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DISCOVERY NOTES

Chordopoxvirus protein F12 implicated in
enveloped virion morphogenesis is an
inactivated DNA polymerase

Natalya Yutin', Guilhem Faure', Eugene V Koonin'" and Arcady R Mushegian®

Abstract

Through the course of their evolution, viruses with large genomes have acquired numerous host genes, most of
which perform function in virus reproduction in a manner that is related to their original activities in the cells, but
some are exapted for new roles. Here we report the unexpected finding that protein F12, which is conserved
among the chordopoxviruses and is implicated in the morphogenesis of enveloped intracellular virions, is a derived
DNA polymerase, possibly of bacteriophage origin, in which the polymerase domain and probably the exonuclease
domain have been inactivated. Thus, F12 appears to present a rare example of a drastic, exaptive functional change

in virus evolution.
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Findings

Genomes of large viruses, in addition to a small core of
viral hallmark genes, encompass numerous genes that
apparently have been acquired from the hosts at different
stages of evolution [1-3]. Some of these genes, such as
diverse metabolic, repair and signaling enzymes, retain
their original biochemical activities that are utilized for
virus reproduction. For other gene products, the ori-
ginal function is mechanistically exploited but part of
the functionality has been lost during virus evolution
converting the gene products into inhibitors or modula-
tors of the respective host pathways, such as programmed
cell death or various forms of immunity, a phenomenon
often called molecular mimicry and especially well charac-
terized in poxviruses [4-7]. However, several cases have
been reported where the acquired host gene seems to have
been exapted [8] for a function in virus reproduction that
was not obviously related to the original one. For example,
the poxvirus D4 protein, a uracil DNA glycosylase,
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functions as a processivity subunit of the viral DNA
polymerase, a role for which the enzymatic activity of
D4 is not required [9]. Another case in point is the pox-
virus F16 protein which appears to be an inactivated
serine recombinase and unexpectedly localizes to the
nucleoli of the infected cells although its role in virus
reproduction remains obscure [10]. We report here that
poxvirus protein F12 that has been implicated in intra-
cellular enveloped virus (IEV) morphogenesis, and in
particular IEV movement along microtubules [11-13],
is a derived DNA polymerase in which both the poly-
merase and the exonuclease activities apparently were
abrogated as a result of mutational replacement of cata-
lytic amino acid residues. This finding reveals another,
striking case of exaptation in virus evolution.

Chordopoxvirus protein F12 is an inactivated homolog of
Family B DNA polymerases

In the course of a survey of the evolutionary provenance
of poxvirus proteins, we unexpectedly observed that
PSI-BLAST searches against the non-redundant data-
base (NCBI, NIH, Bethesda) initiated with the amino
acid sequence of Vaccinia virus (VACV) protein F12

© 2014 Yutin et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:koonin@ncbi.nlm.nih.gov
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Yutin et al. Biology Direct 2014, 9:22
http://www.biologydirect.com/content/9/1/22

(GenBank Accession No Q80HX6) detected, in addition
to the highly significant similarity to the homologs from
all chordopoxviruses, a marginal, not statistically signifi-
cant similarity to several identified or putative DNA-
dependent DNA polymerases (DNAPs) from plant and
fungal mitochondrial plasmids and bacteriophages. To
further investigate the possible homology of F12 and
DNAPs, we used the sequence of the F12 homolog
encoded by the most distant from VACYV, early branch-
ing chordopoxvirus, the Nile Crocodile Virus (NCV)
(YP_784228), as the query for a new PSI-BLAST search.
This third iteration of this search identified statistically
significant similarity (E-value <0.001) between F12 and
a variety of organellar plasmid and phage DNAPs. Further
sequence analysis was performed using the HHPred
method which compares Hidden Markov Model profiles
derived from the multiple alignment of readily detectable
homologs of the query protein to databases of profiles of
structurally characterized protein families. The HHPred
search initiated with the sequence of either VACV F12 or
the NCV homolog of F12 consistently yielded alignments
with the Bacillus subtilis phage Phi29 DNAP (pdb 2py5),
with a probability values greater than 98.5, which is con-
sidered strong evidence of homology, and a close corres-
pondence between secondary structure elements (see
Additional file 1). Somewhat weaker similarity was
observed with a variety of plasmid-encoded DNAPs.
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Similar results were obtained with the Phyre2 method
for protein structure prediction (see Additional file 2).

