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1 Introduction andmain results
In this paper, the termmeromorphic function will mean meromorphic in the whole com-
plex plane C. It is assumed that the reader is familiar with the standard notations and
basic results of Nevanlinna theory (see, e.g., [–]). In addition, we use σ (f ) and σ(f ) to
denote the order and the hyper-order of a meromorphic function f (z), and λ(f ) and λ(/f )
to denote the exponents of convergence of zeros and poles of f (z), respectively. For amero-
morphic function f (z), when  < σ (f ) < ∞ or  < σ(f ) < ∞, its type τ (f ) and hyper-type
τ(f ) are defined by τ (f ) = limr→∞ T(r,f )

rσ (f )
and τ(f ) = limr→∞ logT(r,f )

rσ(f )
(see, e.g., [, , ]).

Recently, meromorphic solutions of complex difference equations have become a sub-
ject of great interest from the viewpoint of Nevanlinna theory, due to the apparent role
of the existence of such solutions of finite order for the integrability of discrete difference
equations (see, e.g., [–]). Halburd and Korhonen [] proved that when the difference
equation

ω(z + ) +ω(z – ) = R(z,ω), (.)

where R(z,ω) is rational in both of its arguments and has an admissible meromorphic
solution of finite order, then either ω satisfies a difference Riccati equation, or equation
(.) can be transformed by a linear change in ω(z) to a difference Painlevé equation or a
linear difference equation. Thus the linear difference equation plays an important role in
the study of properties of difference equations.
Chiang and Feng [] considered the linear difference equation

ak(z)f (z + k) + · · · + a(z)f (z + ) + a(z)f (z) = , (.)

and obtained the following results.
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Theorem A [] Let a(z), . . . ,ak(z) be polynomials. If there exists an integer l ( ≤ l ≤ k)
such that

deg(al) > max
≤j≤k
j �=l

{
deg(aj)

}

holds, then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies σ (f ) ≥ , where deg(al)
denotes the degree of the polynomial al .

TheoremB [] Let a(z), . . . ,ak(z) be entire functions. If there exists an integer l (≤ l ≤ n)
such that

σ (al) > max
≤j≤k
j �=l

{
σ (aj)

}

holds, then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies σ (f ) ≥ σ (al) + .

Note that in Theorems A and B, Eq. (.) has only one dominating coefficient al . For the
case when there is no dominating coefficient and all coefficients are polynomials in Eq.
(.), Chen [] obtained an improvement of Theorem A.

Theorem C [] Let a(z), . . . ,ak(z) be polynomials such that

deg(a + · · · + ak) = max
≤j≤k

{degaj} ≥ .

Then every finite order meromorphic solution f ( �≡ ) of Eq. (.) satisfies σ (f ) ≥ .

For the case when there is more than one of coefficients which have the maximal order,
Laine and Yang [] obtained the following result.

TheoremD [] Let a(z), . . . ,ak(z) be entire functions of finite order such that among those
having themaximal order σ =max≤j≤k{σ (aj)}, exactly one has its type strictly greater than
the others. Then for every meromorphic solution f ( �≡ ) of Eq. (.), we have σ (f ) ≥ σ + .

Note that in TheoremD, the condition that exactly one coefficient has themaximal type
among those coefficients having the maximal order, guarantees that every meromorphic
solution f ( �≡ ) of Eq. (.) satisfies σ (f ) ≥ max≤j≤k{σ (aj)} + . The following example
shows that when there exists more than one coefficient having the maximal type among
those coefficients having the maximal order, σ (f ) ≥ max≤j≤k{σ (aj)} +  may hold.

Example . The difference equation

ez+f (z + ) – e–zf (z) = 

admits an entire solution f (z) = e–z , where a(z) = ez+, a(z) = –e–z satisfy σ (a) = σ (a) =
 = σ , τ (a) = τ (a). Here σ (f ) =  = σ + .

Thus we pose the following questions.
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Question . What can be said if there exists more than one coefficient having the max-
imal type and the maximal order in Eq. (.)?

