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Abstract

Background: The adaptive immune response is antigen-specific and triggered by pathogen recognition through
T cells. Although the interactions and mechanisms of TCR-peptide-MHC (TCR-pMHC) have been studied over
three decades, the biological basis for these processes remains controversial. As an increasing number of
high-throughput binding epitopes and available TCR-pMHC complex structures, a fast genome-wide structural
modelling of TCR-pMHC interactions is an emergent task for understanding immune interactions and developing
peptide vaccines.

Results: We first constructed the PPI matrices and iMatrix, using 621 non-redundant PPI interfaces and 398 non-
redundant antigen-antibody interfaces, respectively, for modelling the MHC-peptide and TCR-peptide interfaces,
respectively. The iMatrix consists of four knowledge-based scoring matrices to evaluate the hydrogen bonds and
van der Waals forces between sidechains or backbones, respectively. The predicted energies of iMatrix are high
correlated (Pearson’s correlation coefficient is 0.6) to 70 experimental free energies on antigen-antibody interfaces.
To further investigate iMatrix and PPI matrices, we inferred the 701,897 potential peptide antigens with significant
statistic from 389 pathogen genomes and modelled the TCR-pMHC interactions using available TCR-pMHC
complex structures. These identified peptide antigens keep hydrogen-bond energies and consensus interactions
and our TCR-pMHC models can provide detailed interacting models and crucial binding regions.

Conclusions: Experimental results demonstrate that our method can achieve high precision for predicting binding
affinity and potential peptide antigens. We believe that iMatrix and our template-based method can be useful for
the binding mechanisms of TCR-pMHC complexes and peptide vaccine designs.

Background
An adaptive immune response protects an organism from
the infection by identifying and killing pathogens [1,2]. It
is antigen-specific and allows for a stronger immune
response after the recognition of specific “non-self” anti-
gens by the T-cell receptor (TCR) [3]. As an increasing
number of high-throughput experiments providing avail-
able and reliable binding epitopes related to various TCRs
[4-6], a systematic and fast method to search similar com-
plexes (i.e. TCR-pMHC molecules) is an important task

for understanding potential immune interactions and
developing pathogen vaccines.
Since rapidly increasing three-dimensional structure

complexes in Protein Data Bank (PDB), many structure-
based works have been proposed to utilize physical
interacting interfaces of these complexes to study protein-
protein interactions [7-10], MHC-peptide interactions
[11,12], and structural systems biology [13-15]. Most of
these works [7-9,11,12] used a scoring-based matrix
to evaluate the protein-protein and MHC-peptide inter-
face preferences. In addition, sequence-based matrix
methods (e.g. SYFPEITHI [16], MAPPP [17], IEDB
[18]) have been proposed for predicting peptide-MHC
interactions.
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Recently, we have proposed a template-based strategy,
called PAComplex [19], which is the first method inves-
tigating both peptide-MHC and peptide-TCR interfaces
to infer peptide antigens and homologous peptide anti-
gens of a query. This study utilized four scoring
matrices and one scoring matrix to calculate the binding
scores of peptide-MHC (which is similar to protein-
protein interface (PPI)) and TCR-peptide (which is simi-
lar to antigen-antibody (Ag-Ab) [20,21]) interfaces,
respectively. Our previous works showed that four scor-
ing matrices yielded significantly higher accuracies than
one scoring matrix for inferring structure-based PPIs
[22,23]. The four scoring matrices include sidechain-
sidechain and sidechain-backbone van der Waals ener-
gies; and sidechain-sidechain and sidechain-backbone
hydrogen-bond energies. In addition, two main factors
that deteriorate the performance of PAComplex using
one-matrix scores are (i) the hydrogen-bond energies
and van der Waals interactions were considered as the
same and (ii) the sidechain-sidechain and sidechain-
backbone interactions were not discriminated. For
example, we observed that the average experimental
energies of the residues forming hydrogen bonds and
van der Waals interactions 2.54 and 1.08, respectively,
based on 70 mutated residues on Ag-Ab interfaces.
To address these issues, we proposed four-matrices scor-

ing function to enhance one-matrix scoring function to
infer the peptide antigens using TCR-pMHC complex
structures. The major enhancements are as follows: 1) four
scoring matrices (named iMatrix) can predict template-
based binding energies of TCR to pMHC interfaces by
separating the van der Waals (vdW) forces from special
bonding forces; 2) iMatrix discriminates sidechain-side-
chain and sidechain-backbone interactions into two
matrices; 3) a fast and genomic-scale searching method for
identifying peptide antigens of a template TCR-pMHC
structure; 4) iMatrix highlights the critical hydrogen bonds
for key interacting residues between TCR-pMHC
compexes.
To validate the reliability and enlarge the number of

potential antigens, we evaluate our methods on experi-
mental free energy data and 389 complete pathogen
genomes. Experimental results indicated that iMatrix
can achieve a high correlation of the binding interface
energies. In addition, the homologous peptide antigens
derived from iMatrix have a high precision value and
keep the hydrogen bonds based on template then they
should be the reliable peptide antigens. The iMatrix also
reveals detailed interacting models for TCR-pMHC
complexes distinctively and display the mechanisms of
crucial binding regions. Furthermore, the iMatrix scor-
ing function can provide important insights into heigh-
tened immunogenicity derived from the potential

peptide antigens or epitopes and can infer valuable
vaccine design for clinical trials.

