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Abstract

Background: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast
and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer
types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity,
little is understood about the mechanisms driving these effects. A few works have suggested that protein binding
may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We
hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open
chromatin) and breakpoint locations is common across divergent cancers.

Results: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE
protein binding ChIP-seq experiments, 125 Dnasel and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer
datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein
binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer
types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to
genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed
regions. We also observed a stronger effect for sites with more than one protein bound.

Conclusions: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer
datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.
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Background
Somatic structural mutations (SM) have long been rec-
ognized as a major player in cancer development and
treatment responsiveness [1]. A classic example comes
from chronic myelogenous leukemia, in which presence
of a structural variation fusing the genes BCR and ABL
is closely associated with susceptibility to the drug
imatinib [2,3]. By causing deletion of tumor-suppressor
genes, duplicating proto-oncogenes, creating new fusion
genes, or altering gene regulation, SMs may interfere
with normal cell differentiation programs and lead to
tumorigenesis.

SMs result from interaction and defective repair of
DNA double-strand breaks (DSBs) [4,5], usually through
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nonhomologous end joining [6] or microhomology-
mediated end joining [4,5]. Complex mutations may also
arise through chromoplexy (a chain of balanced inter-
chromosomal translocations involving more than two
chromosomes) [7], chromothripsis (a catastrophic event
involving shattering of a chromosome with subsequent
joining of pieces in random order and orientation) and
chromoanasynthesis (a collection of multiple inter-
spersed copy number gains) [8]. Despite the importance
of SMs in cancer, the mechanisms governing their loca-
tions are not fully understood. For example, end-joining
events in cancer have only ~1 nt more homology at
joined sites than expected by chance, making analysis of
these events mostly uninformative and incapable of pre-
dicting where DSBs may occur on the genome scale. A
few broad features correlating with SM breakpoints have
been identified [5,9,10]. The foremost known correlate
of DSBs is transcriptionally active chromatin [10], which
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largely coincides with other commonly reported predic-
tors such as replication timing, GC content [5] and
negative G-band staining [9].

Recent studies have suggested that the spatial struc-
ture of the genome is a factor governing the locations of
SM events [1], although three-dimensional genome
structure characterizations are still relatively low re-
solution. For example, spatial proximity of chromatin
segments [11], which in some regions is regimented
[12,13], has been observed to increases the likelihood of
interaction to form a new structural variation [13]. We
hypothesize that such spatial proximity may be related
to protein binding and transcription. This hypothesis is
motivated by evidence indicating that chromatin regions
are organized during interphase into “transcription fac-
tories”, in which DNA segments are looped together by
specific constellations of transcription factors in a nu-
clear compartment [14,15]. The relationship to protein
binding is also supported by the fact that key DNA-
binding proteins such as CTCF and cohesin are known
to maintain vertebrate chromatin structure [16] and to
separate chromatin domains [17,18].

A few examples of either open chromatin or protein
binding events influencing SM locations are also known.
In B cells, a yeast I-Scel endonuclease motif was inserted
into the genome to become a fixed locus for DSB induc-
tion; subsequently the induced DSBs were found to pref-
erentially join to regions of active chromatin [10,19]. In
prostate cancer cell lines, binding of androgen receptor
to DNA has been shown to determine which exons
would participate in translocation, with the specific loca-
tion of the DSB determined to ~10 bp precision by short
sequence motifs [20].

Table 1 Overview of the SM callsets used in the study
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In this paper, we demonstrate that these types of as-
sociations between protein binding/chromatin state on
the one hand and SMs on the other hand are not
isolated to the experimental systems where they were
originally described. We perform a comprehensive ana-
lysis of 457 protein binding ChIP-seq experiments, 125
Dnasel, and 24 FAIRE experiments from the ENCODE
project and multiple cancer SM callsets (breast, ovar-
ian, head&neck, colorectal and prostate). Our results
indicate that DNA-protein binding and open chromatin
are widespread and common features associated with
SMs.

Methods

Datasets

We used multiple published SM callsets, with no re-
quirement to obtain a separate ethical approval, from a
variety of types of tumors (Table 1) to analyze the
relationship between binding/chromatin and breakpoint
locations. We selected the datasets generated using three
different pipelines to rule out the possibility of a system-
atic, pipeline-specific bias.

Coordinates were unified using LiftOver (http://genome.
ucsc.edu/cgi-bin/hgLiftOver) to remap to the hgl9 re-
ference as needed. We analyzed all inter- and intra-
chromosomal SM events such that both breakpoints
fall in autosomal chromosomes. To calculate odds ratio
separately for each SM callset, we divided the whole
genome into regions based on the distance to the near-
est SM breakpoint. Positions within 50 kb from the
nearest breakpoint were deemed to be “in the vicinity”
of SM breakpoints, and all other positions were deemed