Taken together, these observations indicate that chordo-
poxvirus F12 proteins are homologs of family B DNAPs,
with the strongest sequence similarity observed with the
protein-primed DNAPs of phages and organellar plasmids.
The family B DNAPs consist of an N-terminal 3'-5"-exo-
nuclease (Exo) domain and the C-terminal polymerase
moiety that encompasses the Palm, Fingers and Thumb
domains [14,15]. The Exo and Palm domains show high
level of sequence conservation throughout the family
whereas the Fingers and Thumb domains are poorly con-
served. Examination of the multiple alignment of the F12
proteins with the DNAPs shows that most of the amino
acid residues that belong to the conserved motifs of the
Palm domain and contribute to catalysis are replaced in
F12 indicating that the polymerase activity has been lost
in the viral proteins (Figure 1). The catalytic motifs of the
Exo domain show a greater degree of conservation in
F12, so the possibility that some level of exonuclease ac-
tivity persists in some of the viral proteins cannot be
ruled out (Figure 1).

Poxviruses encode their own, functional family B
DNAPs that is essential for virus replication [6]. The
PFAM families encompassing the Exo and Palm
domains of these enzymes were also observed in
HHPred searches but the level of similarity between
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Figure 1 Multiple sequence alignment of F12 proteins and family B DNAPs. Alignment blocks containing the conserved motifs implicated
in the exonuclease and polymerase activities of the DNAPs are shown, with the catalytic amino acid positions marked with red bars. The conserved
blocks are separated by numbers that indicate the lengths of poorly conserved sequence segments that are not shown (see Additional file 3 for full
alignment). Each sequence is denoted by the species abbreviation and GenBank Identification (Gl) number. Species abbreviations: Adoor, Adoxophyes
orana granulovirus; Afrsw, African swine fever virus; Amsmo, Amsacta moorei entomopoxvirus ‘L; Ascim, Ascobolus immersus; Bacph, Bacillus phage;
Bovpa, Bovine papular stomatitis virus; Canox, Candida oxycetoniae; Canvi, Canarypox virus; Clapu, Claviceps purpurea; Cotvi, Cotia virus SPAn232; Deevi,
Deerpox virus; Fowvi, Fowlpox virus; Glosp, Glomus sp. DAOM 229456; Helar, Helicoverpa armigera multiple nucleopolyhedrovirus; Humad, Human
mastadenovirus B; Melsa, Melanoplus sanguinipes entomopoxvirus; Miccf, Microbotryum cf. violaceum BFL-2013; Myxvi, Myxoma virus; Neole, Neodiprion
lecontei nucleopolyhedrovirus; Podan, Podospora anserina; Porpu, Porphyra purpurea; Rabfi, Rabbit fibroma virus; Rhiir, Rhizophagus irregularis DAOM
181602; Shevi, Sheeppox virus; Silvu, Silene vulgaris; Skuad, Skua adenovirus 1; Swivi, Swinepox virus; Vacvi, Vaccinia virus; Yabmo, Yaba monkey tumor
virus; Yokpo, Yoka poxvirus.
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F12 proteins and virus DNAPs was substantially lower
than that between F12 and phage DNAPs, indicating
that F12 is unlikely to have arisen via a within-genome
duplication of poxvirus DNAPs.

