupted p53 may react to PRIMA-1
Met is unknown. In the meantime, the recent studies in-
cluding our preliminary results added a new dimension
to the potential of PRIMA-1Met as a therapeutic drug by
showing that it induced apoptosis in cells bearing wild
type p53 or even in the absence of p53 (Figure 1B)
[92-94]. Thus, the therapeutic usage of PRIMA-1Met

may be extended for treatment of the vast majority of
tumors with a broader spectrum.

Anti-tumor activity of MIRA-1
Using a similar method as described for PRIMA-1,
Bykov et al. identified a novel class of molecules that are
structurally distinct from PRIMA-1. MIRA-1, the first of
these molecules to be tested, induces apoptosis in cells
containing mutant p53 with even higher potency than
PRIMA-1 [95]. The reactivation of mutant p53 by
MIRA-1 has been demonstrated by studies revealing the
induction of expression p53-target genes such as p21,
MDM2 and Puma in solid tumor cell lines. Therefore
MIRA-1 and its structural analogs are postulated to act by
shifting the equilibrium between the native and unfolded
conformations of p53 toward the native conformation,
leading to the restoration of p53-mediated transactivation
of target genes and the induction of p53-dependent
apoptosis. We have examined anti-tumor activities of
MIRA-1 in MM cell lines and patients samples. The results
of our preliminary studies showed that anti-myeloma
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activity of MIRA-1 was independent of p53 status
(Figure 1B) [96].

Other miscellaneous small molecules targeting p53 in
hematological malignancies
Recent in vitro and in vivo studies by Leiba et al. showed
that the small molecule halofuginone hydrobromide (HF),
a synthetic derivative of quinazoline alkaloid, triggered
growth inhibition in both MM cell lines and patient sam-
ples. In addition, HF enhanced cytotoxicity of conven-
tional (melphalan, dexamethasone, and doxorubicin) and
novel anti-MM (such as lenalidomide) agents [97]. Similar
to nutlin, CLL cells with p53 deletion was less sensitive to
the small molecule Bcl2 inhibitor ABT-737 than the cells
without p53 deletion [98]. JNJ-26854165, a tryptamine
derivative has been shown to block the proteasomal deg-
radation of p53 and induce apoptosis in both wild type
and mutant p53 expressing leukemia cell lines [99]. Due
to its broad anti-tumour activity, JNJ-26854165 is being
assessed in a phase I trial as an oral agent for advanced
solid tumors [96]. An Aurora kinase inhibitor MLN8237
has been shown effective in killing myeloma cells in vitro
and in vivo [100].

Clinical trials with small molecules targeting p53 in
hematological malignancies
The first MDM2 inhibitor that entered clinical develop-
ment is RG7112 (RO5045337), a member of the nutlin
family, from Hoffmann-La Roche (clinicaltrials.gov; identi-
fiers: NCT01164033, NCT01143740, NCT00623870, and
NCT00559533). RG7112 was given to patients with acute
or chronic relapsing or refractory leukemia orally every
day for 10 days followed by 18 days of rest. Preliminary
clinical data indicated that RG7112 appeared to be well
tolerated in patients and showed initial evidence of clinical
activity and a mechanism of action consistent with
targeting the p53-MDM2 interaction [101].
PRIMA-1Met (APR-246) has recently been tested on

humans in a phase I/II study, which was conducted on
22 patients with advanced blood or prostate cancer. The
patients received daily infusions of APR-246 for four
days. Analysis of the cancer cells taken before and after
treatment showed activation of the p53 leading to apop-
tosis of cancer cells. Ten patients could be evaluated as
regards the development of their cancer, and in two of
them there were signs of tumor regression [91].
Since tumor cells can acquire resistance to MDM2 in-

hibitors or current therapeutic agents through p53 mu-
tation it is important to prevent the development of
drug resistance and secondary cancer. The combination
approaches has been proved successful in this regard as
well as to reduce the side-effects of the drugs. A number
of studies have demonstrated that nutlin may be used
not just as a single agent but also in combination with
other anti-cancer agents to achieve better anti-tumor
activity than alone. For example, ex vivo experiments
using patient tumor samples have shown that nutlin
synergizes with doxorubicin, chlorambucil, and fludarabine
in B-CLL [30,50,51,55,62]; with doxorubicin and cytosine
arabinoside in AML [30,35,36,42]; with doxorubicin and
etoposide in HL [67,68]; with melphalan, bortezomib,
and lexatumumab (a DR5 agonist) in MM [63,65,102,103];
and with bortezomib in MCL [71], and with doxorubicin in
ALCL and DLBCL [73,75]. Moreover, synergistic response
of fludarabine with nutlin, RITA or PRIMA-1Met in CLL
and/or AML is clinically significant because treatment with
fludarabine has been shown to increase the complete remis-
sion rate, enhance progression-free survival, and increase
the median duration of the clinical response as compared
with single therapy [45,56,58]. Importantly, nutlin in com-
bination with bortezomib synergistically contributes to
apoptosis induction not only in wild type-p53-possessing
MCL cells, but also in MCL with known negative prog-
nostic factors that include p53 mutation, and bortezomib
resistance [71]. These findings indicate potential therapeutic
efficacy of the small molecules in combination with current
chemotherapeutics for the treatment of chemorefractory
hematological malignancies.

Conclusions and future directions
Although many of the cellular effects of the described
small molecules require the presence of p53, the evi-
dence of some p53-independent effects suggests that
p53 may not be its only target. For example, the effect of
nutlins initially seemed to be limited to cells harboring
wild type p53, subsequent research revealed that nutlin
also exerted its anti-cancer activities in p53-negative and
p53-mutant human tumor cells through different mech-
anisms including activation of E2F1 or p73 in different
types of cancers including hematological malignancies
[48,72,104,105]. Similarly, the biological activity of RITA
may be mediated by additional, still unknown, biochemical
mechanisms. The global alteration of gene-expression
profile rather than merely p53 targets following treatment
of PRIMA-1Met suggests other pathways may exist in
PRIMA-1Met-induced cell death in MM cells [94]. There
is also evidence that PRIMA-1Met can stabilize p53 family
members in solid tumors as well as in MM and this
may be part of its mechanism of action in mutant
p53-expressing tumors [106,107]. Although the exact mo-
lecular mechanisms remain unclear, it is possible that
PRIMA-1Met can release p73 from an inactive complex
with mutant p53 (our unpublished observation). Thus, at
least in certain conditions, targeting of p73 or p63 might
be an interesting approach to interfere with alternative
tumor suppressor pathways [107]. Identifying the potent
and selective target(s) for these small molecules will
not only be important for understanding the precise
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mechanisms of the action of the drugs but also provide the
basis for improved drug design to preferentially kill cancer
cells with only a limited toxicity towards normal cells.
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