Callset Number of Number of Sequencing platform Aligner Original reference Caller Reference
samples SM events genome
Wellcome Trust Sanger Institute
Breast-Stephens 24 2113 [llumina GAIl 2 x 37 bp insert 500 bp ~ MAQ hg18 SSAHA [6]
Breast-NikZainal 21 1149 lllumina GAllx 2 x 108 bp Hiseq 2000 bwa/MAQ  hg19 SSAHA [21]
2% 100 bp insert <700 bp
Ovarian-McBride 13 631 lllumina GA2 2 x 37 bp insert 200- bwa hg19 SSAHA [22]
500 bp
Broad Institute
Colorectal-Bass 9 653 lllumina GA-ll 2 x 101 bp insert 400 bp MAQ hg18 dRanger [23]
Head&Neck-Stransky 2 126 lllumina GA Il 2 X 101 bp insert 380- bwa hg19 dRanger [24]
400 bp
Prostate-Berger 7 755 lllumina GA Il 2 x 101 bp insert 400 bp MAQ hg18 dRanger [25]
Prostate-Baca 57 5710 llumina GA 1l 2 x 101 bp insert 340 bp bwa hg19 dRanger [26]
Other
Breast-Inaki 14 3463 SOLID long span 10 kb 2 x 36 bp Corona Lite hg18 hg19 custom [27,28]
bwa unnamed



http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver

Grzeda et al. BMC Genomics 2014, 15:1013
http://www.biomedcentral.com/1471-2164/15/1013

to be “outside of the vicinity”. Formally, we defined a
vicinity C as:

U {xeAutosomal : d(x,sm)<50kb}

smeStephens

CStephens,SSOkb =

where sm iterates through all breakpoints reported in
the Stephens SM callset, d(x,sm) denotes distance be-
tween x and sm, and the union is performed for all sites
on autosomal chromosomes.

We downloaded peak calls from 457 protein binding
ChIP-seq experiments, 125 Dnasel experiments, and 24
FAIRE experiments from the ENCODE website [29,30].
For the odds ratio calculations for each of those datasets,
we used peaks on autosomal chromosomes.

Enrichment

In order to calculate enrichment separately near and far
form genes, we used annotations of transcribed regions as
downloaded from Ensembl (http://uswest.ensembl.org/).
For the comparison of SM breakpoints and gene bodies,
we identified the transcribed site (including intronic re-
gions) nearest to each SM breakpoint regardless of strand/
orientation. Distance to the gene was defined as the abso-
lute distance between the SM breakpoint and the nearest
transcription start or end, whichever was closer, regardless
of strand and orientation; if the breakpoint was in the in-
terior of a transcript, that distance was deemed zero. Ac-
cording to that definition, the regions within 60 kb of any
gene were considered “near genes” and all the remaining
regions were considered “far from genes”.

In order to quantify ChIP-seq and open chromatin en-
richment in the vicinities of SM breakpoint, we calcu-
lated two enrichment metrics (i.e. fraction of coverage
and odds ratio) for each pair of a ChIP-seq or open
chromatin experiment (e.g. TAF1 in cell line GM12878
in lab HAIB) and an SM callset (e.g. Breast-Stephens).

Fraction of coverage indicates the fraction of ChIP-seq
peaks falling into a certain distance range from the SM
breakpoints. For example, the fraction of coverage in the
100 kb-200 kb range from breakpoints in the Breast-
Stephens callset, was calculated as

_ !H TAF1,GM12878,HAIB,experiment ( Cstephens,<200kb \Cstepl ,slookb) |

f

)

|H TAF1,GM12878, HAIB,experiment }

where Hyarp1,Gui2s7s,HAIB experimens denotes a set of all
genomic positions under at least one ChIP-seq peak for
TAF1 in the GM12878 cell line in given experiment per-
formed by the HAIB lab.

These observed values were compared against null
model expectations based on the size of the vicinities:

7 CStephens:s200kb\CStephens: <100kb

/= |(C" phens:<200kb \C 100t5) Y (Cstep 200kb \Cstepl

P

<100kh)*| 7
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where asterisk denotes complements to the entire auto-
somal genomes.

We also calculated odds ratio (OR) as a measure of
relative overrepresentation of protein binding ChIP-seq
or open chromatin coverage in the vicinities around an
SM breakpoint, as shown in Figure 1.

Odds ratio statistics

In some of the protein ChIP-seq or open chromatin ex-
periments there were only very few peaks detected,
resulting in one or more of the entries in the 2x2 x2
contingency table (see Figure 1D) being 0. In order to
properly quantify odds ratios in the regions near and far
from genes and to perform an unbiased comparisons be-
tween them, we accepted only the experiments with
non-zero entries in all cells of the 2 x 2 x 2 contingency
table. This procedure effectively filtered out the experi-
ments with infinite log odds ratios in at least one dis-
tance category (near or far from genes).

Subsequently, the odds ratio were converted to their
base 2 logarithms and we calculated mean and standard
deviation across multiple protein ChIP-seq or open
chromatin experiments. A two-tailed t-test was then
used to assess how significantly the log odds ratios (or
their difference) deviates from zero.

Synergy

To test for synergistic behavior between protein binding
sites, we performed calculations separately in each com-
bination of lab and cell line where ChIP-seq experiments
for at least two proteins were available. We first identi-
fied the union of ChIP-seq peaks for each protein in a
given cell line x lab combination:

U H por2,Ga12878 HAIB,experiment
experiment

Hpor2 612878, HAIB =

where experiment iterates through all ENCODE experi-
ments (antibody etc.) available for a given protein, cell
line and lab. This union step was necessary because even
in a given cell line and lab, there may be multiple mea-
surements for a single protein under slightly modified
conditions. Subsequently, for each position in the gen-
ome we calculated the number of proteins with evidence
of binding at that site

WGM12878,HAIB(x) = g [er pmtein,GM12878,HAIB];
protein

where protein iterates through all proteins with data
available in a given cell line and lab, and [...] denotes the
indicator function. This allowed as to divide the genome
into sets with evidence of binding different numbers of
proteins
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Figure 1 Enrichment calculations. Enrichment calculations are based on dividing the genome in the autosomal chromosomes according to
three criteria: A. distance to the nearest SM breakpoint, B. distance to the nearest gene, and C. relationship to ChIP-Seq peaks. D. A schematic
representation of a 2 x 2 x 2 contingency table with two 2 x 2 slices ("Near genes” and “Far from genes”) for calculating odds ratio separately near

and far from genes.