Question . What can be said if all coefficients of Eq. (.) have the order zero? From
the definition of the type of an entire function and the assumptions of Theorem B or The-
orem D, we know that in Theorems B and D there exists at least one coefficient al such
that σ (al) > .

Question . What can be said if there exists more than one coefficient having the order
∞ in Eq. (.)?

The main purpose of this paper is to investigate the above questions for Eq. (.). The
remainder of the paper investigates the properties of meromorphic solutions of a non-
homogeneous linear difference equation corresponding to (.).

Theorem . Let aj(z) = Aj(z)ePj(z) (j = , , . . . ,k),where Pj(z) = αjnzn + · · ·+αj are polyno-
mials with degree n (≥ ), Aj(z) ( �≡ ) are entire functions of σ (Aj) < n. If αjn (j = , , . . . ,k)
are distinct complex numbers, then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies
σ (f ) ≥ max≤j≤k{σ (aj)} + .

Theorem . Let aj(z) = Aj(z)ePj(z) +Dj(z) (j = , , . . . ,k), where Aj(z), Pj(z) satisfy the hy-
pothesis of Theorem ., Dj(z) are entire functions with σ (Dj) < n. If αjn (j = , , . . . ,k) are
distinct complex numbers, then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies
σ (f ) ≥ max≤j≤k{σ (aj)} + .

Remark . In Theorems . and ., we have σ (a) = · · · = σ (ak) and τ (a) = · · · = τ (ak)
if |αn| = · · · = |αkn|. Therefore Theorems . and . are supplements of Theorem D.

Remark . From the proof of Theorems . and ., we know that the same result also
holds for Eq. (.) in the case when at least two coefficients have the form of aj(z) in The-
orem . or ., and the orders of the others are less than n.

Theorem . Let H be a complex set satisfying dens{r = |z| : z ∈ H} > , and let
a(z), . . . ,ak(z) be entire functions satisfying max≤j≤k{σ (aj)} ≤ σ . If there exists an inte-
ger l (≤ l ≤ k) such that for some constants  ≤ α < β and δ >  sufficiently small,

∣∣al(z)∣∣ ≥ exp
{
βrσ–δ

}
, (.)∣∣aj(z)∣∣ ≤ exp

{
αrσ–δ

}
, j = , . . . ,k, j �= l, (.)

as z → ∞ for z ∈ H , then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies σ (f ) ≥
σ (al) + .

Remark . Note that σ may be zero in Theorem ..

Example . shows the sharpness of Theorems . and ., where H = {z : arg z = }. The
following example illustrates the sharpness of Theorem ..
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Example . The difference equation

(
ze–z– + e–

)
f (z + ) –

(
ez– + z

)
f (z) = 

admits a solution f (z) = e(z+) , where a(z) = ze–z– + e–, a(z) = –(ez– + z) sat-
isfy the hypothesis of Theorem . and σ (a) = σ (a), τ (a) = τ (a). Here σ (f ) =  =
max{σ (a),σ (a)} + .

When there exists more than one coefficient having the order ∞ in Eq. (.), we obtain
the following result. Note that in this case Theorem D is invalid.

Theorem . Let a,a, . . . ,ak be entire functions. If there exists an integer l ( ≤ l ≤ k)
such that

max
{
σ(aj) : j = , . . . ,k, j �= l

} ≤ σ(al)
(
 < σ(al) <∞)

,

max
{
τ(aj) : σ(aj) = σ(al)

}
< τ(al)

(
 < τ(al) <∞)

,

then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies σ (f ) = ∞ and σ(f )≥ σ(al).

Next we consider the properties of meromorphic solutions of the non-homogeneous
linear difference equation corresponding to (.)

ak(z)f (z + k) + · · · + a(z)f (z + ) + a(z)f (z) = F(z), (.)

where F(z) ( �≡ ) is an entire function.

Theorem . Let aj(z) (j = , . . . ,k) satisfy the hypothesis of Theorem . or Theorem .,
and let F(z) be an entire function of σ (F) < n. Then at most one meromorphic solution f
of Eq. (.) satisfiesmax≤j≤k{σ (aj)} ≤ σ (f) <max≤j≤k{σ (aj)}+  andmax{λ(f),λ(/f)} =
σ (f), the other solutions f satisfy σ (f) ≥ max≤j≤k{σ (aj)} + .

