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Abstract

Background: The distributions of incubation and relapse periods are key components of infectious disease models
for the malaria parasite Plasmodium vivax; however, detailed distributions based upon experimental data are lacking.

Methods: Using a range of historical, experimental mosquito-transmitted human infections, Bayesian estimation
with non-informative priors was used to determine parametric distributions that can be readily implemented for
the incubation period and time-to-first relapse in P. vivax infections, including global subregions by parasite source.
These analyses were complemented with a pooled analysis of observational human infection data with infections
that included malaria chemoprophylaxis and long-latencies. The epidemiological impact of these distributional
assumptions was explored using stochastic epidemic simulations at a fixed reproductive number while varying the
underlying distribution of incubation periods.

Results: Using the Deviance Information Criteria to compare parameterizations, experimental incubation periods are
most closely modeled with a shifted log-logistic distribution; a log-logistic mixture is the best fit for incubations in
observational studies. The mixture Gompertz distribution was the best fit for experimental times-to-relapse among the
tested parameterizations, with some variation by geographic subregions. Simulations suggest underlying distributional
assumptions have critically important impacts on both the time-scale and total case counts within epidemics.

Conclusions: These results suggest that the exponential and gamma distributions commonly used for modeling
incubation periods and relapse times inadequately capture the complexity in the distributions of event times in P. vivax
malaria infections. In future models, log-logistic and Gompertz distributions should be utilized for general incubation
periods and relapse times respectively, and region-specific distributions should be considered to accurately model and
predict the epidemiology of this important human pathogen.
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Background
Malaria caused by Plasmodium vivax has recently entered
the global health agenda in the context of global malaria
elimination. This has followed a re-evaluation of the long-
held opinion that this parasite causes limited morbidity
and essentially no mortality; a range of recent studies sug-
gest that it is a major contributor to both in the wide-
spread regions where it is endemic [1,2]. Furthermore, the
presence of dormant liver forms (hypnozoites) which can

re-activate infection is an important barrier in disease
control towards global malaria elimination [3,4].
Mathematical and statistical models are an important

area of research in malaria given the complex dynamics
of the parasite-host-vector system [5,6]. The majority of
malaria models have focused on the species common in
sub-Saharan Africa, P. falciparum; only recently have ef-
forts been directed towards P. vivax [7-10]. The distribu-
tions of event times like incubation period have an
important role in modeling infectious disease [11], and
realistic assumptions about the distributions are crucial
for accurate models. Published P. vivax models have
made a range of implicit and explicit assumptions about
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the functional form of incubation periods and relapse in-
tervals with limited empirical justification. Earlier work
has focused on statistically and clinically significant dif-
ferences in the epidemiology of sub-populations of this
parasite [12,13], but these epidemiological models do
not provide well-defined parametric distributions for ap-
plication within mathematical or statistical models. The
purpose of this study is to use data synthesis to provide
accurate, realistic and readily implementable parameters
for modeling P. vivax infection event times using several
historical human infection datasets.

Methods
We have utilized data from our earlier study of historical
human challenge studies in two populations: patients re-
ceiving pre-antibiotic era neurosyphilis treatments, and
prison volunteers in experiments for malaria prophy-
laxis. These two groups of institutionalized patients had
mosquito-transmitted infections with defined exposure
dates and complete follow-up [12]. Data for the infec-
tions with long-latency (extended incubation periods)
were extracted from three published studies that in-
volved two unrelated temperate strains; one involved
drug prophylaxis [14], two were observational studies
with inferred exposure dates [15,16], and all include ex-
tensive interval censoring in reported event times.
The composition of the two populations for the incuba-

tion period analysis can be found in tables 1 and 2; the
population for relapses is in Table 3. CONSORT diagrams
for the two experimental studies can be found in Figure 1.
Individuals without a recorded incubation or relapse (cen-

sored observations) have not been included in this analysis.
‘Failed’ primary infections were generally not reported
within the original studies and may represent experimental
difficulties. In analysis of relapses, our primary consideration
was to determine the underlying distribution of events for
modeling; non-parametric ding the proportion with relapses,
can be found in the Additional file 1 (section III).
Case-patients were exposed to parasites from a range of