Methods
Overview for genome-wide structural modelling of TCR-
pMHC interactions
According to our previous study, the homologous peptide
antigen (p’) of the peptide (p) in template complex as
follows: (1) p and p’ can be bound by the same MHC
forming pMHC and p’MHC, respectively, with the signi-
ficant interface similarity (ZMHC ≥ 1.645); (2) pMHC and
p’MHC can be recognized by the same TCR with signi-
ficant peptide-TCR interface similarity (ZTCR ≥ 1.645);
and (3) TCR-pMHC and TCR-p’MHC share significant
complex similarity (joint Z-value ≥ 4.0). The joint Z-value
(Jz) is defined as

Jz =
√
ZMHC × ZTCR (1)

Here, Jz ≥ 4.0 is considered a significant similarity
according to the statistical analysis of 17 TCR-pMHC
structure complexes (i.e. TCR-peptide-HLA-A0201 com-
plexes); 80,057 experimental peptide antigens; and ≥ 108

peptide candidates derived from 864,628 protein
sequences in 389 pathogens.
Figure 1 shows the main procedures of genome-wide

structural modelling of TCR-pMHC interactions using
the iMatrix and PPI matrices. According to a general
mathematical structure constructing a standard log-odds
matrix [24-26], we first constructed the PPI matrices
from the 621 non-redundant PPI interfaces, and iMatrix
from 398 non-redundant Ag-Ab interfaces and 105 non-
redundant TCR-pMHC interfaces. The matrices of PPI
and iMatrix are used for modelling the MHC-peptide
and TCR-peptide interfaces, respectively (Figure 1A).
We then utilized 70 point mutations in four Ag-Ab
interfaces recorded in the Alanine Scanning Energetics
database (ASEdb) [27] to evaluate the relationship between
iMatrix and experimental free energies (Figure 1B). To
further investigate the reliabilities of homologous peptide
antigens derived from the template-based scoring func-
tion, we prepared 55 TCR-pMHC complexes as templates.
We inferred the homologous peptide antigens of each
TCR-pMHC complex (e.g. PDB entry 2bnq [28]) from an
Immune Epitope Database (IEDB) (80,057 peptides in
2,287 species) and a complete pathogen genome database
(≥ 108 peptide antigen candidates with Jz ≥ 1.645 derived
from 864,628 protein sequences of 389 pathogens) (Figure
1B and 1C). Here, these 389 pathogens (e.g., bacteria,
archaea, and virus) recorded in both IEDB [6] and UniProt
[29] databases and their respective complete genomes
collected from UniProt database. For each peptide antigen
family, we measure the amino acid composition and
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Figure 1 Overview of the iMatrix and homologous peptide antigens. (A) Data sets for constructing PPI matrices and iMatrix. The MHC-
peptide and TCR-peptide interfaces are modelling by PPI matrices and iMatrix, respectively. (B) The template-based scoring functions infer the
homologous peptide antigens through structural templates, experimental peptides, and complete pathogen genome databases. (C) Homologous
peptide antigens of the template (e.g., PDB entry: 2bnq) by searching the experimental peptides and complete pathogen genome databases. (D)
Amino acid profiles of the homologous peptide antigens of the template (2bnq).
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conservation at each position (Figure 1D) by WebLogo
program [30]. Finally, iMatix could provide the peptide
antigens from a large-scale pathogen database, the TCR-
pMHC interaction models, and the peptide antigen
families with conserved amino acids.