Theorem . Let aj(z) (j = , . . . ,k) satisfy the hypothesis of Theorem ., and let F(z) be
an entire function. Then

(i) If σ(F) < σ(al) or σ(F) = σ(al), τ(F) < τ(al), then every meromorphic solution f
( �≡ ) of Eq. (.) satisfies σ (f ) = ∞ and σ(f ) ≥ σ(al).

(ii) If σ(F) > σ(al), then every meromorphic solution f ( �≡ ) of Eq. (.) satisfies
σ (f ) = ∞ and σ(f ) ≥ σ(F).

2 Lemmas
Lemma. [] Let η, η be two arbitrary complex numbers, and let f (z) be ameromorphic
function of finite order σ .Let ε >  be given, then there exists a subset E ⊂ (, +∞)with finite
logarithmic measure such that for all |z| = r /∈ E ∪ [, ], we have

exp
{
–rσ–+ε

} ≤
∣∣∣∣ f (z + η)
f (z + η)

∣∣∣∣ ≤ exp
{
rσ–+ε

}
.

http://www.advancesindifferenceequations.com/content/2013/1/133
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Lemma . [] Suppose that P(z) = (α + iβ)zn + · · · (α, β are real numbers, |α|+ |β| �= )
is a polynomial with degree n≥ , A(z) ( �≡ ) is an entire function with σ (A) < n. Set g(z) =
A(z)eP(z), z = reiθ , δ(P, θ ) = α cosnθ – β sinnθ . Then for any given ε > , there exists a set
E ⊂ [, π ) that has linear measure zero, such that for any θ ∈ [, π )\(E ∪ E), there is
R >  such that for |z| = r > R, we have

(i) if δ(P, θ ) > , then

exp
{
( – ε)δ(P, θ )rn

}
<

∣∣g(reiθ )∣∣ < exp
{
( + ε)δ(P, θ )rn

}
;

(ii) if δ(P, θ ) < , then

exp
{
( + ε)δ(P, θ )rn

}
<

∣∣g(reiθ )∣∣ < exp
{
( – ε)δ(P, θ )rn

}
,

where E = {θ ∈ [, π ) : δ(P, θ ) = } is a finite set.

Lemma . [] Let f (z) be an entire function of order σ (f ) = σ < +∞. Then for any given
ε > , there is a set E ⊂ [, +∞) having finite linear measure such that for all z satisfying
|z| = r /∈ [, ]∪ E and r sufficiently large, we have

exp
{
–rσ+ε

} ≤ ∣∣f (z)∣∣ ≤ exp
{
rσ+ε

}
.

Lemma . [] Let f be a non-constant meromorphic function, c ∈ C, δ <  and ε > .
Then

m
(
r,
f (z + c)
f (z)

)
= o

(
T(r + |c|, f )+ε

rδ

)
(.)

for all r outside of a possible exceptional set E with finite logarithmic measure
∫
E

dr
r <∞.

Remark . By [], we know that

(
 + o()

)
T

(
r – |h|, f (z)) ≤ T

(
r, f (z + h)

)
≤ (

 + o()
)
T

(
r + |h|, f (z)) (r > r > ), (.)

where h ∈C. So, by (.) and (.), we immediately have

m
(
r,
f (z + c)
f (z + h)

)
= o

(
T(r + |c – h| + |h|, f )+ε

rδ

)
(.)

for all r outside of a possible exceptional set E with finite logarithmic measure
∫
E

dr
r < ∞.

Lemma . [] Let f be a meromorphic function with hyper-order  < σ(f ) < ∞ and
hyper-type  < τ(f ) < ∞, then for any given β < τ(f ), there exists a subset E ⊂ [, +∞)
of infinite logarithmic measure such that T(r, f ) > βrσ(f ) holds for all r ∈ E.

