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1 Introduction
Most of the notable achievements in theoretical economics in the last fifty years were re-
lated to finances. The first Nobel Memorial Prize in Economic Sciences was awarded in
 jointly to Frisch andTinbergen ‘for having developed and applied dynamicmodels for
the analysis of economic processes’. Many of their works were devoted to the development
of mathematical methods to the analysis of economic processes, including mathematical
modeling of financial processes []. The second Nobel Memorial Prize in Economic Sci-
ences was awarded in  to Samuelson ‘for the scientific work through which he has
developed static and dynamic economic theory and actively contributed to raising the
level of analysis in economic science’. In his works he studied the role of expectations in
the theory of finance.
The growing importance of finance theory in economics is linked to two trends: still

wider use of mathematics in the modeling of economic processes, and using the results
of theoretical economics in practice. The both trends have a close relationship to finance.
Mathematical modeling assumes the exact determination of the parameters - they usually
are expressed in the finances; application of the theory in practice assumes description of
the cash flows and the risk of using models.
Significant development of the theory of finance, which includes the theory of corpo-

rate finance and the theory of investment, occurred in the twentieth century. Until then,
the theory of finance was developed as a theory of state finance, in the twentieth century
became the theory of capital markets. The amount of significant works on the theory of fi-
nance were written in the years  to . Bachelier, the founder of themodern theory
of finance, has merit that the theory of finance received a mathematical basics. He antic-
ipated many of the ideas of the twentieth century in his works: the relationship between

© 2013 Diblík et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/152
mailto:miroslava.ruzickova@fhv.uniza.sk
http://creativecommons.org/licenses/by/2.0


Diblík et al. Advances in Difference Equations 2013, 2013:152 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2013/1/152

random and diffusion processes, Markov processes, the theory of Brownian motion and
much more than today lies not only in the investment theory. One of the first models of
the offers loan funds was built in the early twentieth century by Fisher. Equations to bal-
ance between savings and investments (known as IS-LM model, and Mandella-Fleming
model) are the basis of the modern macroeconomics. Its authors Hicks and Mundell are
Nobel Prize winners. Mundell, in addition, created the theory of optimum currency areas,
which allows to call him the father of the euro. In the theory of financial investment, there
is no concept that would be such widely verified and so little credible as ‘efficient markets’.
The so-called efficient market hypothesis performs a primary function - to justify the use
of probabilistic calculation in the analysis of capital markets. But if markets are ‘nonlinear
stochastic dynamical systems’, the use of standard statistical analysis can lead to erroneous
results, especially if they are based on the model of random walks.
One of the methods that permit to examine the stability of stochastic systems is a tradi-

tional method of Lyapunov functions, which was developed, for example, in the works by
Barbashin [], Hasminski [], Valeev [], Zubov [] and others.
Investigating themean stability ormean square stability of solutions of differential equa-

tions with random coefficients depending on Markov process is a current problem. The
theory of Markov processes was studied in the works by Chung [], Davis [], Dynkin
[, ], Kolmogorov [], Lèvy [], Skorohkod [] and others. The use of the theory of
Markov processes to the study of various economic processes can be found in the works
by Elliot, Kopp [], Malliaris, Brock [] and Williams [].
Dynamic systems considered in the present paper belong to the class of the so-called

systems with random states. The works by Artem’ev [], Katz, Krasovskii [] and others
are dedicated to such systems.
We offer a new approach to simulation by creating algorithms for the construction of

moment equations and their quantification. The origin of the theory ofmoment equations
and their use in the examination of the stability can be found in the works by Valeev []
and his scientific school (e.g., []).
In the present paper we derive the functional equations for particular density functions

and themoment equations for the systemwhich are used in the investigation of solvability
and mean square stability. There is shown the application of the results to solve various
problems of practice.

2 Statement of the problem
Let (�,F ,P) be a probability space (see, for example, []). On the probability space, we
consider the initial value problem formulated for the stochastic system

dx(t)
dt

= A
(
t, ξ (t)

)
x(t) + B

(
t, ξ (t)

)
, ()

x() = ϕ(ω), ()

where A is anm×mmatrix with random elements, B is anm-dimensional column vector
function whose elements are random variables, ϕ : � → R

m, ϕ ∈ C(�), ξ (t) is a random
Markov process with a finite number of states θk , k = , , . . . ,q, the probabilities of which
are

pk(t) = P
{
ξ (t) = θk

}
, k = , , . . . ,q, ()
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and satisfy the system of linear differential equations

dpk(t)
dt

=
q∑
s=

πks(t)ps(t) ()

with the transition matrix (πks(t))
q
k,s=.