Wk7GM123737HA13(x) = {xeAutosomal : WGM12878,HAIB(»7C) — k},

where k indicates number of binding proteins.

To evaluate whether sites with evidence of binding 2
proteins are more enriched near the SM breakpoints
than sites with evidence of only 1 protein binding, we
then calculated odds ratio:

o |W20C| . |W10C|
o |W20C*| ) |VV1ﬁC'*|7

ORsynergy(Stephens,sSOkb)

where subscripts other than protein count have been
omitted for brevity.

Finally, we calculated mean, standard deviation and p
value (against null model of odds ratio being 1) of base
2 logarithm of those odds ratios across all cell line and
lab pairs.

Results

Chromothriptic and chromoplectic prostate cancers
display similar pattern of protein binding enrichment in
the vicinity of SM breakpoints

Prostate cancers are an important model for studying
SMs. Approximately half of all prostate adenocarcin-
omas contain a fusion of an ETS transcription factor
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with a nearby gene, most typically ETS-related gene
(ERG) with transmembrane protease serine-2 (TMPRSS2)
[26]. That fusion often arises in a chromoplectic mechan-
ism, and such ETS-positive prostate cancers are further
predisposed to have more interchromosomal rearrange-
ments than other prostate cancers, especially near highly
expressed genes. A contrasting genomic aberration in
prostate cancer is deletion of CHD1 (chromodomain
helicase DNA-binding protein-1), a gene involved in
maintaining DNA stability. Prostate cancers with a CHD1
deletion demonstrate predominantly intrachromosomal
rearrangements and are enriched for SMs in heterochro-
matic regions, characteristic of chromothripsis [26,31].
Accordingly, the SM events in ETS+/CHD1lwt tumors
would arise mainly through chromoplexy and those in
ETSwt/CHD1del would arise through chromothripsis.
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We took advantage of these distinct molecular subtypes
of prostate cancer to investigate common behaviors in the
relationship between protein-binding sites and locations
of SM breakpoints. To do so, we classified each base pos-
ition in the autosomal chromosomes according to whether
it was under an ENCODE ChIP-seq peak and whether it
was in or outside the vicinity of an SM breakpoint
(<50 kb). In addition, we tabulated whether each base pos-
ition was near (<60 kb) or far (>60 kb) from a gene, in
order to distinguish the effect of gene proximity (See
Methods, Figure 1). Subsequently, for each ChIP-seq ex-
periment, we calculated two odds ratio values, one near
the genes and one far from the genes, to assess enrich-
ment of ChIP-seq signal in the vicinity of SM breakpoints.

Figure 2A shows odds ratio values in the chromothrip-
tic ETSwt/CHD1del prostate cancer, with each datapoint
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Figure 2 Comparison of the ETSwt/CHD1del (left) and ETS+/CHD1wt (right) subsets of the Prostate-Baca SM callset. A and C. Odds ratio
values across all available ChIP-seq experiments. Each point represents a different protein binding ChiP-seq experiment, with odds ratio calculated
separately near (60 kb) genes (horizontal axis) and far from (>60 kb) genes (vertical axis). Positive values indicate enrichment of protein binding
ChlIP-seq signal within 50 kb of SM breakpoints. B and D. Cumulative normalized histogram of distance between an SM breakpoint and the
nearest gene for the autosomal intrachromosomal events in the SM callsets.
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showing the behavior of a separate ChIP-seq dataset.
The log odds ratio near genes is negative for most ChIP-
seq sets while far from genes it is generally larger
(Table 2). Most data points lie above the diagonal line,
indicating that the association between protein binding
sites and breakpoints is stronger far from genes than
near genes (p=343-10""). The low odds ratios near
genes are likely due to the fact that ETSwt/CHD1del
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prostate cancers avoid breakpoints near genes while
many protein binding sites are fixed near gene pro-
moters. Figure 2B, shows that in ETSwt/CHD1del pros-
tate cancers SM breakpoints are depleted up to 100 kb
from the genes.