geographic locations, which were characterized by hemi-
sphere and latitude. As in prior studies and historical prece-
dence, the sub-populations from the Western hemisphere

are referred to as the New World, and Old World region
consists of the Eastern hemisphere and Pacific regions [17];
temperate and tropical regions have been split at ± 27.5° N/
S. Many of these data include interval censoring; that is, the
event was reported as occurring within a specified time
interval, but the exact time in unknown [18].
This study analyzes de-identified, secondary data pub-

lished in the open literature (in the public domain); no
ethics review was required. Analysis of data from patients
at the same neurosyphilis treatment centers has been pub-
lished with an extensive discussion of the ethical issues
[19]; the issues inherent to the prison volunteers in these
studies have also received extensive attention [20-22].
The incubation period refers to the time from parasite ex-

posure to onset of clinical symptoms; prepatent periods,
which refer to the identification of blood-stage parasites, were
not included in this analysis. For the experimental studies, all
patients received only symptomatic treatments; all cases with
malaria prophylaxis or radical cure were excluded. Relapses
were measured from the primary infection as reported by the
original study authors, and correspond to the onset of new
clinical symptoms after parasites are no longer visible in the
peripheral blood following the primary infection [23]. These
data were examined using survival models, to specifically ad-
dress the non-normal distribution of event times.
In this analysis, we examined a range of distributions in-

cluding exponential, gamma, Gompertz, log-logistic, log-
normal, Weibull; time-shifted distributions from these re-
spective families; and mixture distributions from each dis-
tribution family. The general forms of these distributions
are shown in Figure 2.

Table 1 Study population for incubation period analysis (experimental studies)

Characteristic Number (%)

Parasite origin New World, Temperate 139 (30.6)

New World, Tropical 38 (8.4)

Old World, Temperate 57 (12.6)

Old World, Tropical 220 (48.5)

Neurological treatment patient No 224 (49.3)

Yes 230 (50.7)

Total 454

Table 2 Study population for incubation period analysis
(observational studies)

Characteristic Number (%)

Malaria chemoprophylaxis No 109 (20.6)

Yes 191 (36.1)

Unknown 229 (43.3)

Parasite strain Korean 262 (49.5)

St. Elizabeth 267 (50.5)

Total 529
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Model fitting and parameter estimation utilized the
Markov-Chain Monte-Carlo algorithm [24], and interval
censored data were addressed using data augmentation
methods [25]. Two complementary sets of analyses were
performed for each of the experimental incubation and re-
lapse datasets. In the first set, the best-fit distribution was
found using the aggregate data, and then parameters for
this optimal distribution were determined for each of the
subregions of interest. In the second analysis, the best-fit
distribution was found for each of the subregions
independently.
Deviance Information Criterion (DIC) was used for

model comparison [26], with standard thresholds to deter-
mine strength of evidence. That is, an absolute difference
between models of < 2 DIC units was taken as indicating
little difference; from 2-7 units indicating large differences;
and > 7 DIC units indicating clear evidence of superiority.
To examine the sensitivity of the model selection pro-

cedure, we multiplied all time points by log-normal noise,
with mean of 0 on the log scale, plus 0.01 standard devi-
ation, i.e. randomly scaled up or down by ± 2%. Model
sensitivity was then assessed by comparing the DIC from
best-fit model with the DIC value from fitting the same
distributional model to the generated pseudodata.
To assess the epidemiological and practical impacts of

identified distributions, we performed a series of stochas-
tic compartmental (SIR) models at fixed R0 values while
varying the underlying distributions. The distributions

were implemented using the best-fit parameters from our
data augmentation process. For these epidemic simula-
tions, we utilized the R0 package in R [27] for discrete-
time models, running 10,000 stochastic simulations,
reporting the mean values for each of the resulting sets of
epidemics. We have not incorporated uncertainty in the
extrinsic incubation period due to lack of reliable data,
and we have made the assumption that the incubation
period distribution is proportional to the generation inter-
val, as P. vivax infections produce infective gametocytes
rapidly upon onset of clinical symptoms [28].
We used non-informative priors for all parameter esti-

mations. Proposal distributions were adjusted using esti-
mated means and covariances from pilot runs in an
iterative process to accelerate convergence; assessment of
convergence was performed using Geweke’s diagnostic
[29]. All statistical analyses were performed in R (version
2.15.2) [30], using the packages fitdistrplus, flexsurv, grid,
MASS, seqinr, FAdist, stats4, R0 and custom-built code
for the MCMC algorithm.