Lemma . Let G(z) =
∑k

j= Bj(z)ePj(z), where Pj(z) = αjnzn + · · ·+ αj are polynomials with
degree n (≥ ), Bj(z) ( �≡ ) are meromorphic functions of σ (Bj) < n. If αjn (j = , . . . ,k) are
distinct complex numbers, then σ (G) = n.

http://www.advancesindifferenceequations.com/content/2013/1/133
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Proof By the Weierstrass factorization, we obtain

Bj(z) =
Bj(z)
Bj(z)

, (.)

where Bj(z), Bj(z) are entire functions of order less than n. Let Q(z) =
∏k

j= Bj(z), H(z) =
Q(z)G(z), then σ (Q) < n and by (.), we get

H(z) =
k∑
j=

Dj(z)eαjnzn , (.)

where Dj(z) =Q(z)Bj(z)ePj(z)–αjnzn are entire functions of σ (Dj) < n.
Next we prove that σ (H) = n. Set σ (Dj) = σj, argαjn = ϕj ( ≤ j ≤ k). By Lemma ., for

any given ε ( < ε < n–max≤j≤k σj), there is a set E ⊂ [, +∞) having finite linear measure
such that for all z satisfying |z| = r /∈ [, ]∪ E and r sufficiently large, we have

exp
{
–rσj+ε

} ≤ ∣∣Dj(z)
∣∣ ≤ exp

{
rσj+ε

}
( ≤ j ≤ k). (.)

Without loss of generality, suppose that |αln| ≥ max{|αjn| :  ≤ j ≤ k, j �= l}. Let θ satisfy
cos(ϕl + nθ) = . Then by (.) and (.), for z = reiθ satisfying |z| = r /∈ [, ] ∪ E and r
sufficiently large, we have

∣∣H(z)
∣∣ ≥ ∣∣Dl(z)

∣∣∣∣eαlnzn
∣∣ – k∑

j=
j �=l

∣∣Dj(z)
∣∣∣∣eαjnzn

∣∣

≥ exp
{
–rσl+ε

}
exp

{|αln|rn
}
–

k∑
j=
j �=l

exp
{
rσj+ε

}
exp

{|αjn|rn cos(ϕj + nθ)
}

= exp
{|αln|rn – rσl+ε

}[
 –

k∑
j=
j �=l

exp
{(|αjn| cos(ϕj + nθ) – |αln|

)
rn

}

· exp{rσj+ε + rσl+ε
}]

. (.)

We discuss the following two cases.
Case . |αln| > |αjn| for  ≤ j ≤ k, j �= l. Then by (.), for z = reiθ satisfying |z| = r /∈

[, ]∪ E and r sufficiently large, we have

∣∣H(z)
∣∣ ≥ exp

{|αln|rn – rσl+ε
}(
 – o()

)
. (.)

Case . Among αjn ( ≤ j ≤ k) there exist αin, . . . ,αimn (ij ∈ {, . . . ,k} \ {l}) such that
|αin| = · · · = |αimn| = |αln|. Since αjn ( ≤ j ≤ k) are distinct non-zero complex numbers,
we have

cos(ϕi + θ) < , . . . , cos(ϕim + θ) < .

Hence by (.), we also obtain (.).

http://www.advancesindifferenceequations.com/content/2013/1/133
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By (.), we get σ (H)≥ n. On the other hand, by the elementary order considerations, we
have σ (H)≤ n. So, σ (H) = n. Then by G(z) =H(z)/Q(z) and σ (Q) < n, we get σ (G) = n. �

3 Proofs of the results

Proof of Theorem . Let f ( �≡ ) be a meromorphic solution of (.). Suppose that σ (f ) <
n + , then by Lemma ., for any given ε > , there exists a set E ⊂ (, +∞) with finite
logarithmic measure such that for all |z| = r /∈ E ∪ [, ], we have

∣∣∣∣ f (z + j)
f (z + l)

∣∣∣∣ ≤ exp
{
rσ (f )–+ε

}
(j = , . . . ,k, j �= l). (.)