Scoring function and iMatrix
We have recently proposed a template-based scoring
function to determine the protein-protein interactions
(PPIs) derived from a 3D-dimer structure [22,23]. For
the peptide-MHC and peptide-TCR interaction, the
scoring function is defined as

ETotal = EvdW + ESF + Esim (2)

where EvdW is the van der Waal’s energy; ESF is the
special energy (i.e. hydrogen-bond energy and electrostatic
energy); and Esim refers to the peptide similarity score
between query and template. In PAcomplex, The EvdW
and ESF of peptide-TCR interfaces are calculated by the
one-matrix (Fig. S1 in Additional file 1). However, the
EvdW and ESF of peptide-MHC and peptide-TCR interfaces
are calculated by the four matrices of PPI and iMatrix,
respectively, in this study. The EvdW and ESF are given as

EvdW =
CP∑

i,j

(Vssij + Vsbij + Vsbji) (3)

ESF =
CP∑

i,j

(SFssij + SFsbij + SFsbji) (4)

where CP denotes the number of the aligned-contact
residues of query peptide and the hit template peptide.
Vssij and Vsbij (Vsbji) are the sidechain to sidechain and
sidechain to backbone vdW energies between residues
i (in peptide side) and j (in TCR or MHC side), respec-
tively. SFssij and SFsbij (SFsbji) are the sidechain to side-
chain and sidechain to backbone special interacting
energies between residue i (in peptide side) and j (in TCR
or MHC side), respectively, if the contact-pair residues
i and j form the special bonds (i.e. hydrogen bond, salt
bridge, or electrostatic energy) in the template structure.
The vdW energies (Vssij, Vsbij, and Vsbji) and special
interacting energies (Tssij, Tsbij, and Tsbji) of peptide-
MHC and peptide-TCR can be obtained from PPI
matrices (Fig. S2 in Additional file 2) and iMatrix (Figure 2),
including sidechain-sidechain (Figs. S2A and 2A) and
sidechain-backbone van der Waals scoring matrices
(Figs. S2B and 2B in Additional file 2); and sidechain-
sidechain (Figs. S2C and 2C in Additional file 2) and
sidechain-backbone special-bond scoring matrices (Figs.
S2D and 2D in Additional file 2). The sidechain-sidechain
scoring matrices are symmetric and sidechain-backbone
scoring matrices are non-symmetric.

Following calculation of the interaction scores (Etot),
these scores are transformed into Z-values (i.e., ZMHC

and ZTCR) of peptide-MHC and peptide-TCR interfaces
using the mean and standard deviation derived from
10,000 random interfaces by mutating each peptide
position. For a TCR-pMHC template collected from the
Protein Data Bank (PDB) [31], these 10,000 random
interfaces are generated by substituting with another
amino acid according to the amino acid composition
derived from UniProt [29]. Finally, we computed JZ
(Equation 1) of the TCR-pMHC complex.

Data set of constructing iMatrix
Because of the different properties between protein-
protein and TCR-pMHC interfaces, the scoring matrices
for describing PPIs [23] are unsuitable for modelling
TCR-pMHC. For modelling TCR-pMHC interactions,
we collected a great quantity of co-crystal structures of
TCR-pMHC complexes which were only 55 MHC class I
and 9 MHC class II in PDB (January 2012). In addition,
these sequences and structures are often very similar.
Conversely, the number and sequences of co-crystal anti-
gen-antibody (Ag-Ab) structures are significantly large
and diverse, respectively. According to the comparison
between Ag-Ab and TCR-pMHC interfaces (Figure 3),
the TCRs and Fab fragments of antibodies often share
similar structures on the binding sites (e.g. complemen-
tarity determining regions (CDRs)) [32].
Therefore, we built a dataset, consists of 398 Ag-Ab

interactions, to generate the iMatrix for modelling TCR-
pMHC interfaces (Figure 1A and 2). We first manually
collected 679 crystal structures of Ag-Ab complexes
from the PDB (April 2012) at a resolution less than or
equal to 3Å. The binding interfaces consist of one protein
antigen and one antibody whose fragments outside of vari-
able regions are excluded from the analysis. All protein
chains were pairwise aligned to make non-redundant
sequence set using BLASTClust [33]. Finally, the 229 Ag-Ab
complexes (Table S1 in Additional file 3) with 398 Ag-Ab
interfaces (Table S2 in Additional file 4) were collected
in this set.

Experimental free energy dataset
To further investigate the relationship between the pre-
dicted energy and experimental free energy, we collected
70 mutated residues, which are contact residues in Ag-Ab
interfaces in 4 structural complexes from the ASEdb
(Table S3 in Additional file 5). The Alanine Scanning
Energetics database is a repository for energetics of side-
chain interactions determined by alanine-scanning muta-
genesis [27]. ASEdb gives the corresponding ΔΔG value
representing the change in free energy of binding upon
mutation to alanine for each experimentally mutated
residue.
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The experimental peptide antigens derived from IEDB
To further evaluate the reliability of homologous peptide
antigen derived from the iMatrix, we collected the 80,057
experimental peptides from the IEDB (January 2013) for
389 pathogens; and 17 TCR-pMHC complexes (i.e. TCR-
peptide-HLA-A0201, Table S4 in Additional file 6) from the
PDB. Then, we filtered 4,987 positive nonamers and 4,322
negative nonamers of TCR-peptide-HLA-A0201. Here, the
definition of positive records is at least one positive mea-
surement in T cell response or MHC binding assays; nega-
tive records are data with only negative measurements. We
also prepared the H-2-Kb (Mus musculus) and H-2-Ld
(Mus musculus) alleles for validation of iMatrix.
In addition, in these 389 pathogens, the vaccinia virus

has the largest amount (19.7%) of experimental records
in the IEDB, including 1,131 positive nonamers and 706

negative nonamers. Here, the complete genomes of vacci-
nia virus are 320 proteins recorded in UniProt [29], and
we processed them into 79,157 nonamers (56,030 non-
redundant nonamers). This vaccinia virus subset was used
in case studies.