Figure 2C shows odds ratio values for the chromoplec-
tic subtype ETS+/CHD1wt. For most ChIP-seq datasets,
binding is enriched in the vicinity of the breakpoints

Table 2 Enrichment of protein binding and open chromatin signal in the vicinity of SM breakpoints

ChIP-seq log, OR Dnasel log, OR Faire log, OR
SM callset Near® Far® A© A€ A©
(far-near) Near® Far® (far-near) Near® Far® (far-near)
Breast-Menghi 036+0.14 093+0.71 058+069 027+006 089+0.12 061011 024+023 089+038 065+024
p=77E-172 p=61E89 p=15647 p=19E-84 p=156-109 p=14E91 p=23E04 p=81E09 p=77E10
n=397 n=397 n=397 n=122 n=12 n=122 n=19 n=19 n=19
Colorectal-Bass 010£0.16  1.06+£095 095+096 003+006 096+0.21 093+£022 001+£032 1.15£040 1.14+046
pP=20E28 p=35662 p=49E53 p=75E-06 p=15682 p=15678 p=93E01 p=31E10 p=23E-09
n=345 n=345 n=345 n=122 n=122 n=122 n=19 n=19 n=19
HeadNeck-Stransky -0414+029 1244135 165+143 -027+010 036+049 063+050 —-025+028 021+087 046+0.77
p=12E52 p=70E31 p=83E42 p=15658 p=59E13 p=86E27 p=11E03 p=31E-01 p=20E-02
n=217 n=217 n=217 n=122 n=122 n=122 n=19 n=19 n=19
ETSWt/CHD1del subset of —0.85+031 005+069 090+063 -071+021 016+028 086+016 —040+046 039+045 078+024
Prostate-Baca P=36E-189 p=15E01 p=34E98 p=21E-67 p=68E-09 p=41E-92 p=13E-03 p=15603 p=36E11
n =400 n =400 n=400 n=122 n=122 n=122 n=19 n=19 n=19
ETS+/CHDIwt subset of 0374014 092+070 0554071 0284004 093+0.17 065+016 021+015 0874040 066+032
Prostate-Baca p=21E-158 p=54E78 p=23E37 p=80FE-102 p=10F92 p=14E78 p=15605 p=21F08 p=39E08
n=348 n=348 n=348 n=122 n=122 n=122 n=19 n=19 n=19
Ovarian-McBride 040+0.19 1324080 092+080 030£0.07 105+029 0754025 018+023 099+022 080+0.17
p=10E-130 p=93E-102 p=26E66 p=18E-81 p=82E-71 p=11E62 p=29E03 p=11E13 p=75E14
n=352 n=352 n=352 n=122 n=122 n=122 n=19 n=19 n=19
Breast-NikZainal 017+012 124+094 107+096 016+005 116+015 1004016 012+018 115+047 103+036
pP=32E93 p=12E82 p=14E66 p=15E69 p=15E-108 p=49E98 p=86E03 p=29E-09 p=21E10
n=368 n=368 n=368 n=122 n=122 n=122 n=19 n=19 n=19
Prostate-Berger -027+019 045+0.77 0724077 -026+£0.16 039+025 065+0.16 -0.10+035 054+033 064+032
p=17E82 p=14E22 p=17E47 p=14E35 p=38E-34 p=22E76 p=22601 p=13E06 p=74E-08
n=332 n=332 n=332 n=122 n=122 n=122 n=19 n=19 n=19
Prostate-Baca -011+012 037+£065 048+062 -0.16+008 044+024 060+018 -007+023 058+040 064+024
p=14E-60 p=23E27 p=97E-45 p=95E43 p=36E41 p=10E68 p=23E-01 p=68E-06 p==85E-10
n=413 n=413 n=413 n=122 n=122 n=122 n=19 n=19 n=19
Breast-Stephens 040+012 128+068 088+068 034+004 121+015 088013 027+022 127+036 1.00+022
p=56E-210 p=30E-130 p=31E-85 p=54E-112 p=86E112 p=19E-102 p=50E-05 p=10E-11 p=15E13
n=389 n=389 n=389  n=122 n=122 n=122 n=19 n=19 n=19

Enrichment of protein ChIP-seq and two open chromatin assays (DNasel and FAIRE) signal in all SM callsets. Data in each cell show log, odds ratio (mean + standard
deviation; positive values indicate enrichment). In each table row, only those protein ChIP-seq and open chromatin experiments, that have a non-zero entry in each cell
of the 2 x 2 x 2 contingency table, were used; the number of such experiments is shown as n. A indicates difference of log OR between the regions near and far

from genes.
“p-value calculated against a null hypothesis of log OR being 0 near genes.
Pp-value calculated against a null hypothesis of log OR being 0 far from genes.

“p-value calculated against a null hypothesis of no difference in odds ratio between near and far from genes.
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near genes and enriched even more (p=228-10")
around breakpoints far from genes. Although SM break-
points are enriched near genes for the ETS+/CHD1wt
subtype (Figure 2D), protein binding enrichment around
SM breakpoints is even higher far away from genes than
near genes. This enhanced effect far from genes is there-
fore a common behavior across the chromothriptic and
chromoplectic prostate cancer subtypes.

The pattern of protein binding enrichment in the vicinity
of SM breakpoints is common across many cancers

Given these commonalities across prostate cancer sub-
types, we hypothesized that such preferences for binding
enrichment might be common in other cancers. To ad-
dress this, we performed a comprehensive enrichment
analysis for 8 cancer SM callsets (Table 1), encompassing
14,600 total events in breast, ovarian, colorectal, prostate
and head&neck cancers. For most of the cancers (breast,
ovarian and colorectal) the SM breakpoints were enriched
in the gene regions (these cancers will be referred to
as “genophilic”), while in some others (prostate and
head&neck) they were depleted (these cancers will be re-
ferred to as “genophobic”) or showed high variability, in
agreement with previous reports [5] (Additional file 1). In
every cancer we studied, the odds ratio of protein binding
ChIP-seq enrichment in the SM vicinity was higher far
from genes than near genes. Average enrichment metrics
are summarized in Table 2 and the complete data for all
protein binding sets are visualized in Figure 3. Furthermore,
the relationship between odds ratio in the regions near and
far from genes remained true in every cancer when inter-
and intrachromosomal events were considered separately
(Additional file 2).

