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Abstract
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1 Introduction
In recent years, the study of existence and qualitative properties of solutions for various
kinds of neutral delay differential equations has attracted much attention. For related re-
sults, we refer the reader to [–] and the references cited therein. The authors only con-
sidered the existence of solutions which are bounded by positive constants, e.g., in [, ,
–]. For example, Erbe et al. [] established a few oscillation and nonoscillation criteria
for linear neutral delay differential equation

[
x(t) – p(t)x(t – τ )

]′ + q(t)x
(
t – σ (t)

)
= , t ≥ t.

Diblík and co-autors in [–] studied the existence of positive and oscillatory solutions
of differential equations with delay and nonlinear systems in view of Ważievski’s retract
principle and later extended to retarded functional differential equations by Rybakowski.
Zhou [] deduced the existence of nonoscillatory solutions of the second-order nonlinear
neutral differential equations and Lin et al. [] discussed the existence of nonoscillatory
solutions for a third-order nonlinear neutral delay differential equation, and by utilizing
Krasnoselskii’s fixed point theorem and Schauder’s fixed point theorem, they developed
some sufficient conditions for the existence of uncountably many nonoscillatory solutions
bounded by positive constants. Some interesting results about the existence of nonoscil-
latory solutions of delay differential equations can also be found in [, ].
In this paper, we investigate the following nonlinear neutral differential delay differential

equations:

d
dt

[
x(t) – a(t)x(t – τ )

]
= p(t)f

(
x(t – σ )

)
, t ≥ t, ()
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where τ > , σ ≥ , a ∈ C([t,∞), (,∞)), p ∈ C(R, (,∞)), f ∈ C(R,R), f is a nondecreas-
ing function for x >  and f (x) > , x > .
By a solution of Eq. (), wemean a function x ∈ C([t –τ ,∞),R) for some t ≥ t such that

x(t) – a(t)x(t – τ ) is continuously differentiable on [t,∞) and such that Eq. () is satisfied
for t ≥ t.
As much as we know, in the literature there is no result for the existence of uncountably

many solutions which are bounded below and above by positive functions. This problem
is discussed and treated in this paper.
The following fixed point theorem will be used to prove the main results in the next

section.

Lemma . ([, ] Krasnoselskii’s fixed point theorem) Let X be a Banach space, let �

be a bounded closed convex subset of X and let S, S be maps of � into X such that Sx +
Sy ∈ � for every pair x, y ∈ �. If S is contractive and S is completely continuous, then the
equation

Sx + Sx = x

has a solution in �.

2 The existence of positive solutions
In this section we consider the existence of uncountablymany positive solutions for Eq. ()
which are bounded by two positive functions. We use the notation m =max{τ ,σ }.

Theorem . Suppose that there exist bounded from below and from above by the func-
tions u and v ∈ C([t,∞), (,∞)) constants c > , K > K ≥  and t ≥ t +m such that

u(t) ≤ v(t), t ≥ t, ()

v(t) – v(t) – u(t) + u(t) ≥ , t ≤ t ≤ t, ()


u(t – τ )

(
u(t) –K +

∫ ∞

t
p(s)f

(
v(s – σ )

)
ds

)

≤ a(t) ≤ 
v(t – τ )

(
v(t) –K +

∫ ∞

t
p(s)f

(
u(s – σ )

)
ds

)
≤ c < , t ≥ t. ()

Then Eq. () has uncountably many positive solutions which are bounded by the functions
u, v.

Proof Let C([t,∞),R) be the set of all continuous bounded functions with the norm
‖x‖ = supt≥t |x(t)|. Then C([t,∞),R) is a Banach space. We define a closed, bounded
and convex subset � of C([t,∞),R) as follows:

� =
{
x = x(t) ∈ C

(
[t,∞),R

)
: u(t) ≤ x(t)≤ v(t), t ≥ t

}
.