Set z = reiθ , αjn = |αjn|eiϕj and δ(Pj, θ ) = |αjn| cos(ϕj + nθ ) (j = , . . . ,k). Then E = {θ ∈
[, π ) : δ(Pj, θ ) = , j = , . . . ,k} ∪ {θ ∈ [, π ) : δ(Pj – Pi, θ ) = ,  ≤ i < j ≤ k} is a set of lin-
ear measure zero. Considering each aj(z) = Aj(z)ePj(z), by Lemma ., for the above ε > ,
there exists a set Fj ⊂ [, π ) of linear measure zero such that for any z = reiθ satisfying
θ ∈ [, π ) \ (E ∪ Fj) and r sufficiently large, we have

(i) if δ(Pj, θ ) > , then

exp
{
( – ε)δ(Pj, θ )rn

}
<

∣∣aj(reiθ )∣∣ < exp
{
( + ε)δ(Pj, θ )rn

}
; (.)

(ii) if δ(Pj, θ ) < , then

exp
{
( + ε)δ(Pj, θ )rn

}
<

∣∣aj(reiθ )∣∣ < exp
{
( – ε)δ(Pj, θ )rn

}
. (.)

Set E =
⋃k

j= Fj, then E is a set of linear measure zero. Since αjn are distinct complex
numbers, there exists only one l ∈ {, . . . ,k} such that δ(Pl, θ ) = max{δ(Pj, θ ) : j = , . . . ,k}
for any θ ∈ [, π ) \ (E ∪ E). Now we take a ray arg z = θ ∈ [, π ) \ (E ∪ E) such that
δ(Pl, θ) > . Let δ = δ(Pl, θ), δ =max{δ(Pj, θ) : j = , . . . ,k, j �= l}, then δ > δ. We discuss
the following two cases.
Case . δ > . We rewrite (.) in the form

–al(z) =
k∑
j=
j �=l

aj(z)
f (z + j)
f (z + l)

. (.)

By (.), (.) and (.), we get for z = reiθ and sufficiently large r /∈ E ∪ [, ],

exp
{
( – ε)δrn

} ≤ ∣∣al(reiθ)∣∣ ≤
k∑
j=
j �=l

exp
{
( + ε)δ(Pj, θ)rn

}
exp

{
rσ (f )–+ε

}

≤ k exp
{
( + ε)δrn

}
exp

{
rσ (f )–+ε

}
. (.)

When  < ε <min{ δ–δ
δ+δ

,n +  – σ (f )}, by (.), we get

exp

{
δ – δ


rn

}
≤ k exp

{
rσ (f )–+ε

}
.

This is impossible.

http://www.advancesindifferenceequations.com/content/2013/1/133
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Case . δ < . By (.), (.) and (.), we get for z = reiθ and sufficiently large r /∈
E ∪ [, ],

exp
{
( – ε)δrn

} ≤ ∣∣al(reiθ)∣∣ ≤
k∑
j=
j �=l

exp
{
( – ε)δ(Pj, θ)rn

}
exp

{
rσ (f )–+ε

}

≤ k exp
{
rσ (f )–+ε

}
.

This is a contradiction. Hence we get σ (f ) ≥ n +  =max≤j≤k{σ (aj)} + . �

Proof of Theorem . By Lemmas . and ., we know that for any given ε > , there is a
set E ⊂ [, +∞) having finite linear measure such that for all z satisfying |z| = r /∈ [, ]∪ E
and r sufficiently large, we have

exp
{
( – ε)δ(Pj, θ )rn

}
<

∣∣aj(reiθ )∣∣ < exp
{
( + ε)δ(Pj, θ )rn

}
(.)

if δ(Pj, θ ) > , and

∣∣aj(reiθ )∣∣ < exp
{
rσ (Dj)+ε

}
(.)

if δ(Pj, θ ) < . Then using the similar argument to that of Theorem . and only replacing
(.) (or (.)) by (.) (or (.)), we can prove Theorem .. �

Proof of Theorem . Let f ( �≡ ) be a meromorphic solution of (.). Suppose that σ (f ) <
σ + , then by Lemma ., for any given ε ( < ε < σ +  – σ (f ) – δ), there exists a set
E ⊂ (, +∞) with finite logarithmic measure such that for all |z| = r /∈ E ∪ [, ], we have

∣∣∣∣ f (z + j)
f (z + l)

∣∣∣∣ ≤ exp
{
rσ (f )–+ε

}
< exp

{
rσ–δ

}
(j = , . . . ,k, j �= l). (.)