We next inquired whether sites with multiple evidence
of proteins binding might have an even stronger associ-
ation with breakpoints. To address this question, we cal-
culated odds ratios separately for sites with one bound
protein, two bound proteins, three proteins and so on
with respect to the null hypothesis that sites are distrib-
uted randomly along the genome. We observed that
odds ratio tends to increase with the number of bound
proteins, as shown in a representative example in Figure 4A
for the A549 cell line from the HAIB lab. To assess in a sys-
tematic way whether the sites binding 2 proteins are indeed
more enriched in the vicinity of SM breakpoints than sites
binding just 1 protein, we calculated log; odds ratio for all
cell line and lab combinations with ChIP-seq data available
for at least 2 proteins. The results, visualized in Figure 4B,
demonstrate that sites binding exactly two proteins
were more enriched within 50 kb of breakpoints
than sites binding exactly one in the genophilic can-
cers: Breast-Inaki (p =2.3-107°), Breast-Stephens (p =
0.0021), Breast-NikZainal (p = 0.22), Ovarian-McBride
(p =0.022) and Colorectal-Bass (p = 0.05).

Page 7 of 15

Chromatin state is also predictive of SM breakpoints

Our results (Additional file 3) reveal no strong protein-
specific pattern in regard to protein binding enrich-
ment in the vicinity of SM breakpoint. This suggests
that SM breakpoints might be associated with a higher
level feature such as open chromatin. To gain deeper
insight, we analyzed evidence for open chromatin in
the vicinity of SM breakpoints, using Dnasel and
FAIRE assay data sets. In every cancer studied, the odds
ratio of open chromatin enrichment in the vicinity of
breakpoints was higher far from genes than near genes,
similar to the protein-binding patterns (Table 2). More-
over, these findings also remained true when inter- and
intrachromosomal events were considered separately
(Additional file 2). More specifically, in the genophilic
cancers open chromatin was enriched in the vicinity of
SM breakpoints both near and far from genes (Figure 5
shows an example), in both Dnasel and FAIRE assays.
In the remaining (genophobic) cancers, the enrichment
log odds ratio was negative near genes while positive
far from genes.

To get a more detailed picture of the relationship
between breakpoints and functional chromatin state,
we also analyzed functional chromatin state directly at
the breakpoints. The chromatin state annotations were
previously predicted from chromatin marks such as
histone methylation and acetylation along the genome in
9 ENCODE cell types [32]. Consistent with our protein
binding analysis above, we observed enrichment of
breakpoints in states associated with both transcribed re-
gions and enhancers. As an example, Figure 6A and B
shows chromatin state enrichment in the GM12878 cell
line for breakpoints in the Breast-Stephens SM callset.
This shows enrichment for breakpoints in promoter,
enhancer and transcribed states, with a depletion in
heterochromatin. More broadly, breakpoints were
consistently enriched in the transcription states (states
9-11) in the Breast-Inaki, Breast-Stephens, Breast-
NikZainal and Ovarian-McBride SM callsets, in all 9
cell lines (Additional file 4). Similar enrichment was
observed in those SM callsets in the enhancer regions
(states 4-7) in all 9 cell lines, except for Breast-
NikZainal in the NHLF cell line. Furthermore, break-
points were also consistently enriched in the promoter
regions (states 1-3) in Breast-Inaki, Breast-Stephens
and Ovarian-McBride, except for Ovarian-McBride in
the HUVEC cell line, while no consistent enrichment
pattern was observed in Breast-NikZainal. Conversely,
breakpoints were consistently depleted in the heterochro-
matin regions (state 13) in Breast-Inaki, Breast-Stephens,
Breast-NikZainal and Ovarian-McBride in all 9 cell lines.
In general, we observed preferences for enhancers and
promoters and avoidance of heterochromatin for all can-
cers except prostate and head&neck.
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Figure 3 Patterns of ChIP-seq enrichment across different cancers. Odds ratio values across all available protein binding ChIP-seq experiments.
Each point represents a different protein binding ChiP-seq experiment, with odds ratio calculated separately near (60 kb) genes (horizontal axis) and
far from (>60 kb) genes (vertical axis). Positive values indicate enrichment of protein binding ChiP-seq signal within 50 kb of SM breakpoints. Data
shown in various SM callsets: Breast-Inaki (A), Breast-Stephens (B), Breast-NikZainal (C), Ovarian-McBride (D), Colorectal-Bass (E), Head&Neck-Stransky
(F), Prostate-Berger (G), Prostate-Baca (H).