Definition  Them-dimensional random vector function x(t), the components of which
are random variables is called a solution of the initial value problem (), () if x(t) satisfies
() and initial condition () in themeaning of strong solution (defined in []) of the initial
Cauchy problem.

Our task is to obtain a reliable and simple method for investigating the stability of solu-
tions of this class of systems. To solve this task, we present below the method of moment
equations.On a series of examples, we demonstrate that themethod is effective and useful.

Definition  Let x ∈ R
m be a continuous random variable depending on a random

Markov process ξ (t) with q possible states θk , k = , , . . . ,q. The matrices

E(t) =
q∑

k=

E(k)(t), D(t) =
q∑

k=

D(k)(t),

where

E(k)(t) =
∫
Em

xfk(t,x)dx, D(k)(t) =
∫
Em

xx∗fk(t,x)dx, k = , , . . . ,q,

are called moments of the first or second order of the random variable x respectively. The
values E(k)(t) andD(k)(t), k = , , . . . ,q, are called particular moments of the first or second
order respectively.

The Em in Definition  denotes an m-dimensional Euclidian space, functions fk(t,x), k =
, , . . . ,q are the particular density functions of the random variable x.

Remark  The moments of the random variable x in a scalar case, x ∈ R, are defined
for any s = , , . . . , and are called moments of the sth order. The particular moments are
defined by the formula

E(k)
s (t) =

∫ ∞

–∞
xsfk(t,x)dx, s = , , . . . ,k = , , . . . ,q.

Several different stability statements are possible. We here recall mean square stability
definition, which is based on that given in [].

Definition  The trivial solution of the associated homogenous system to system () is
said to be mean square stable on the interval [,∞) if for each ε >  there exists δ >  such
that any solution x(t) of the associated system, corresponding to the initial data x, exists
for all t ≥  and the mathematical expectation

E
(‖x(t)‖) < ε whenever t ≥  and ‖x‖ < δ.
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3 Moment equations for the linear differential equations
Before the initial value problem (), () formulated in the previous section will be inves-
tigated, a simpler problem will be studied. First we derive the moment equations in the
scalar case of system (), that is, if instead of the system there is an equation. In the first
part of this section, the linear homogenous differential equation, the coefficient of which
depends on a random Markov process, with two states only is considered. In the second
part, the moment equations are derived for nonhomogenous linear differential equations
with q possible states of a random process, on which the coefficients depend.

3.1 Homogenous linear differential equations
On the probability space (�,F ,P), we consider initial value problem (), () where instead
of system () there is a stochastic linear homogenous differential equation of the first order
of the form

dx(t)
dt

= a
(
ξ (t)

)
x(t), ()

where a is a scalar function of a random variable.We suppose that the function a depends
on the randomMarkov process ξ (t), which has only two states θ, θ with probabilities

pk(t) = P
{
ξ (t) = θk

}
, k = , ,

that satisfy the system of linear differential equations

dp(t)
dt

= –λp(t) + νp(t),

dp(t)
dt

= λp(t) – νp(t), λ ≥ ,ν ≥ .
()

In the following, we use the denotations

a = a(θ),

a = a(θ).

Theorem  Moment equations of any order s = , , , . . . for equation () are of the form

dE()
s (t)
dt

= saE()
s (t) – λE()

s (t) + νE()
s (t),

dE()
s (t)
dt

= saE()
s (t) + λE()

s (t) – νE()
s (t).

()

Proof We divide the time line [,∞) into intervals of length h. Next we replace the
considered system of differential equations () by an approximated system of difference
equations. If we denote tn = nh, h > , n = , , . . . , and approximate dx(tn+)/dt with
(x(tn+) – x(tn))/h, then the approximated system to system () can be written in the form

x(tn+) =
(
 + ha

(
ξ (tn)

))
x(tn), n = , , . . .
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or the approximated system to system () is of the form

p(tn+) = ( – hλ)p(tn) + hνp(tn),

p(tn+) = hλp(tn) + ( – hν)p(tn).
()