Results
Incubation periods
The study of experimental incubation period included
461 case-patients and overlaid distributions can be
found in Figure 3; DIC comparisons for these distribu-
tional families for both the aggregate and for subregion-
specific incubation period data are shown in Table 4. It

Table 3 Study population for relapse period analysis (experimental studies)

Characteristic Number (%)

Parasite origin New World, Temperate 45 (20.3)

New World, Tropical 21 (9.5)

Old World, Temperate 130 (58.6)

Old World, Tropical 26 (11.7)

Neurological treatment patient No 87 (39.2)

Yes 135 (60.8)

Total 222

Figure 1 CONSORT diagram for study populations, Plasmodium vivax malaria (A) experimental incubation period study (B)
experimental time-to-first relapse study.
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should be noted for all the results that ‘flattening’ of the
fitted curves relative to the data-based histograms arises
from the data augmentation processes. The Deviance In-
formation Criterion (DIC) indicates that the shifted log-
logistic distribution has a substantially better fit than the
second best shifted log-normal distribution, as evidenced
by a DIC difference of 0.4. Mixture distributions of two
gammas had limited levels of support (Δ DIC < 3), while
all other distributions were not supported by DIC. The
increased complexity of mixture distributions does not
explain any greater variation in these data, and are also
not supported by DIC. The subregion specific

distributions show some differences from the best-fit distri-
bution (shifted log-logistic) from the aggregate data. Among
the New World, tropical parasites there is support for a
shifted Gompertz distribution (Δ DIC = 2.5), and in the
New World, temperate strains there is very strong evidence
for a shifted Weibull distribution (Δ DIC = 18.3). Quadrant-
specific plots of Kaplan-Meier curves with best-fit distribu-
tions can be found in the Additional file 1 (section II).
The distribution of the 529 cases in confounded and ob-

servational studies with longer-term incubations is shown
in Table 5 and Figure 4; a bimodal peak is evident. The
studies with the St. Elizabeth strain involved a range of

Figure 2 Comparison of general probability distributions included within this study [shape = 0.5, rate = 1; shift = 0.5 (shifted
log-logistic only)].
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Figure 3 Comparison of crude (non-data augmented) data and estimated parametric models of experimental incubation times,
Plasmodium vivax malaria (N = 454). Experimental data are in black outlines, and parametric model fits are shown with 95% confidence
intervals, along with the overall best parametric fit.
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chemoprophylaxis regimens, and the Korean strain infec-
tions were all observational studies that largely included
chemoprophylaxis. These results also overwhelmingly sup-
port a log-logistic distribution; in this case a mixture of
two log-logistic distributions accurately capture the bi-
modal distribution commonly observed in temperate zone
epidemiology. Shifted distributions showed extremely poor
fit and are not reported. A Kaplan-Meier curve for these
data can be found in the Additional file 1 (section II).

Times to first relapse
The results of the time-to-relapse analysis (primary infection
to the first relapse) are shown in Table 6. We find that mix-
ture distributions provide better fit for the total dataset than
standard families; specifically, we find the best fit with a
Gompertz mixture, followed by the log-logistic mixture (Δ
DIC = 4.1), log-normal mixture (Δ DIC = 4.7) and Weibull
mixture (Δ DIC = 5.4). While the differences among these
three distributions are very minor, all capture the event
times poorly relative to the Gompertz. The gamma and ex-
ponential mixtures both fit poorly (Δ DIC > 7). Figure 5
shows these distributions compared with the experimental
data; the district bimodal peak is captured by the Gompertz
mixture. There is some limited support for a shifted
Gompertz in the New World Tropical region (Δ DIC = 2.9),
but the remaining regions, and the global fit to aggregate

data all show strong statistical support for a mixture Gom-
pertz distribution.