Results and discussion
iMatrix
The high scores in four scoring matrices of iMatrix are
often superior frequency of interacting residue pairs.
The sidechain-sidechain scoring matrices are symmetric.
In sidechain-backbone matrices (e.g., Figure 2B, 2D,
S2B, and S2D in Additional file 2), y-axis denotes side
chain and x-axis denotes backbone. The interacting
score is set to zero if the frequency of an entry (a con-
tacted pair residue) is 0.

Figure 2 Four knowledge-based scoring matrices of iMatrix. (A) Sidechain to sidechain van der Waals scoring matrix; (B) Sidechain to backbone
van-der Waals scoring matrix; (C) Sidechain to sidechain special-bond scoring matrix; (D) Sidechain to backbone special-bond scoring matrix. The
sidechain to sidechain scoring matrices are symmetric. For sidechain to backbone matrices, y-axis denotes side chain and x-axis denotes backbone.
We discard backbone-backbone matrixes because the backbone-backbone interacting forces are constant in our template-based method.
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For vdW scoring matrices of iMatrix (Figure 2A and
2B), the scores are high when aromatic residues (i.e., Phe,
Trp, and Tyr) interact to aromatic and large-sidechain
residues (e.g., Met, Ile, and Arg). The result is consistent
to the previous results that residues Tyr and Trp play key
roles in epitopes and paratopes [34]. Conversely, the result
is different from the vdW matrices of protein-protein
interactions [23], which the aromatic residues only prefer
interacting aromatic residues (yellow blocks; Figs. S2A and
S2B in Additional file 2). Additionally, the scores are low
while aliphatic residues (i.e. Ala, Val, Leu, Ile, Met, and
Pro) interact to the other residues (orange blocks; Figure
2A) for immune complexes. The results are significantly
different from the vdW matrices of protein-protein inter-
faces (yellow blocks; Figure S2A in Additional file 2).
For special-bond scoring matrices (Figure 2C and 2D),

the scores (blue blocks in Figure 2C) are significantly high
when the residues with polar groups (i.e. Tyr, Trp, Asn,
and Gln; yellow blocks) or basic residues (i.e. His, Arg, and
Lys) interact to acidic residues (i.e. Asp and Glu). These
results are consistent to the results of protein-protein
interfaces (orange block; Figure S2C in Additional file 2).

TCR-pMHC interfaces
Based on our previous researches, the template-based
scoring function achieves good agreement for the binding
affinity in PPIs [13]. The novel knowledge-based matrices

were derived using a general mathematical structure [24]
from a non-redundant set of 621 3D-dimer complexes
proposed by Glaser et al. [35]. This dataset is composed of
217 heterodimers and 404 homodimers and the sequence
identity is less than 30% to each other. However, the
matrices may not be applied to model TCR-peptide bind-
ing because previous studies have indicated that the TCR-
pMHC interface resembles Ag-Ab interactions [20,21].
We compared the TCR-pMHC, Ag-Ab, and protein-
protein interfaces and presented our observations in global
and local views. The TCR-pMHC and Ag-Ab co-crystal
complexes were collected from the PDB (April 2012),
including 105 and 398 non-redundant interfaces, res-
pectively. PPIs set derived from 621 non-redundant
interfaces [23,35].

Amino acid preferences
To display an overall measure of the interaction fre-
quencies of each amino acid with all the residues of the
complementary interface, we calculated the preferences
of amino acids in three kinds of interfaces, including
TCR-pMHC, Ag-Ab, and protein-protein interfaces. The
preference (Pi) of the amino acid type i in the molecular
interfaces can be calculated by equation (5):

Pi =
Ii∑20
1 Ii

(5)