In accordance with the formula for total probability, we obtain relationships for the par-
ticular density functions fk(tn,x), k = , , which satisfy the following system of functional
equations:

f(tn+,x) =
 – hλ
 + ha

f
(
tn,

x
 + ha

)
+

hν
 + ha

f
(
tn,

x
 + ha

)
, ()

f(tn+,x) =
hλ

 + ha
f
(
tn,

x
 + ha

)
+

 – hν
 + ha

f
(
tn,

x
 + ha

)
. ()

Rename ‘tn’ to ‘t’ and suppose that the particular density functions can be expressed in
powers of parameter h by the Taylor formula. Let functions in () be represented as

f (tn+,x) = f(t + h,x) = f(t,x) +
∂f(t,x)

∂t
h +O

(
h

)
,

 – hλ
 + ha

f
(
tn,

x
 + ha

)

=
(
 – h(λ + a) +O

(
h

))
f
(
t,x – hxa +O

(
h

))
=

(
 – h(λ + a) +O

(
h

))(
f(t,x) –

∂f(t,x)
∂x

hxa +O
(
h

))

= f(t,x) – hλf(t,x) – haf(t,x) – hax
∂f(t,x)

∂x
+O

(
h

)
,

hν
 + ha

f
(
tn,

x
 + ha

)
= hνf(t,x) +O

(
h

)
,

whereO is Landau order symbol. Now, using the obtained expressions and comparing the
left-hand side to the right-hand side of () and assuming h→ , we get

∂f(t,x)
∂t

= –a
∂

∂x
(
xf(t,x)

)
– λf(t,x) + νf(t,x). ()

Similarly, decomposition of the particular density functions in () gives the second equa-
tion

∂f(t,x)
∂t

= –a
∂

∂x
(
xf(t,x)

)
+ λf(t,x) – νf(t,x). ()

Finally, multiplying equations (), () by xs, s = , , , . . . and integrating them by parts
from –∞ to ∞, in accordance with Definition , a system of linear differential equations
with constant coefficients () can be obtained. �

Let us note that moment equations () can be derived in a different way. If system ()
of difference equations for probabilities is known, then the particular moments of the sth
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order satisfy the following relations:

E()
s (tn+) = ( – hλ)( + ha)sE()

s (tn) + hν( + ha)sE()
s (tn),

E()
s (tn+) = hλ( + ha)sE()

s (tn) + ( – hν)( + ha)sE()
s (tn).

()

Particular moments contained in the first equation of () can be expressed in powers
of parameter h by the Taylor formula:

E()
s (tn+) = E()

s (t + h) = E()
s (t) +

dE()
s (t)
dt

h +O
(
h

)
,

( – hλ)( + ha)sE()
s (tn) =

(
 + hsa – hλ +O

(
h

))
E()
s (t),

hν( + ha)sE()
s (tn) = hνE()

s (t) +O
(
h

)
.

If we put the obtained expressions into the first equation of (), then under assumption
h→ , we get the first equation of system (). In the same way, using the second equation
of (), the second equation of system () can be constructed.

Example  Let us establish conditions for s-mean stability of linear differential equation
(). The characteristic equation for the system of moment equations () is written as fol-
lows:

∣∣∣∣∣z – sa + λ –ν

–λ z – sa + ν

∣∣∣∣∣
= z + z

(
λ + ν – s(a + a)

)
+ saa – sνa – sλa = .

Therefore, the conditions of asymptotic stability of solutions of moment equations (), in
accordance with the Hurwitz criterion, are of the following form (assume s �= , the case
s =  is considered below):

a + a <
λ + ν

s
, aa >

νa + λa
s

.

Let us use the denotations

γ ≡ λ + ν

s
, a ≡ νa + λa

λ + ν
= ap + ap,

where pk = limt→+∞ pk(t), k = ,  and a is mean value of coefficients a, a. It allows us to
derive a simpler form of the above conditions:

a + a < γ , aa > aγ .

The domains of stability for moments of various order are determined by their bound-
aries as it is shown in Figure . Any domain of stability includes the third quadrant where
the values of coefficients a, a are negative, i.e., a < , a < .
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Diblík et al. Advances in Difference Equations 2013, 2013:152 Page 7 of 12
http://www.advancesindifferenceequations.com/content/2013/1/152

Figure 1 Domains of stability for equation (5).

Using moment equations, it is also possible to determine the domain of stability for the
deterministic equation

dx(t)
dt

= ax(t),

where a is independent of a random variable ξ (t). This case corresponds to the moment
equations of the zeroth order, i.e., if s = .