Sensitivity analyses
A sensitivity analysis was performed for all three data-
sets and each of the subregions individually, and show
strong evidence that the models provided good fits for
the pseudodata by comparisons of the DIC values. De-
tailed results, estimated posterior distributions for model
parameters overall and by quadrant, are presented in the
Additional file 1.

Table 4 Fitted distributions for experimental incubation times, Plasmodium vivax malaria

Distribution Old World, Tropical Old World, Temperate New World, Tropical New World, Temperate Global fit, All regions

Δ DIC Δ DIC Δ DIC Δ DIC Δ DIC

Exponential 583.1 111.8 109.8 332.9 917.2

Shifted exponential 114.3 45.5 1.8 141.5 275.0

Mixture exponential - - - - 919.1

Weibull 76.2 3.7 1.6 0.1 166.4

Shifted Weibull 12.3 2.3 0.2 0.0 33.7

Mixture Weibull - - - - 40.1

Log-normal 4.7 4.1 1.0 15.4 16.3

Shifted log-normal 2.5 5.5 1.1 17.6 0.4

Mixture log-normal - - - - 18.3

Log-logistic 3.1 0.0 3.4 16.6 14.2

Shifted log-logistic 0.0 1.5 2.5 18.3 0.0

Mixture log-logistic - - - - 16.1

Gamma 11.0 1.3 0.6 9.2 40.3

Shifted gamma 6.5 1.6 1.4 11.1 12.5

Mixture gamma - - - - 2.7

Gompertz 159.4 17.3 0.8 10.6 366.0

Shifted Gompertz 42.6 15.5 0.0 4.9 142.1

Mixture Gompertz - - - - 100.7

DIC of best-fit model 958.8 345.5 163.6 680.1 2374.6

Note: mixture models showed non-normal posteriors and are not reported.
Best fitting distributions are shown in bold.

Table 5 Fitted distributions for observational incubation
time studies, Plasmodium vivax malaria

Standard distributions Mixture distributions

Base model Δ DIC Base model Δ DIC

exponential 952.4 exponential 551.5

gamma 570.6 gamma 171.8

Gompertz 874.2 Gompertz 297.7

log-logistic 719.3 log-logistic 0.0

log-normal 688.4 log-normal 41.5

Weilbull 611.9 Weilbull 193.4

DIC of best-fit model 2876.7

(Note: shifted distributions showed extremely poor fit and are not reported).
The best fitting distribution is shown in bold.
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Figure 4 Comparison of crude (non-data augmented) data and estimated parametric model of observational incubation times,
Plasmodium vivax malaria (N = 529). Observational data are in black outlines, and parametric model fits are shown with 95% confidence
intervals, along with the overall best parametric fit.

Table 6 Fitted distributions for experimental relapse times, Plasmodium vivax malaria

Distribution Old World, Tropical Old World, Temperate New World, Tropical New World, Temperate Global fit, All regions