For K ∈ [K,K] we define two maps S and S :� → C([t,∞),R) as follows:

(Sx)(t) =

{
K + a(t)x(t – τ ), t ≥ t,
(Sx)(t), t ≤ t ≤ t,

()

http://www.advancesindifferenceequations.com/content/2013/1/140


Dorociaková et al. Advances in Difference Equations 2013, 2013:140 Page 3 of 8
http://www.advancesindifferenceequations.com/content/2013/1/140

(Sx)(t) =

{
–

∫ ∞
t p(s)f (x(s – σ ))ds, t ≥ t,

(Sx)(t) + v(t) – v(t), t ≤ t ≤ t.
()

We will show that for any x, y ∈ �, we have Sx+Sy ∈ �. For every x, y ∈ � and t ≥ t with
regard to (), we obtain

(Sx)(t) + (Sy)(t) = K + a(t)x(t – τ ) –
∫ ∞

t
p(s)f

(
y(s – σ )

)
ds

≤ K + a(t)v(t – τ ) –
∫ ∞

t
p(s)f

(
u(s – σ )

)
ds

≤ K + v(t) –K ≤ v(t).

For t ∈ [t, t] we have

(Sx)(t) + (Sy)(t) = (Sx)(t) + (Sy)(t) + v(t) – v(t)

≤ v(t) + v(t) – v(t) = v(t).

Furthermore, for t ≥ t we get

(Sx)(t) + (Sy)(t) ≥ K + a(t)u(t – τ ) –
∫ ∞

t
p(s)f

(
v(s – σ )

)
ds

≥ K + u(t) –K ≥ u(t). ()

Let t ∈ [t, t]. With regard to (), we get

v(t) – v(t) + u(t) ≥ u(t), t ≤ t ≤ t.

Then, for t ∈ [t, t] and any x, y ∈ �, we obtain

(Sx)(t) + (Sy)(t) = (Sx)(t) + (Sy)(t) + v(t) – v(t)

≥ u(t) + v(t) – v(t) ≥ u(t).

Thus we have proved that Sx + Sy ∈ � for any x, y ∈ �.
We will show that S is a contraction mapping on �. For x, y ∈ � and t ≥ t, we have

∣∣(Sx)(t) – (Sy)(t)
∣∣ = ∣∣a(t)∣∣∣∣x(t – τ ) – y(t – τ )

∣∣ ≤ c‖x – y‖.

This implies that

‖Sx – Sy‖ ≤ c‖x – y‖.

Also, for t ∈ [t, t] the inequality above is valid.We conclude that S is a contractionmap-
ping on �.
We now show that S is completely continuous. First, we show that S is continuous. Let

xk = xk(t) ∈ � be such that xk(t) → x(t) as k → ∞. Because � is closed, x = x(t) ∈ �. For
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t ≥ t we have

∣∣(Sxk)(t) – (Sx)(t)
∣∣ ≤

∣∣∣∣
∫ ∞

t
p(s)

[
f
(
xk(s – σ )

)
– f

(
x(s – σ )

)]
ds

∣∣∣∣
≤

∫ ∞

t
p(s)

∣∣f (xk(s – σ )
)
– f

(
x(s – σ )

)∣∣ds.
According to (), we get

∫ ∞

t
p(s)f

(
v(s – σ )

)
ds < ∞. ()

Since |f (xk(s – σ )) – f (x(s – σ ))| →  as k → ∞, by applying the Lebesgue dominated
convergence theorem, we obtain that

lim
k→∞

∥∥(Sxk)(t) – (Sx)(t)
∥∥ = .

This means that S is continuous.
We now show that S� is relatively compact. It is sufficient to show by the Arzela-Ascoli

theorem that the family of functions {Sx : x ∈ �} is uniformly bounded and equicon-
tinuous on [t,∞). The uniform boundedness follows from the definition of �. For the
equicontinuity, we only need to show, according to the Levitan result [], that for any
given ε > , the interval [t,∞) can be decomposed into finite subintervals in such a way
that on each subinterval all functions of the family have a change of amplitude less than ε.
Then, with regard to condition (), for x ∈ � and any ε > , we take t* ≥ t large enough
so that

∫ ∞

t*
p(s)f

(
x(s – σ )

)
ds <

ε


.