3.2 Nonhomogenous linear differential equation
We have derived the system of moment equations for a linear homogenous equation with
random coefficient under assumptions that the random variable can only be in two states.
It was a simple enough case that allowed us to understand the process of deriving the
system ofmoment equations. Nowwe establish a system ofmoment equations in the same
way for linear the nonhomogeneous differential equation

dx(t)
dt

= a
(
t, ξ (t)

)
x(t) + b

(
t, ξ (t)

)
, ()

where ξ (t) is theMarkov processwhich has q possible states θ, θ, . . . , θq, with probabilities
pk(t) = P{ξ (t) = θk}, k = , , . . . ,q. We suppose that the probabilities satisfy the system of
linear differential equations

dpk(t)
dt

=
q∑
s=

πks(t)ps(t), ()

where the transition matrix (πks(t))
q
k,s= satisfies the following relationships:

q∑
k=

πks(t)≡ , πks(t)

⎧⎨
⎩≥ , k �= s,

≤ , k = s.

Since the coefficients of studied system () depend on t, we can denote

ak(t) = a(t, θk), bk(t) = b(t, θk), k = , , . . . ,q.

http://www.advancesindifferenceequations.com/content/2013/1/152


Diblík et al. Advances in Difference Equations 2013, 2013:152 Page 8 of 12
http://www.advancesindifferenceequations.com/content/2013/1/152

Theorem  Moment equations of any order s = , , . . . for equation () are of the form

dE(k)
s (t)
dt

= sak(t)E(k)
s (t) + sbk(t)E(k)

s–(t) +
q∑
r=

πkr(t)E(r)
s (t),

k = , , . . . ,q. ()

Proof By dividing the time line into intervals of length h, we obtain the approximated
system

x(tn+) =
(
 + ha

(
tn, ξ (tn)

))
x(tn) + hb

(
tn, ξ (tn)

)

to the considered system () and

pk(tn+) = pk(tn) + h
q∑
s=

πks(tn)ps(tn), k = , , . . . ,q

to system ().
Particular probability density functions fk(tn,x) satisfy, in this case, the system of differ-

ence equations

fk(tn+,x) =


 + hak(tn)
fk

(
tn,

x – hbk(tn)
 + hak(tn)

)

+ h
q∑
s=

πks(tn)
 + hak(tn)

fk
(
tn,

x – hbk(tn)
 + hak(tn)

)
. ()

Similarly as in the proof of Theorem , we assume that the particular density functions
can be represented in powers of parameter h by the Taylor formula, and by the same way
as in the proof of Theorem , we get

∂fk(t,x)
∂t

= –
∂

∂x
(
ak(t)x + bk(t)

)
fk(t,x) +

q∑
s=

πks(t)fs(t,x), k = , , . . . ,q.

The system of moment equations () can be derived from the last system for particular
probability density functions by using the same modifications as in the proof of Theo-
rem . �

4 Moment equations for the linear differential system
Now we come back to the initial problem (), () that we have formulated in Section .
We also suppose that the matrix A and vector B depend on a randomMarkov process ξ (t)
with q possible states, the probabilities of which () satisfy the system of linear differential
equations ().
Moreover, we use the denotations

Ak(t) = A(t, θk), Bk(t) = B(t, θk), k = , , . . . ,q.

http://www.advancesindifferenceequations.com/content/2013/1/152
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Theorem  Moment equations of the first and second order respectively for system () are
of the form

dE(k)(t)
dt

= Ak(t)E(k)(t) + Bk(t)pk(t) +
q∑
j=

πkj(t)E(j)(t), ()

dD(k)(t)
dt

= Ak(t)D(k)(t) +D(k)(t)A*
k(t) + Bk(t)

(
E(k)(t)

)*

+ E(k)(t)B*
k(t) +

q∑
j=

πkj(t)D(j)(t),

k = , , . . . ,q. ()

Proof The philosophy of the proof is the same as in the proof of Theorem , only the
calculations aremore complicated, because nowweworkwith thematrix case. In a similar
way, by dividing the time line into intervals of length h, for the particular density functions
fk(t,x), k = , , . . . ,q, we get the system of equations

fk(tn+,x) = fk(tn,Yk)υk + h
q∑
j=

πkj(tn)fj(tn,Yj)υj,

k = , , . . . ,q, ()

where

Yj =
(
I + hAj(tn)

)–(x – hBj(tn)
)
, υj = det

(
I + hAj(tn)

)–, j = , , . . . ,q,

I is the unit matrix.