Δ DIC Δ DIC Δ DIC Δ DIC Δ DIC

Exponential 112.3 121.8 39.0 106.2 147.4

Shifted exponential 86.2 80.1 13.3 103.9 134.1

Mixture exponential 109.1 121.1 40.2 106.4 144.9

Weibull 138.1 221.2 111.8 212.4 190.7

Shifted Weibull 55.6 79.2 13.2 104.5 120.0

Mixture Weibull 80.5 3.8 4.2 14.3 5.4

Log-normal 98.5 111.1 9.0 126.4 178.9

Shifted log-normal 60.4 151.0 34.3 146.6 219.8

Mixture log-normal 75.4 13.6 11.1 17.5 4.7

Log-logistic 93.7 125.2 8.2 121.4 189.3

Shifted log-logistic 60.5 131.9 25.2 129.8 190.1

Mixture log-logistic 94.5 126.8 9.5 122.3 4.1

Gamma 112.0 94.3 9.7 104.7 130.5

Shifted gamma 54.3 80.8 15.0 105.5 131.0

Mixture gamma 86.4 25.7 9.3 1.1 7.5

Gompertz 114.0 107.8 2.7 64.1 74.9

Shifted Gompertz 89.4 79.1 0.0 63.9 73.4

Mixture Gompertz 0.0 0.0 2.9 0.0 0.0

DIC of best-fit model 144.5 1402.0 219.6 467.17 2596.2

Best fitting distributions are shown in bold.
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Epidemic simulations
The results of stochastic epidemic simulations can be
found in Figure 6. These results suggest that at a repro-
ductive number (R0) of 5, the time scale of a modeled epi-
demic varies dramatically based upon the distribution of
the incubation period. Use of an exponential distribution,
as is extremely common in SIR compartmental simula-
tions, shows a much more rapid epidemic, with Gompertz
and Weibull distributions showing more gradual epidemic
evolution. Finally, gamma, log-logistic, log-normal, and

shifted log-logistic have the latest epidemic peaks, and are
virtually indistinguishable from one another. The mean
total cases for each set of 10,000 simulations by underlying
distributions are shown in Table 7. Comparison of these
totals shows that within the 95% confidence intervals, the
total number of cases within the epidemic is greater for
the best-fitting log-logistic and shifted log-logistic distri-
butions relative to exponential- and gamma-distributed
incubation periods. Simulations with R0 = 50 and 75 pro-
duced consistent results but with greater separation of the
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Figure 5 Comparison of crude (non-data augmented) data and estimated parametric model of first relapse times, Plasmodium vivax
malaria. (N = 222). Experimental data are in black outlines, and parametric model fits are shown with 95% confidence intervals, along with the
best overall parametric fit.

Figure 6 Comparison of simulated Plasmodium vivax malaria epidemics with R0 = 5 (mean values from 10,000 simulations for each
standard distribution).
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gamma, log-logistic, log-normal, and shifted-log-logistic
epidemic curves (results not shown).

Discussion
Although some of the earliest simulation models of mal-
aria were directed towards P. vivax in epidemics, this
parasite has received limited attention from modelers
[31].
The models that have appeared have used a range of

distributions for the model parameters of incubation
period and time-to-relapse. Some of the earliest compre-
hensive mathematical models for P. vivax did not con-
sider distributional assumptions and relied on point
estimates [32]; other mathematical models used a log-
normal distribution for relapses and a single estimate of
15 days for incubation period [7], implying an exponen-
tial distribution. A stochastic model of potential P. vivax
transmission within Japan used a gamma distribution for
the incubation period, an exponential distribution for
short relapse periods, and a log-normal for longer re-
lapses [33].
Two other comprehensive mathematical models impli-

citly assume exponential distributions for both incubation
and times-to-relapse [9,34]. A recent comprehensive model
including multiple relapse states used a 15-day incubation
period in simulations to produce a mean relapse interval of
7.1 months for cases in India, with incubation as an expo-
nential distribution, and relapses modeled using a gamma
distribution [10].
Several studies have found that results from infectious

disease models can be highly sensitive to accurate distri-
butional assumptions [35,36]; our study reinforces these
conclusions in finding the ‘default’ exponential and
gamma distributions, used for mathematical tractability,
inadequately capture the complexity of experimental data
[37,38]. The results from our simulations concur with
these statements and suggest that use of best-fitting distri-
butions can lead to larger overall case-counts and slower
epidemic evolution than would be predicted based upon
exponential or gamma distributed incubation periods. As
the underlying distributional assumptions have large and

important impacts upon both the time-scale of epidemic
evolution and total case counts in P. vivax epidemics,
these parameters are therefore a critical component of ac-
curate models.
A range of entomological, molecular, genetic, and epi-