Figure 3 Comparison between the TCR-pMHC and antigen-antibody interfaces. (A) Pearson’s correlation coefficient of 20 amino acid
preferences within paired interfaces among TCR-peptide, antigen-antibody, and protein-protein interfaces. (B) Hydrogen bonding proportions in
contact pairs for three kinds of interfaces. (C) Structure alignment of TCR-pMHC (PDB entry: 1ao7) and antigen-antibody (PDB entry: 1jps)
complexes using MultiProt. abTCR chains (orange) are aligned to heavy and light chains of antibody (light blue) and the RMSD is 1.82 Å.
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where Ii represnts the numbers of the amino acid type
i in the interfaces. Next, we derived the interfaces simi-
larity by pairwise comparison using the Pearson’s corre-
lation coefficient (PCC). The PCC of 20 amino acid
types between any two sets of TCR-pMHC, Ag-Ab, and
protein-protein interfaces are shown in Figure 3A. Since
the strong positive PCC (0.76) between TCR-pMHC and
Ag-Ab interfaces, their amino acid preferences are
significantly similar. However, neither TCR-pMHC nor
Ag-Ab interfaces are similar to protein-protein inter-
faces. This result indicates that the composition of
TCR-pMHC and Ag-Ab interfaces seems to resemble
each other closely.

Propensities of interface sizes and hydrogen bonds
We then gathered the sizes and proportions of hydrogen
bonds (H-bonds) among TCR-pMHC, Ag-Ab, and pro-
tein-protein interfaces to analyse their properties. The
average numbers of interacting residue pairs of TCR-
pMHC (19.7 contact pairs/interface) and Ag-Ab (40.7
contact pairs/interface) interfaces are significantly less
than the one of the protein-protein interfaces (94.4 con-
tact pairs/interface) (Figure 3B). This informs that such
immune-related binding regions are small than average.
Interestingly, the H-bonds proportions of TCR-pMHC
interfaces (20.1%) and Ag-Ab interfaces (19.1%) are
slight higher than protein-protein interfaces (14.7%).
H-bonds are extremely important in biological systems
and play a key role in the structure of polymers, both
synthetic and natural. These results suggest that
although the TCR-pMHC and Ag-Ab interfaces are
short and discontinuous, H-bonds might contribute a
crucial part.

Local structural alignment of binding domains
TCR and antibody are composed of six variable loops
(CDRs) and have the same domain annotation (i.e. V set
domains (antibody variable domain-like)) based on
SCOP [36] database. For local analysis the binding
regions, we performed a structural alignment of the
functional domains in TCR and antibody using Multi-
Prot [37], an efficient and accurate method for local
structural pairwise and multiple alignment. Figure 3C
shows that the V set domains of TCRs and antibodies
share highly structural similarity (in general, RMSD ≤
2.0 Å). Currently, it is postulated that the CDR3 loops
of TCR a and b chains specifically recognize the diver-
sity of bound peptides of pMHC [38] thus play a key
role of TCR-pMHC binding. We observed the details of
structural alignment and found that CDR3 and contact
regions of TCR (Figure 3C, red loops) and antibody
(Figure 3C, blue loops) were well aligned together.

Evaluation of binding affinity
To determine the contribution of a residue to the bind-
ing affinity, the alanine-scanning mutagenesis is fre-
quently used as an experimental probe. We selected 70
mutated residues collected from the ASEdb [27] with 4
Ag-Ab complexes whose 3D structures were known.
Those mutated residues should position at protein-pro-
tein interfaces and be the contact residues. Based on the
interacting characteristics, these 70 mutated residues
can be divided into two types, including the residues
forming hydrogen bonds and the other residues. Among
25 mutated residues forming H-bonds, the ΔΔG values
(red bars in Figure 4A; the mean is 2.54 and the stan-
dard deviation is 1.84) are significantly higher than

Figure 4 The evaluation of iMatrix on 70 mutations from the ASEdb. (A) The distribution of binding energy changes (ΔΔG) based on 70
mutated residues of antigen-antibody interfaces recorded in ASEdb. The mean is 2.54 and standard deviation is 1.84 of the binding free energy
for 25 residues forming hydrogen bonds (red bars). Conversely, the mean is 1.08 and standard deviation is 1.03 of 45 residues forming vdW
interactions (blue bars). (B) Distribution of free energies for the residues on sidechain interactions. The residues forming more side-chain contacts
are often more influenced during the residue mutated into alanine. Pearson correlation coefficient is 0.57 between the ΔΔG and the number of
side-chain contact. (C) The Pearson correlation coefficient are 0.59 and 0.47 between 70 experimental free energies (ΔΔG, recorded in ASEdb)
and computational scores using iMatrix (red spot) and one-matrix (blue triangle), respectively.
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45 mutated residues with vdW interactions (blue bars in
Figure 4A; the mean and the standard deviation are 1.08
and 1.03, respectively) and the p -value < 0.001. A resi-
due mutation with the ΔΔG > 2.0 is often considered as
a hot spot and this residue often contribute extraordinarily
high energy [39]. If the side chain of a residue forming
H-bonds in the interface, the residue mutated to alanine
often breaks this hydrogen bond. For these 70 mutated
residues, 48% (12/25) residues forming h-bonds and 9%
(4/45) residues with vdW interactions are hot spots due to
their ΔΔG > 2.0. Among 4 mutated residues with vdW
forces, 3 residues (75%, 2 Phe residues and 1 Trp residue)
and their complementary contact residues (2 Tyr residues
and 2 Trp residues) form the stack force interactions. This
high binding energy is consistent with the high binding
scores in vdW scoring matrix (yellow block; Figure 2A).
This result implied that the formation of H-bonds in
Ag-Ab interfaces indeed dominates the binding energy
changes. At the same time, the residues forming more
sidechain contacts could from more energy and be more
influenced during the residue mutation to alanine which
only has a short sidechain. Figure 4B illustrates the rela-
tionship between the ΔΔG and the number of sidechain
contact. The significant correlation (R = 0.57) implied that
the sidechain contact in Ag-Ab interfaces also indeed
dominates the binding energy changes.
In addition, iMatrix were evaluated on these 70