Assume that the particular density functions can be expressed in powers of parameter h by
the Taylor formula. If we put tn = t, then decompositions of the functions on the left-hand
side and on the right-hand side in () are equal to

fk(tn+,x) = fk(t + h,x) = fk(t,x) +
∂fk(t,x)

∂t
h +O

(
h

)
,

υj = det
(
I – hAj(tn) +O

(
h

))
=  – hTr

(
Ak(t)

)
+O

(
h

)
,

Yj =
(
I – hAj(t) +O

(
h

))(
x – hBj(t)

)
= x – h

(
Aj(t)x + Bj(t)

)
+O

(
h

)
,

fk(t,Yk) = fk
(
t,x – h

(
Ak(t)x + Bk(t)

)
+O

(
h

))
= fk(t,x) – hgrad fk(t,x)

(
Ak(t)x + Bk(t)

)
+O

(
h

)
,

k, j = , , . . . ,q,

where

grad f (t,x) =
(

∂f (t,x)
∂x

,
∂f (t,x)

∂x
, . . . ,

∂f (t,x)
∂xm

)
,

Tr(A) is the trace of the matrix A.
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Using obtained expressions, next comparing the left-hand side to the right-hand side of
equation () and assuming h → , we get the system of differential equations for the
particular density functions

∂fk(t,x)
∂t

= –

(
fk(t,x)Tr

(
Ak(t)

)
+ grad fk(t,x)

(
Ak(t)x + Bk(t)

)

+
q∑
j=

πkj(t)fj(t,x)

)
, k = , , . . . ,q. ()

Finally, multiplying equation () by x and integrating it by parts on the Euclidean space
Em, in accordance with Definition , we obtain a system of linear equations for the par-
ticular moments of the first order in the form (). The particular moments of the second
order satisfy the matrix system of differential equations () which we get in the same
way. The difference is that () is multiplied by the matrix xx*, next it is integrated over
the Euclidean space Em. �

Remark  The moment equations (), () are deterministic and can be solved by using
usual methods, e.g., [].

The following examples illustrate the use of moment equations for the investigation of
stability.

Example  Let us investigate the mean square stability of solutions of the homogenous
linear differential equation

dx
dt

= A
(
ξ (t)

)
x, ()

where the Markov process ξ (t) can be in two states θ, θ with probabilities

pk(t) = P
{
ξ (t) = θk

}
, k = , ,

which satisfies the system of differential equations

dp
dt

= –λp + λp,
dp
dt

= λp – λp,

where λ ≥ .We establish the system of moment equations for the considered system. Let
the values of the matrix A(ξ (t)) corresponding with the states of the Markov process be

A = A(θ) =

(
 ω

–ω 

)
, A = A(θ) =

(
 –ω

ω 

)
, ω ≥ .

Then the system of moment equations of the second order () for equation () is of the
form

dD()

dt
= AD() +D()A*

 – λD() + λD(),

dD()

dt
= AD() +D()A*

 + λD() – λD().
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Denote

D() =

(
d d
d d

)
, D() =

(
l l
l l

)

and rewrite the last system of moment equations into the scalar form

dd
dt

= ωd – λd + λl,
dl
dt

= –ωl + λd – λl,

dd
dt

= ωd –ωd – λd + λl,
dl
dt

= –ωl +ωl + λd – λl,

dd
dt

= –ωd – λd + λl,
dl
dt

= ωl + λd – λl.

The obtained system of moment equations is a system of ordinary linear differential equa-
tions. Its stability is determined by the eigenvalues of thematrix system. The characteristic
equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z + λ –ω  –λ  
ω z + λ –ω  –λ 
 ω z + λ   –λ

–λ   z + λ ω 
 –λ  –ω z + λ ω

  –λ  –ω z + λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 

can be transformed into the following equation:

∣∣∣∣∣∣∣
(z + λ) + ω – λ  –ω

 (z + λ) + ω – λ 
–ω  (z + λ) + ω – λ

∣∣∣∣∣∣∣ = ,

the roots of which are

z, = –λ +
√

λ – ω, z, = –λ –
√

λ – ω, z = –λ, z = .

It is easy to see that the real parts of all eigenvalues are negative or equal to zero. Therefore,
the solutions of the system of equations () are stable in the mean square.
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