Then, for x ∈ �, T > T ≥ t*, we have

∣∣(Sx)(T) – (Sx)(T)
∣∣ ≤

∫ ∞

T
p(s)f

(
x(s – σ )

)
ds

+
∫ ∞

T
p(s)f

(
x(s – σ )

)
ds <

ε


+

ε


= ε.

For x ∈ � and t ≤ T < T ≤ t*, we get

∣∣(Sx)(T) – (Sx)(T)
∣∣ ≤

∫ T

T
p(s)f

(
x(s – σ )

)
ds

≤ max
t≤s≤t*

{
p(s)f

(
x(s – σ )

)}
(T – T).

Thus there exists δ = ε
M , whereM =maxt≤s≤t*{p(s)f (x(s – σ ))}, such that

∣∣(Sx)(T) – (Sx)(T)
∣∣ < ε if  < T – T < δ.
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Finally, for any x ∈ �, t ≤ T < T ≤ t, there exists a δ >  such that

∣∣(Sx)(T) – (Sx)(T)
∣∣ = ∣∣v(T) – v(T)

∣∣ = ∣∣∣∣
∫ T

T
v′(s)ds

∣∣∣∣
≤ max

t≤s≤t

{∣∣v′(s)
∣∣}(T – T) < ε if  < T – T < δ.

Then {Sx : x ∈ �} is uniformly bounded and equicontinuous on [t,∞), and hence S�
is a relatively compact subset of C([t,∞),R). By Lemma . there is an x ∈ � such that
Sx + Sx = x. We conclude that x(t) is a positive solution of ().
Next we show that Eq. () has uncountably many bounded positive solutions in �. Let

the constant K̄ ∈ [K,K] be such that K̄ 	= K . We infer similarly that there exist mappings
S̄, S̄ satisfying (), (), where K , S, S are replaced by K̄ , S̄, S̄, respectively. We assume
that x, y ∈ �, Sx+Sx = x, S̄y+ S̄y = y, which are the bounded positive solutions of Eq. (),
that is,

x(t) = K + a(t)x(t – τ ) –
∫ ∞

t
p(s)f

(
x(s – σ )

)
ds, t ≥ t,

y(t) = K̄ + a(t)y(t – τ ) –
∫ ∞

t
p(s)f

(
y(s – σ )

)
ds, t ≥ t.

From condition () it follows that there exists a t > t satisfying

∫ ∞

t
p(s)

[
f
(
x(s – σ )

)
+ f

(
y(s – σ )

)]
ds < |K – K̄ |. ()

In order to prove that the set of bounded positive solutions of Eq. () is uncountable, it is
sufficient to verify that x 	= y. For t ≥ t we get

∣∣x(t) – y(t)
∣∣

=
∣∣∣∣K + a(t)x(t – τ ) –

∫ ∞

t
p(s)f

(
x(s – σ )

)
ds

– K̄ – a(t)y(t – τ ) +
∫ ∞

t
p(s)f

(
y(s – σ )

)
ds

∣∣∣∣
≥

∣∣∣∣K – K̄ + a(t)
[
x(t – τ ) – y(t – τ )

]

–
∫ ∞

t
p(s)

[
f
(
x(s – σ )

)
– f

(
y(s – σ )

)]
ds

∣∣∣∣
≥ |K – K̄ | – a(t)‖x – y‖ –

∣∣∣∣
∫ ∞

t
p(s)

[
f
(
x(s – σ )

)
– f

(
y(s – σ )

)]
ds

∣∣∣∣
≥ |K – K̄ | – c‖x – y‖ –

∫ ∞

t
p(s)

[
f
(
x(s – σ )

)
+ f

(
y(s – σ )

)]
ds.