Rewrite (.) in the form

– =
k∑
j=
j �=l

aj(z)f (z + j)
al(z)f (z + l)

. (.)

Since E∪ [, ] has finite logarithmic measure, the density of E∪ [, ] is zero. Hence (.)
and (.) also hold for z ∈H \ E∪ [, ]. Substituting (.), (.) and (.) into (.), we get
for z ∈H \ E ∪ [, ],

 ≤
k∑
j=
j �=l

exp
{
(α – β)rσ–δ

}
exp

{
rσ–δ

}

→ ,

a contradiction. Hence we get σ (f ) ≥ σ + . By the assumptions of Theorem ., we know
that σ (al) = σ . So, σ (f ) ≥ σ (al) + . �

http://www.advancesindifferenceequations.com/content/2013/1/133
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Proof of Theorem . Let f ( �≡ ) be a meromorphic solution of (.). By (.) we get

–al(z) =
k∑
j=
j �=l

aj(z)
f (z + j)
f (z + l)

. (.)

By Lemma . and (.), we get

m
(
r,al(z)

) ≤
k∑
j=
j �=l

m
(
r,aj(z)

)
+

k∑
j=
j �=l

m
(
r,
f (z + j)
f (z + l)

)
+O()

=
k∑
j=
j �=l

m
(
r,aj(z)

)
+

k∑
j=
j �=l

o
(
T(r + |l| + |j – l|, f )+ε

rδ

)
+O()

=
k∑
j=
j �=l

T
(
r,aj(z)

)
+ o

(
T(r + k, f )+ε

rδ

)
+O() (.)

for r → ∞, r /∈ E, where E is a set of finite logarithmic measure.
Let β, β be two real numbers such that max{τ(aj) : σ(aj) = σ(al)} < β < β < τ(al).

Then by Lemma ., we know that there exists a set H of infinite logarithmic measure
such that

T(r,al) > exp
{
βrσ(al)

}

holds for all r ∈ H . Therefore we can take a sequence {rn} such that rn ∈ H \ E, rn → ∞
and

T(rn,al) > exp
{
βrσ(al)n

}
(.)

holds for sufficiently large rn.
On the other hand, if σ(aj) < σ(al), then for any given ε >  and sufficiently large rn, we

have

T(rn,aj) < exp
{
rσ(aj)+ε

n
}
< exp

{
βrσ(al)n

}
; (.)

if max{τ(aj) : σ(aj) = σ(al)} < τ(al), then for sufficiently large rn, we have

T(rn,aj) < exp
{
βrσ(al)n

}
. (.)

Then substituting (.), (.) (or (.)) into (.), we get

exp
{
βrσ(al)n

}
< T(rn,al) =m(rn,al)

< k exp
{
βrσ(al)n

}
+ o

(
T(rn + k, f )+ε

rδn

)
. (.)
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Hence by (.), for sufficiently large rn, we have

(
 – o()

)
exp

{
βrσ(al)n

}
= o

(
T(rn + k, f )+ε

rδn

)
. (.)

Then by (.), we get σ (f ) = ∞ and σ(f ) ≥ σ(al). �

Proof of Theorem . Let f ( �≡ ) be a meromorphic solution of (.). Suppose that
σ (f ) <max≤j≤k{σ (aj)}, then by Lemma . we obtain σ (F) = σ (

∑k
j= aj(z)f (z+ j)) = n. This

contradicts σ (F) < n. Therefore we have σ (f )≥ max≤j≤k{σ (aj)}.
Suppose that there exist two distinct meromorphic solutions f ( �≡ ), f ( �≡ ) of

Eq. (.) such that max{σ (f),σ (f)} < max≤j≤k{σ (aj)} + . Then f – f is a meromor-
phic solution of the homogeneous linear difference equation corresponding to (.), and
σ (f – f) < max≤j≤k{σ (aj)} + . By Theorem . or Theorem ., we get a contradiction.
So, Eq. (.) has at most one meromorphic solution f satisfyingmax≤j≤k{σ (aj)} ≤ σ (f) <
max≤j≤k{σ (aj)} + .
Next we prove max{λ(f),λ(/f)} = σ (f) in the case σ (f) = max≤j≤k{σ (aj)}. Suppose

that max{λ(f),λ(/f)} < σ (f), then by the Weierstrass factorization, we obtain

f(z) =
g(z)
g(z)

eQ(z), (.)