mutated residues to observe the correlation between
experimental ΔΔG values and predicted energies. The
PCC between two scoring systems (i.e. iMatrix (red) and
one matrix used in PAComplex (blue)) and free energies

are shown in Figure 4C. The PCC values of iMatrix and
one matrix are 0.59 and 0.47, respectively. Our results
show that the iMatrix which separate vdW forces,
hydrogen bonds, sidechain contact, and backbone con-
tact could have higher correlation of the binding inter-
face energies. This result is also consistence with the
ΔΔG contribution of H-bond and sidechain contact
(Figure 4A and 4B). These results imply that iMatrix
considering H-bond energies and highlight sidechain
contact can yield the benefits to model the binding
energy to gather statistics of the Ag-Ab interfaces.

Large-scale peptide antigen identification on 389
pathogens
To further investigate the reliability of iMatrix, we iden-
tified the homologous peptide antigens from 389 patho-
gens. Then, we collected 17 TCR-pMHC structure
complexes (i.e. TCR-peptide-HLA-A0201) from PDB
and 9,309 experimental peptide antigens (4,987 positive
nonamers and 4,322 negative nonamers) from the IEDB
[40] as the template, positive, and negative set, respec-
tively. Among these pathogens, over 108 peptide candi-
dates with JZ ≥ 1.645 were selected for analyzing the
relationships between JZ values with both the numbers
of positive homologous peptide antigens (blue, recorded
in IEDB) and precision (red). When JZ is higher than
4.0, the precision > 0.6 and the number of positive anti-
gens exceeds 360 according to the positive and negative
datasets (Figure 5A). If the JZ threshold is set to 4.0, the
total number of inferring possible peptide antigens sur-
passes 700,000 statistically derived from 17 TCR-pMHC

Figure 5 The evaluation of iMatrix on 389 complete pathogen genome. (A) Relationship between the positive hits (red line) and precision
values (blue line) with different joint Z-value thresholds on 389 pathogens. (B) The ratios of the peptides with identical H-bond derived from the
iMatrix are significantly increasing while the joint Z-value increases. The iMatrix outperforms the one-matrix.
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complexes. For 389 pathogens, we summarized the pre-
cision, the number of predicted homologous peptide
antigens, and the positive and negative hits recorded in
the IEDB for each pathogen (Table S5 in Additional file
7). Among these 389 pathogens, two vaccinia viruses
have the most positive hits recorded in the IEDB and
the precision of our method is higher than 0.65. More-
over, Table 1 shows the number of peptides (hits) in the
peptide antigen families derived from the iMatrix and
one-matrix. Although the precisions of homologous
peptide antigen prediction have no difference under
three different threshold (i.e. Joint Z-value ≥ 4, 5, and
6), the numbers of hits derived from iMatrix are signifi-
cantly higher than derived from the one-matrix, espe-
cially while the threshold is set to 6 (Table 1). We also
validated the peptide-immune recognitions in MHC
alleles of H-2-Kb (Mus musculus) and H-2-Ld (Mus
musculus) from the IEDB. The performance of iMatrix
is consistently slightly superior to one matrix in three
sets, HLA-A0201, H-2-Kb, and H-2-Ld (Table S6 in
Additional file 8). These results implied that the homo-
logous peptide antigen derived from iMatrix could
achieve a better predicting accuracy.
To further investigate the reliability of peptide composi-
tions derived from difference matrices, we evaluated the
hydrogen-bond (H-bond) ratio of each homologous pep-
tide. The H-bond ratio is calculated as:

H − bond ratio =
No. of H − bond with in the homologous peptide
No. of H − bond within the template peptide

where the H-bond ratio is equal to 1 while the num-
ber of H-bond within homologous peptide is equal to
the template peptide (i.e. identical H-bond). Figure 5B
illustrates the ratio of peptide which H-bond ratio equal
to 1 within the peptide antigen family during different
joint Z-value. The ratios of peptide with identical H-
bond derived from the iMatrix have significant increas-
ing while the threshold of joint Z-value is increasing.
More importantly, the homologous peptides with joint
Z-value > 6 derived from iMatrix have a significantly
highest value of H-bond ratio (92%; Figure 5B). Accord-
ing our analysis described above, the H-bonds play an
important role on the free energy of interface. There-
fore, these peptide antigens with joint Z-value > 6
derived from iMatrix have a high precision value (Table 1)

and keep the H-bond based on template (Figure 5) should
be the more reliable peptide antigen than derived from
one matrix.

Homologous peptide antigens of Tax-1
Protein Tax-1 is a transcriptional activator of Human
T-cell leukemia virus 1(HTLV-1) [41]. The HTLV Tax
protein is crucial for viral replication and for initiating
malignant transformation leading to the development of
adult T-cell leukemia [42]. Tax-1 has been shown to be
oncogenic and also up-regulate interleukin 13 (IL-13),
which is known to be linked to leukemogenesis [43].
The iMatrix scoring function can infer the experimental
positive epitope of Tax-1 (11-19 LLFGFPVYV of UniProt
[44] accession number: P0C213) and provides the
detailed binding model based on its best hit template
(PDB entry 1bd2 [45], Figure 6A). After Tax peptide
(purplish cartoon in Figure 6A, residue 11-19 from Tax
protein of HTLV-1) presented by extracellular domains
of HLA-A0201, it is recognized by TCR (green region in
Figure 6A) of Homo sapiens. The co-crystal TCR-pMHC
structure assigned by iMatrix scoring function provides
important contact residues and binding forces. Tyr5 of
Tax peptide extends its aromatic sidechain deep into the
pocket of TCR surface and forms one H-bond to Asp30
of TCR1a (black dash line in Figure 6A).
Furthermore, we would like to know whether the

homologous peptide antigens of Tax peptide derived
from iMatrix and one-matrix are different. The amino
acid composition of the homologous peptide antigens
was generated by by WebLogo, which is a graphical
representation of an amino acid multiple sequence
alignment [46]. The homologous peptide antigens origi-
nated in iMatrix are more than a double of the number
originated in one-matrix (102 vs 46). The amino acid
composition of the homologous peptide antigens iMatrix
(Figure 6B) and one-matrix scoring function (Figure 6C)
generating by WebLogo, which is a graphical representa-
tion of an amino acid multiple sequence alignment [46].
Two homologous peptide antigen sets maintained the
important position 5 in peptide and conserved to Tyr
(red frames in Figure 6B and 6C). This result conformed
to the template-based atomic binding model (Figure 6A).
Interestingly, position 5 in Figure 6B preferred all polar
residues (Tyr, His, and Arg), whereas position 5 appeared

Table 1 Comparisons between iMatrix and one-matrix on 389 complete pathogen database

Joint
Z-value

iMatrix One-matrix (A)/(B)

No. of hits (A) Positive hits Negative hits Precision No. of hits (B) Positive hits Negative hits Precision

4 701,897 360 187 0.66 511,587 265 135 0.66 1.37

5 68,349 65 21 0.76 35,124 32 11 0.74 1.95

6 3,398 6 0 1 1,246 5 0 1 2.73
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Phe in Figure 6C (yellow background). However, Phe in
position 5 of peptide is unreasonable and causes the loss
of the critical H-bond. The iMatrix corrected such inac-
curacy by considering special bond energies located in
sidechain or backbone. Figure 2C provides the sidechain
to sidechain special bond energies (SFssij). According to
the scores, Tyr to Asp is 7.3 (green box) and Phe to Asp
is 0.0 (red box), respectively. These related results show
the iMatrix reveals the interacting environment by indivi-
dually evaluating binding force and locations.
The 13 positive hits which are recorded in the IEDB

derived from iMatrix scoring function shows a high
consensus in position 5 (red background in Figure 6D);
moreover, position 5 of 6 novel homologous peptides
(not discovered by one-matrix) in the red frame are
exact to Tyr.

Homologous peptide antigens of NY-ESO-1
NY-ESO-1 is one of the most promising tumor-specific
antigens, which was identified by the application of serolo-
gical analysis of recombinant cDNA libraries from human
tumors [47,48]. The iMatrix infers NY-ESO-1157-165
SLLMWITQC (UniProt accession number: P78358) on
TCR recognition according to the structural template
(PDB entry 2bnq [28]). The amino acid composition of
homologous peptide antigens were generated by iMatrix
(Figure 7A) and one-matrix (Figure 7B), respectively.