The multiple alignment of various DNAPs and chor-
dopoxvirus F12 proteins (see Additional file 3) was used
to infer a phylogenetic tree in which F12 clustered with
the protein-primed phage and plasmid DNAPs, albeit with
a moderate bootstrap support (Figure 2). This phylogeny
should be interpreted with caution, especially given the
acceleration of evolution of the F12 gene, likely associ-
ated with the inactivation of the enzymatic domains.
Nevertheless, together with the results of sequence and
structure similarity searches, these findings suggest the
possibility that a bacteriophage DNAP gene was ac-
quired by the ancestral chordopoxvirus via horizontal
gene transfer. This acquisition was then followed by
exaptation for a role in IEV morphogenesis and transport
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along microtubules [11] and the concomitant disruption
of the DNAP catalytic centers. A notable parallel is the
likely acquisition of the F16 gene, located in the same
region of chordopoxvirus genomes, from a bacteriophage
gene, followed by the elimination of the enzymatic (re-
combinase) activity, also most likely early in poxvirus evo-
lution [10]. At least one other gene that is conserved
among chordopoxviruses, G6, apparently was acquired
from a bacterial source [16]. Thus, the origin of chordo-
poxviruses seems to have involved a substantial contribu-
tion from bacteria and their viruses.

No relationship between F12 and the TPR repeats of
kinesin light chains

The poxvirus F12 protein has been claimed to share
functionally relevant similarity with the tetratricopep-
tide repeats (TPR) region of kinesin light chains (KLC)
although no quantitative evidence has been presented in
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support of this connection [13]. However, no similarity to
TPR repeats was detected in our search of the Conserved
Domain Database at the NCBI or using the more sensitive
HHPred search. More important, the presence of all-alpha
TPR repeats is incompatible with the homology of F12
with the alpha-beta DNAP domains or the predicted
secondary structure of F12 (Additional file 1). Identifi-
cation of multiple TPRs has been reported also for two
other chordopoxvirus proteins that contribute to IEV
maturation and motility, namely for E2, which forms a
complex with F12 [11], and for A36 [13]. Using a TPR
predictor tool, we detected no TPRs in F12, E2, and
A36 whereas multiple TPRs were confidently predicted
in KLC (Additional file 4).

It has been reported that F12 is required for the
recruitment of kinesin-1 which enables the movement of
IEV along microtubules in VACV-infected cells and that
deletion of the purported TPRs in F12 abrogated kinesin
binding [13]. The findings described here do not conflict
with these experimental observations but suggest that the
interaction between F12 and kinesin is mediated by the de-
rived DNAP domains that are unrelated to TPRs.

Conclusions

We report here the unexpected finding that a chordo-
poxvirus protein implicated in IEV morphogenesis and
intracellular motility is a derived, inactivated DNAP. The
results of sequence comparison and phylogenetic ana-
lysis suggest an evolutionary scenario in which the F12
gene evolved from an acquired bacteriophage DNAP
gene, with both exonuclease and polymerase activities
apparently abrogated as indicated by the disruption of
the respective catalytic sites. Alternative routes of evolu-
tion, such as duplication and subsequent inactivation of
the ancestral poxvirus DNAP, cannot be formally ruled
out but appear much less likely. Inactivated DNAPs has
been described previously in archaea and eukaryotes
[15,17,18], and recently, it has been shown that the UL8
subunit of herpes virus DNA primase is an inactivated
family B DNAP [19]. However, in all these cases, the
inactivated polymerases still function in DNA replication
or repair, conceivably interacting with some of the same
partners as active DNAPs do. The poxvirus F12 seems
to present the case where an inactivated DNAP is
exapted for a completely new role in a different cellular
location. Characterization of potential structural features
linking the complexes of F12 with its protein partners
and possibly with replication complexes could be an in-
triguing experimental task.

Methods

Sequence analysis and phylogenetic tree construction
The non-redundant database of protein sequences at the
NCBI was searched using the PSI-BLAST program [20].
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Protein sequences were aligned using MUSCLE [21];
gapped columns (more than 30% of gaps) and columns
with low information content were removed from the
alignment [22]. For the purpose of visualization, align-
ment columns were colored using Jalview [23], with the
ClustalX coloring conventions [24] and conservation color
increment set at 10. Profile-against-profile searches were
performed using the HHPred method [25]. Protein
structure prediction was performed using the Phyre2
software [26]. Phylogenetic analysis was performed using
the FastTree program with default parameters (JTT
evolutionary model, discrete gamma model with 20
rate categories) [27]. The TPRs were predicted using
the TPRpred software [28].
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