where Q(z) = βzn + · · · is a polynomial of degree n, g(z) and g(z) are entire func-
tions of σ (g) = λ(g) = λ(f), σ (g) = λ(g) = λ(/f). Let g(z) = g(z)

g(z)
eQ(z)–βzn and Bj(z) =

Aj(z)ePj(z)–αjnzn . Substituting (.) into (.), we get

k∑
j=

Bj(z)g(z + j)eαjnzn+β(z+j)n = F(z) (.)

in the case aj = AjePj . Sinceαjn are distinct complex numbers, by Lemma.,we obtain that
the order of the left-hand side of (.) is n. This contradicts σ (F) < n. For aj = AjePj +Dj,
by using a similar to the above argument, we also obtain a contradiction.
It is obvious that max{λ(f),λ(/f)} = σ (f) provided that max≤j≤k{σ (aj)} < σ (f) <

max≤j≤k{σ (aj)} + . Therefore we have max{λ(f),λ(/f)} = σ (f). �

Proof of Theorem . First we consider the case σ(F) < σ(al) or σ(F) = σ(al), τ(F) <
τ(al). Let f ( �≡ ) be a meromorphic solution of (.). By (.), (.) and (.), we get

m
(
r,al(z)

) ≤ m
(
r,

F(z)
f (z + l)

)
+

k∑
j=
j �=l

m
(
r,aj(z)

)
+

k∑
j=
j �=l

m
(
r,
f (z + j)
f (z + l)

)
+O()

≤ T
(
r,F(z)

)
+ T

(
r, f (z + l)

)
+

k∑
j=
j �=l

m
(
r,aj(z)

)

+
k∑
j=
j �=l

o
(
T(r + |l| + |j – l|, f )+ε

rδ

)
+O()
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≤ T
(
r,F(z)

)
+

(
 + o()

)
T

(
r + |l|, f (z)) + k∑

j=
j �=l

T
(
r,aj(z)

)

+ o
(
T(r + k, f )+ε

rδ

)
+O() (.)

for r → ∞, r /∈ E, where E is a set of finite logarithmic measure.
Let β, β be two real numbers such that max{τ(aj), τ(F) : σ(aj) = σ(al)} < β < β <

τ(al). Then by Lemma ., we can take a sequence {rn} such that rn ∈H \ E, rn → ∞ and
(.)-(.) also hold for sufficiently large rn, where H is defined by Lemma .. On the
other hand, for sufficiently large rn we have

T(rn,F) < exp
{
βrσ(al)n

}
. (.)

Substituting (.), (.) (or (.)) (.) into (.), we get

exp
{
βrσ(al)n

} ≤ T(rn,al) =m(rn,al)

< (k + ) exp
{
βrσ(al)n

}
+ T(rn, f ). (.)

Hence by (.), we get σ (f ) = ∞ and σ(f ) ≥ σ(al).
Next we consider the case σ(F) > σ(al). Let f ( �≡ ) be a meromorphic solution of (.).

By (.) and (.), we get

T
(
r,F(z)

) ≤
k∑
j=

T
(
r,aj(z)

)
+

k∑
j=

T
(
r, f (z + j)

)
+O()

≤
k∑
j=

T
(
r,aj(z)

)
+ (k + )T

(
r + k, f (z)

)
. (.)

By the definition of hyper-order, we know that there exists a sequence {rn} such that rn →
∞, and for any given ε ( < ε < σ(F) – σ(al)) and sufficiently large rn, we have

T(rn,F) > exp
{
rσ(F)–ε
n

}
, (.)

T(rn,aj) < exp
{
rσ(aj)+ε

n
}

(j = , . . . ,k). (.)

Substituting (.), (.) into (.), we get σ (f ) = ∞ and σ(f ) ≥ σ(F). �
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