According to iMatrix sensitive to atomic interactions
between TCR and peptide, positions 5 and 7 of peptide
(red frame) had particularly come into our notice that
iMatrix excluded “Phe” from homologous peptide antigens
in these two positions (yellow backgrund only showed in
Figure 7B). The crystal structure demonstrated the ration-
ality of iMatrix (Figure 7C). Trp5 of NY-ESO-1 peptide
bound to Pro94 by forming one crucial H-bond and a
stacking interaction with aromatic Tyr31 of TCRa; Thr7
has another important H-bond occurred in sidechain. We
used PyMOL mutagenesis [49] to simulate the W5Y muta-
tion in peptide and it might reserve the H-bond and stack-
ing interaction (Figure 7D). These results corresponded
with the position 5 of peptide where conserved to Trp and
Tyr (Figure 7A); however, W5F mutation abolished hydro-
gen binding to TCR (circle in Figure 7E). As a result, the
amino acid pattern suggested by iMatrix indeed revealed
binding mechanism and maintained essential binding
energy.

Complementarity of interactions within a vdW network
iMatrix also evaluates binding environments abound
with vdW forces well. Peptide P1049 appears to be sta-
bilized in establishing a vdW network (Figure 8A)
through Phe5 interacts with residues Phe93, Ala97, and
Ser102 in the TCR CDR3a loop and Trp97, Val98,
Ser99 in the TCR CDR3b loop (PDB entry 1lp9 [50] as

Figure 6 Detailed binding model of TCR-peptide interface of template (i.e. Tax-1) and amino acid compositions of its corresponding
peptide antigen families derived from iMatrix and one-matrix. (A) Detailed binding model of TCR-peptide interface of Tax-1 (11-19
LLFGFPVYV of UniProt accession number: P0C213) by using the template (PDB entry: 1bd2). The amino acid composition (profiles) of the
homologous peptide antigens derived from the (B) iMatrix and (C) one-matrix. (D) The 13 positive hits, recorded in the IEDB derived from iMatrix
scoring function, are consensus (i.e. Tyr) in the position 5. The position 5 of 6 novel homologous peptides are the resdiue Tyr.
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template). iMatrix infers homologous peptide antigens
drawn amino acid composition in Figure 8B and one-
matrix’s in Figure 8C. The position 5 in peptide has a
preference for aromatic residues (Phe, Tyr, and Trp)
proposed by iMatrix (Figure 8B); that is suitable for

vdW environments in pocket. Val appeared in position 5
derived from one-matrix (red background in Figure 8C)
is too small to stabilize the interface. In addition,
ATYGVWPPV identified by using one-matrix is a nega-
tive epitope of Vaccinia virus recorded in the IEDB and

Figure 7 Detailed binding model of TCR-peptide interface of template (i.e. NY-ESO-1). The amino acid compositions (profiles) of the
homologous peptide antigens derived from the (A) iMatrix and (B) one-matrix. (C) Detailed binding model of TCR-peptide interface of NY-ESO-1
(157-165 SLLMWITQC) by using the template (PDB entry 2bnq). Specific point mutations (i.e. (D) W5Y and (E) W5F) on the position 5. The W5Y
mutation in peptide and it reserves the H-bond and stacking interaction. However, the W5F mutation abolishes the hydrogen binding to TCR.

Figure 8 Detailed binding model of TCR-peptide interface and amino acid composition of homologous peptide antigen derived from
the template. (A) Detailed binding model of TCR-peptide interface derived from the template (i.e. PDB entry: 1lp9). The amino acid
compositions (profiles) of the homologous peptide antigens derived from the (B) iMatrix and (C) one-matrix. The position 5 in peptide prefer the
aromatic residues (Phe, Tyr, and Trp) proposed by iMatrix. Therefore, the F5V is too small to stabilize van der Waals environments in the pocket.
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could be filtered by iMatrix. The result implies that
iMatrix performs van der Waals interactions with the
sidechain contact modeling well than one-matrix.

Conclusions
We have developed the iMatrix, PPI-scoring matrices
and a template-based approach for modelling of TCR-
pMHC interactions in a genome-wide scale. Our scoring
matrices, including four knowledge-based scoring
matrixes, are able to identify the significant hydrogen
bonds and stacking interactions in the both TCR-peptide
and MHC-peptide interfaces. Experimental results
demonstrate that these matrices can yield high precisions
of binding affinity and infer homologous peptide antigens
of a template TCR-pMHC structure on 389 pathogen
genomes. In addition, our structural TCR-pMHC models
can provide detailed interacting models and crucial bind-
ing regions. We believe that our scoring matrixes and
template-based method are able to provide biological
insights and binding mechanisms of TCR-pMHC and to
reveal the immune reactions for peptide vaccine designs.
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