In addition, we observed biases in the paired states of

the two breakpoints of each SM event. We calculated
the frequencies of state pairs and compared against a
null model assuming random matching (Figure 6C). SM

events with both breakpoints in the same state, such as
transcriptional elongation (state 10), weak transcribed
(state 11) and heterochromatin/low signal (state 13)
were enriched as compared to the behavior of each state
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Figure 4 Synergy between multiple proteins. A. Odds ratio for
enrichment of protein bindings in the vicinity of SM breakpoints
(within 50 kb) as a function of the number of bound proteins (in the
Breast-Stephens callset). Protein binding data are from the ENCODE
A549 cell line as measured in the HAIB lab. B. Comparison of sites
with evidence of binding exactly 2 proteins vs. exactly 1 protein.
The vertical axis shows log, odds ratio (mean + standard error),
where mean and error are calculated based on the number of cell
line x lab combinations with available data (n) for at least 2 proteins.
Statistical significance (p) is with respect to a null model of log-odds

ratio being O (horizontal dotted line).

individually. This is in part because breakpoint pairs are
predominantly local and intrachromosomal, and the
genome contains large blocks of both heterochromatic
and transcribed regions. Nevertheless, when only inter-
chromosomal events were considered, the pattern of en-
richment remained similar, notably with enrichment for
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Figure 5 Patterns of open chromatin enrichment. Odds ratio
values across all available Dnasel (A) and FAIRE (B) experiments in
the Colorectal-Bass callset. Each point represents a different open
chromatin experiment, with odds ratio calculated separately near
(<60 kb) genes (horizontal axis) and far from (>60 kb) genes (vertical
axis). Positive values indicate enrichment of open chromatin signal
within 50 kb of SM breakpoints.

both ends in heterochromatin (state 13) and depletion in
events with one end in weak transcription (state 11) and
the other in heterochromatin (state 13) (Figure 6D). This
suggests that during processes in which structural muta-
tions arise, there are interactions between the breakpoint
sites influenced by their chromatin state.

Distance considerations

We also were interested in how far away from the SM
breakpoints the enrichment of protein binding and open
chromatin state would extend, to ascertain the robust-
ness of our findings to distance thresholds. We therefore
calculated enrichment of ChIP-seq signal and open
chromatin assays in the vicinity of SM breakpoints as a
function of distance. To do so, we divided the genome
into disjoint regions parameterized by the distance. We
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Figure 6 Distribution of functional chromatin state at the breakpoints. A. Histogram of chromatin state (Broad-GM12878) at the breakpoints
in the Breast-Stephens SM callset. Teal and white bars indicate observed vs. expected values, respectively. Error bars indicate binomial standard
error. B. Zoom-in view of chromatin state histogram for selected states. C and D. Correlations between chromatin state (Broad-H1HESC) for pairs
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two labeled states. The color scale indicates difference between the observed frequency of SM events and the expectation if breakpoints were
independent, presented on a linear scale (eg. observed frequency of 30% vs. expected of 20% maps to 0.10 on the scale). C. Both inter- and

then calculated two enrichment metrics in each of such
regions: fraction of ChIP-seq coverage falling into each
given bin, and odds ratio.

Figure 7A and B demonstrates that ChIP-seq signal is
enriched in the vicinity of SM breakpoints up to 200 kb
in the Breast-Stephens callset. Also both DNase and

FAIRE signal was enriched up to 200 kb (panels C-F).
Similar enrichment patterns were observed in other gen-
ophilic cancers (data not shown). Furthermore, we cal-
culated the enrichment odds ratio for all ChIP-seq
experiments similarly to that shown in Figure 3 using al-
ternate range cut-offs, namely 200 kb for distance from
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the breakpoints and 10 kb for distance from genes. The
results are shown Figure 8, indicating that the pattern of
enrichment odds ratio being higher far from genes than
near genes holds at these longer distances as well. Simi-
lar results are found for all other SM callsets (Additional
file 5).

Discussion

We have performed computational experiments that
have demonstrated enrichment of protein binding to
DNA and open chromatin in the vicinity of SM break-
points. More importantly, we have shown that protein
binding and open chromatin enrichment in the vicinity
of SM breakpoints is stronger far from genes than near
genes, as exemplified in Figure 2A and C, Figure 3 and
Figure 8. Overall, all three types of assays (protein bind-
ing ChIP-seq, Dnasel and FAIRE) showed similar pat-
terns of locational enrichment with respect to each SM
callset, although the dispersion of Dnasel was less than
that of FAIRE or ChIP-seq. These results indicate pro-
tein binding events and open chromatin state as two
common and widespread features that strongly correlate
with SM formation across divergent cancer types.

To put our findings into perspective, we note that SM
breakpoints have previously been shown to cluster in
gene regions in the majority of cancer types [5]. How-
ever, our results are distinct from this effect. We studied
two subtypes of prostate cancer with different molecular
mechanisms of SM generation (chromoplexy and chro-
mothripsis), one with enrichment of breakpoints in the
gene regions and the other with depletion of breakpoints
in the gene regions (Figure 2B and D). In both of these
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Figure 8 Patterns of ChIP-seq enrichment extend up to 200 kb.
Odds ratio values across all available ChIP-seq experiments for the
Breast-Stephens callset. Each point represents a different ChIP-seq
experiment, with odds ratio calculated separately near (<10 kb)
genes (horizontal axis) and far from (>10 kb) genes (vertical axis).
Positive values indicate enrichment of ChIP-seq signal within 200 kb
of SM breakpoints.
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subtypes, we found protein binding sites to be more
strongly localized to breakpoints in the regions far from
the genes than in the regions near genes. Such behavior
is robust across all cancer SM callsets, including those
with lower baseline levels of protein-binding in the
vicinity of breakpoints, such as the ETSwt/CHD1del
subset of Prostate-Baca and also Head&Neck-Stransky.
Therefore, our work reveals a genomic behavior that
unifies divergent cancer types.