Then we have

( + c)‖x – y‖ ≥ |K – K̄ | –
∫ ∞

t
p(s)

[
f
(
x(s – σ )

)
+ f

(
y(s – σ )

)]
ds, t ≥ t.
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According to () we get that x 	= y. Since the interval [K,K] contains uncountably many
constants, then Eq. () has uncountably many positive solutions which are bounded by the
functions u(t), v(t). This completes the proof. �

Corollary . Suppose that there exist bounded from below and from above by the func-
tions u and v ∈ C([t,∞), (,∞)) constants c > , K > K ≥  and t ≥ t +m such that
(), () hold and

v′(t) – u′(t)≤ , t ≤ t ≤ t. ()

Then Eq. () has uncountably many positive solutions which are bounded by the functions
u, v.

Proof We only need to prove that condition () implies (). Let t ∈ [t, t] and set

H(t) = v(t) – v(t) – u(t) + u(t).

Then, with regard to (), it follows that

H ′(t) = v′(t) – u′(t)≤ , t ≤ t ≤ t.

Since H(t) =  and H ′(t)≤  for t ∈ [t, t], this implies that

H(t) = v(t) – v(t) – u(t) + u(t) ≥ , t ≤ t ≤ t.

Thus all the conditions of Theorem . are satisfied. �

Example . Consider the nonlinear neutral differential equation

[
x(t) – a(t)x(t – )

]′ = p(t)x(t – ), t ≥ t, ()

where p(t) = e–t . We will show that the conditions of Corollary . are satisfied. The func-
tions u(t) = ., v(t) =  satisfy () and also condition () for t ∈ [t, t] = [, ]. For the
constants K = ., K = , condition () has the form

e–t ≤ a(t)≤ 

+




e–t , t ≥ t = . ()

If the function a(t) satisfies (), then Eq. () has uncountably many positive solutions
which are bounded by the functions u, v.

Example . Consider the nonlinear neutral differential equation

[
x(t) – a(t)x(t – τ )

]′ = p(t)x(t – σ ), t ≥ t, ()

where τ ,σ ∈ (,∞), p(t) = e–t . We will show that the conditions of Corollary . are sat-
isfied. The functions u(t) = e–t , v(t) = eτ + e–t , t ≥ , satisfy () and since

v′(t) – u′(t) = e–t
(
e–t – 

)
<  for t ∈ [, ],

http://www.advancesindifferenceequations.com/content/2013/1/140


Dorociaková et al. Advances in Difference Equations 2013, 2013:140 Page 7 of 8
http://www.advancesindifferenceequations.com/content/2013/1/140

condition () is also satisfied. For the constants K = , K = eτ – , condition () has the
form

e–τ +


e–t +



e–t+σ–τ +



e–t+(σ–τ ) ≤ a(t)≤ e–τ +

e–t+σ–τ

( + e–t)
, t ≥ .

For τ = σ =  we get

e– +


e–t +



e–t +



e–t ≤ a(t)≤ e– +

e–t+

( + e–t)
, t ≥ t = . ()

If the function a(t) satisfies (), then Eq. () has uncountably many solutions which are
bounded by the functions u, v.

Example . Consider the nonlinear neutral differential equation

[
x(t) – a(t)x(t – τ )

]′ = p(t)x(t – σ ), t ≥ t, ()

where τ ,σ ∈ (,∞), p(t) = e–t . We will show that the conditions of Corollary . are satis-
fied. The functions u(t) = e–t , v(t) = eτ + e–t , t ≥  satisfy () and also ()

v′(t) – u′(t) = –e–t <  for t ∈ [, .].

For the constants K = , K = eτ – , where τ > ln, t ≥ ., condition () has the form

e–τ
(
 – et + eτ + eτ+σ–t + eτ+σ–t + eσ–t

) ≤ a(t) ≤ e–τ +
eσ–τ–t

( + e–t)
.

For τ = σ =  and t ≥ ., we have

e–
(
 – et + e + e–t + e–t + e(–t)

)
< .

Then for a(t), which satisfies the inequalities

 < a(t)≤ e– +
e(–t)

( + e–t)
, t ≥ t ≥ ., ()

Eq. () has uncountably many solutions which are bounded by the functions u, v.
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