demiological evidence suggests the existence of subspe-
cies within P. vivax [12,17,39]; however there has been
limited consideration of this aspect of parasite biology in
published models [9]. Little empirical data exists to sup-
port models that include explicit consideration of this
aspect of the epidemiology; this study provides
parameterization for subpopulations by climactic zone
(temperate and tropical) as well as the postulated sub-
species P. vivax vivax (E. hemisphere) and P. vivax col-
linsi (W. hemisphere) to inform region-based models
towards global malaria elimination. Our results show
that shifted log-logistic distributions adequately capture
the incubation period for all regions except for the New
World, temperate parasites, which show strong support
for a shifted Weibull. However, as these parasite popula-
tions were eliminated in the early 20th century, they have
limited relevance for modern modeling studies [40].
The results from the observational long-latent infec-

tions have several important implications. Although the
biological underpinnings of relapse remain obscure [41],
there has been considerable debate that long-latencies
may in fact be relapses after a sub-clinical primary infec-
tion [42]. The results from this study show that relapses
exhibit quantitatively different behavior at a population-
level from these long-incubation periods, and this in
turn suggests a closer biological link to ‘normal’ incuba-
tions than to relapses.
Secondly, the congruence of the distributions from ex-

perimental and observational studies suggests that re-
sults from observational studies, while inherently
limited, may still adequately capture the natural history
of infection with P. vivax. This finding may greatly ex-
pand the utility of available datasets to more completely
explore the epidemiology of P. vivax.
In modeling the time-to-relapse, there is strong sup-

port for a mixture Gompertz for all event times except
in the New World Tropical region, where a shifted
Gompertz is supported. In addition to simplifying mod-
eling, this concordance of distributions in different para-
site populations suggests that hypnozoite activation may
have a common underlying biological trigger, regardless
of parasite genetics [43]. While these results for temper-
ate zone parasites are based primarily on now-
eliminated Russian strains, the parasites currently circu-
lating on the Korean peninsula have been reported to
have similar relapse patterns [3].
However, this study has several limitations. The times

we have analyzed are from adult, non-immune and
mostly Caucasian subjects with uncertain inclusion or

Table 7 Total case counts from epidemic simulations,
Plasmodium vivax malaria (mean values and 95% CIs
from 10,000 simulations for each distribution)

Distribution Total case count (95% CI)

exponential 1333 (1330 to 1335)

gamma 2329 (2326 to 2332)

Gompertz 1950 (1947 to 1953)

log-logistic 2306 (2304 to 2310)

log-normal 2328 (2325 to 2331)

Weilbull 2216 (2214 to 2220)

shifted log-logistic 2330 (2328 to 2334)
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exclusion criteria, and may not represent the experience
in high transmission settings due to the influence of im-
munological factors, as well as the poorly understood
impact of mixed-species malaria infections [44]. While
malariotherapy for neurosyphilis treatment has been
shown to have minimal impacts on incubation periods,
larger impacts were found for relapse periods in some
sub-populations of P. vivax [12].
A related study examined the length of P. falciparum in-

fections found that the total duration of infections were
best modeled using a Gompertz distribution [37]. How-
ever, the existence of relapses makes defining a duration
of infection with P. vivax difficult; multiple lines of evi-
dence suggests that relapses within a single infection may
be genetically distinct from the primary infection [45].

Conclusions
Our results suggest that the ‘default’ distributions used in
many modeling studies (exponential and gamma distribu-
tions), may be inadequate to fully capture the natural vari-
ability and complexity of event times in human infections
with Plasmodium vivax malaria. Future modeling studies
should consider the use of log-logistic and Gompertz distri-
butions for incubation periods and relapse times respect-
ively, and the region-specific distributions included in this
work should be considered to accurately model regional var-
iations in the epidemiology of this parasite. Future statistical
and mathematical models of P. vivax transmission should
incorporate the more complex distributions identified in this
study to maximize the congruence with the true natural his-
tory and epidemiology of this important human pathogen.

Additional file

Additional file 1: Contains detailed posterior distributions and
sensitivity analyses from this study; failure proportions and Kaplan-Meier
plots for relapse studies; and detailed parameterization of distributions.
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