Although the effects of protein binding and open
chromatin on breakpoint locations are entangled, since
transcription factors are well known to typically bind in
open chromatin, we have generalized the understanding
of each feature. From the protein-binding perspective,
previous studies have shown that androgen receptor
binding promotes SM breakpoints [20]. Our results indi-
cate that this phenomenon is not limited to the andro-
gen receptor but is common to multiple proteins with
diverse functions, including transcription (eg. Pol II),
DNA repair (BRCA1) or 3D genome structure (CTCE)
(Additional file 6). From the open chromatin perspec-
tive, previous work utilizing the I-Scel system in B cells
[10,13,19] showed that breakpoints induced by addition
of a sequence motif preferentially occurred in regions of
actively transcribed chromatin. Our work shows that this
active chromatin preference occurs in many cancers and
is not specific to the details of the I-Scel system. Fur-
thermore we found that sites with more proteins binding
have a stronger effect size (Figure 4). Our results also
raise an interesting point regarding the role of cell type.
Although transcription factor binding is remarkably cell-
type specific [33], recent studies have shown that 3D
genome structure is less dynamic than protein binding
[34]. We observe similar effect sizes when comparing
behaviors of different proteins or different cell types
(Additional file 6), suggesting the relationship between
protein binding and SM formation is also mediated by a
less dynamic variable such as 3D structure.

The locational tendencies of SM breakpoints in cancer
are the product of both mutational and selective forces.
We speculate that protein binding and open chromatin
drive breakpoints at the mutational level. Breakpoints
would then be subject to purifying selection within tu-
mors, with a greater chance of being deleterious if they
disrupt essential genes. This selection pressure may vary
depending on cancer type, yielding fewer breakpoints in
gene regions for cancers with greater sensitivity to
gene disruption, i.e. the genophobic cancers, and more
breakpoints in gene regions for cancers with lower
sensitivity, i.e. the genophilic cancers. Such a mechan-
ism would be consistent with the stronger effects far
from genes. It would also explain why in the genophi-
lic cancers breakpoints are generally closer to genes.
This is because a large amount of protein binding is
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localized near gene regions at promoters, which could
create the genophilic behavior at the mutational level.
An ultimate future experiment to study this muta-
tional effect directly would involve inserting known
protein binding motifs into a cellular genome and
arresting the cell cycle followed by single-cell sequen-
cing to detect newly formed breakpoints. Design of
such sequencing experiment remains challenging as
even the most common DSBs occur in only 1 per
10,000 cells [10].

Limitations

Our present study has certain important limitations.
First, the open chromatin and protein ChIP-seq experi-
ments were performed in a variety of cell lines, different
from the cancers studied. In an attempt to understand
the effect of cell line selection, we divided the cell lines
into three categories: stem cells, lymphoblastoid (EBV-
transformed) and cancer cell lines. This comparison
(Additional file 7) shows that the log odds ratio differ-
ence (A) between the regions near and far from genes
tends to be lower in the stem cell lines as compared to
the lymphoblastoid and cancer cell lines.

The second limitation comes from the variety of se-
quencing platforms and algorithms used to identify SMs.
Overall, three different pipelines were used: (a) the
Broad Institute pipeline, used to generate Colorectal-
Bass, HeadNeck-Stransky, Prostate-Berger and Prostate-
Baca, (b) the Wellcome Trust Sanger Institute pipeline
used to generate Breast-Stephens, Breast-NikZainal and
Ovarian-McBride and (c) the SOLiD-based pipeline used
to generate Breast-Inaki. On the one hand, the reproduci-
bility of the enrichment difference (near vs. far from
genes) across at least three different platforms shows that
our findings are not resulting from any pipeline-specific
biases. On the other hand, interpretation of the differences
between different pipelines must be approached with cau-
tion. The Wellcome Trust Sanger Institute pipeline has
changed slightly over time (see read length and map-
ping in Table 1), while the Broad Institute pipeline
(Colorectal-Bass, Prostate-Berger, Prostate-Baca and
HeadNeck-Stransky) have been more stable. It is
worth noting that within the Broad datasets we see
distinct behaviors (Figure 2A and Figure 2C), indicating
that pipeline choice does not drive the observations.

We also directly assessed the effect of SM caller on the
observed enrichment by comparing the SM calls made
using two SM calling algorithms (Hydra [35] and Meerkat
[36]) in two cancers studied in The Cancer Genome Atlas,
namely breast invasive carcinoma (“BRCA”) and Lung
Squamous Cell Carcinoma (“LUSC”). The results shown
in Additional file 8 again demonstrate the our findings are
not sensitive to the choice of SM caller.
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Conceptually, the robustness of our results across cal-
lers is likely because we are considering effects at a
broader length scale (50 kb) than the typical scale of in-
sert sizes (Table 1) in the paired end sequencing process.
As a result, insert-related caller-specific uncertainties in
the locations of SV breakpoints are likely averaged out
in our analysis procedure. It is also important to note
that the callsets used in our study may differ in the
number of the SM events of various types and intrachro-
mosomal lengths, our findings hold true if the interchro-
mosomal events were considered alone, indicating that
our results are not biased by the event length spectrum.

Conclusions

Protein binding and open chromatin state are commonly
associated with propensity for SM breakpoints. These ef-
fects appear to be common across cancers and not lim-
ited to androgen receptor binding or the I-Scel system,
where they were originally described. Furthermore, the
effect of functional chromatin state is robust over a wide
range of distances around the SM breakpoints, extend-
ing up to 200 kb.

Availability of supporting data

DNA-PET sequencing data of MB231 and MB436 are
available in the NCBI Sequence Read Archive repository
(SRA; http://www.ncbi.nlm.nih.gov/sra) under accession
number PRJNA234462.

Additional files

Additional file 1: Cumulative histogram of SM distances from
breakpoints in the autosomal intrachromosomal SM callsets.
Cumulative histogram of SM distances from genes in the autosomal
intrachromosomal SM callsets (“True SM", blue line) vs. randomized
controls (“CTRL", dotted green line). Distances are with respect to the
nearest gene. Results are shown for all SM callsets: Breast-Inaki (A), Breast-
Stephens (B), Breast-NikZainal (C), Ovarian-McBride (D), Colorectal-Bass (E),
Head&Neck-Stransky (F), Prostate-Berger (G), Prostate-Baca (H), ETSwt/
CHD1del (1), and ETS+/CHD1wt (J).

Additional file 2: Enrichment odds ratio for protein ChIP-seq and
two open chromatin assays (Dnasel and FAIRE) in the vicinity of
SMs in various callsets, separately for inter- and intrachromosomal
events. Enrichment of protein ChiP-seq and two open chromatin assays
(DNasel and FAIRE) signal in all SM callsets. Data in each cell show log,
odds ratio (mean + standard deviation; positive values indicate enrichment).
In each table row, only those protein binding ChiP-seq and open chromatin
experiments, that have a non-zero entry in each cell of the 2 x2x 2
contingency table, were used; the number of such experiments is shown as
n. A indicates difference of log OR between the regions near and far from
genes. “p-value calculated against a null hypothesis of log OR being 0 near
genes. ®p-value calculated against a null hypothesis of log OR being 0 far
from genes. © p-value calculated against a null hypothesis of no difference in
odds ratio between near and far from genes.

Additional file 3: Ranking of protein binding enrichment separated
by SM callset. The log2 odds ratio has been averaged over available

ChIP-seq experiments, if more than one has been performed. In each SM
callset, the top 10 proteins are highlighed green and the bottom 10 are

highlighted red.
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Additional file 4: Histogram of chromatin state at the breakpoints
in three different SM callsets. Teal and white bars indicate observed vs.
expected values, respectively. Erros bars indicate binomial standard error.
Left panels show the full histograms, the right panels show respective
zoom-in views at low frequency.

Additional file 5: Patterns of ChIP-seq enrichment extend up to
200 kb. Odds ratio values across all available protein binding ChIP-seq
experiments. Each point represents a different protein ChiP-seq experiment,
with odds ratio calculated separately near (€10 kb) genes (horizontal axis)
and far from (>10 kb) genes (vertical axis). Positive values indicate enrichment
of protein ChiP-seq signal within 200 kb of SM breakpoints. Data shown in
various SM callsets: Breast-Inaki (A), Breast-Stephens (B), Breast-NikZainal (C),
Ovarian-McBride (D), Colorectal-Bass (E), Head&Neck-Stransky (F),
Prostate-Berger (G), Prostate-Baca (H).

Additional file 6: Enrichment of protein binding events in the
vicinity of breakpoints is common across proteins with diverse
functions, such as transcription (eg. Pol Il), DNA repair (BRCA1) and
3D structure (CTCF). Bars indicates fraction of ChIP-seq signal falling
within 50 kb of any breakpoint. The horizontal line indicates baseline
expectations, i.e. the fraction of the genome falling within that distance
of any breakpoint.

Additional file 7: Effect of cell type on enrichment of protein
binding ChiIP-seq signal. Each point represents a different protein
binding ChIP-seq experiment, with odds ratio calculated separately near
genes (horizontal axis) and far from genes (vertical axis). Positive values
indicate enrichment of protein ChiP-seq signal within 50 kb of SM
breakpoints. Experiments performed in the stem cell lines are shown in the
top row, in the cancer cell lines in the middle and in the EBV-transformed
lymphoblastoid cell lines in the bottom row. A indicates the difference of
log OR between the regions near and far from genes, ie. the average
location of the cloud of points above the diagonal line, averaged over n
experiments. Data shown in various SM callsets: Breast-Inaki (A), Breast-
Stephens (B), Breast-NikZainal (C), Ovarian-McBride (D), Colorectal-Bass (E),
Head&Neck-Stransky (F), Prostate-Berger (G), Prostate-Baca (H).

Additional file 8: Effect of SM calling pipeline. Odds ratio values
across all available protein binding ChIP-seq experiments. Each point rep-
resents a different protein binding ChIP-seq experiment, with odds ratio
calculated separately near (<60 kb) genes (horizontal axis) and far from
(>60 kb) genes (vertical axis). Positive values indicate enrichment of pro-
tein ChIP-seq signal within 50 kb of SM breakpoints. Data shown in two
cancers from The Cancer Genome Atlas (breast cancer “BRCA” in the top
row and lung cancer “LUSC" in the bottom row) using two different SM
callers (Hydra on the left and Meerkat on the right).
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