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Abstract

manifestation.

over the 6 hours of infection.

Background: Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic
cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to
appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease

Results: Here we report the expression profile of intracellular B. pseudomallei following infection of human
macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B.
pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the
intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility,
replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic
and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection,
while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type
VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated

Conclusions: The transcriptome profile described here provides the first comprehensive view of how B.
pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are
important for the survival and growth of B. pseudomallei within human cells.
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Background
Burkholderia pseudomallei causes melioidosis, a disease
with considerable human mortality and morbidity in the
tropics [1]. Clinical presentation of melioidosis varies
from rapidly fatal septicemia and acute pneumonia,
chronic or localized abscess formation to skin and soft
tissue infections that progress rapidly to systemic infec-
tion [2,3]. Treatment of melioidosis involves long peri-
ods of antibiotic administration which are vital to
eliminate B. pseudomallei and to prevent relapse [4,5].
Several features of melioidosis suggest that B. pseudo-
mallei is a facultative intracellular bacterium. These in-
clude long incubation periods of up to 62 years and the
tendency to relapse [3,6]. B. pseudomallei has the ability
to survive and proliferate within phagocytic and non-
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phagocytic cells [7,8], and free-living amoeba [9] for
months or years. The exact mechanism of invasion is
still unknown, but it requires the rearrangement of host
actin cytoskeleton and the involvement of BopE, an ef-
fector protein of the type III secretion system (T3SS-3)
[10]. After cellular uptake, B. pseudomallei escapes from
endocytic vacuoles and once in the cytoplasm, induces
host cell fusion and enters neighbouring cells by forming
actin tails and membrane protrusions [11,12]. Vacuole
escape and intracellular survival requires a functional
T3SS-3, as mutants of T3SS-3 display delayed vacuolar
escape, reduced actin formation and reduced capacity to
survive intracellularly and spread to neighbouring cells
[13,14]. It is possible that intracellular survival and inter-
cellular spread may provide B. pseudomallei protection
from host defences.

Recently, the type VI secretion cluster tss-5 (T6SS-1)
was shown to contribute to intracellular growth of B.
pseudomallei [15]. The expression of this secretion
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system is dependent on the sensor regulators BprC and
VirA-VirG (VirAG). The type VI secretion system is also
thought to play a major role during bacterial transition
from the phagosome to the cytosol [15]. Moreover,
T6SS is also implicated in other important bacterial
pathogens as the key virulence factor and is involved in
translocation of effector proteins into eukaryotic cells
[16,17]. Using in vivo expression technology, Shalom
et al. [18] found that the B. pseudomallei tss-5 gene
cluster was induced inside murine macrophages. Fur-
thermore, Pilatz and colleagues demonstrated that a
B. pseudomallei tss-5 transposon mutant displayed
reduced ability to form plaques on PtK2 epithelial cell
monolayers, indicating the requirement of tss-5 in cell-
to-cell spread [19]. This mutant was also highly attenu-
ated in mice with reduced bacterial load in the spleen,
liver and lung at 48 h post-infection [19].

Previous studies have examined the detailed cellular
responses of B. pseudomallei within eukaryotic cells.
However, the overall picture of the mechanisms involved
in adaptability to the intracellular lifestyle is still unclear.
The availability of the complete genome sequence for B.
pseudomallei [20] enabled us to design a whole genome
DNA microarray to identify B. pseudomallei genes regu-
lated during infection of macrophages. These data pro-
vide an insight into genes involved in survival and
adaptation of the bacteria within macrophage cells as
well as a new understanding of the biology of host-
pathogen interaction during melioidosis.

Results

Infection model and bacterial RNA isolation

Human macrophage-like U937 cells were chosen as the
infection model as it has previously been used exten-
sively to study B. pseudomallei interaction with host
cells [7,8]. In this study, bacterial replication within
macrophages was observed with a maximum CFU
obtained at 6 h post-infection. The calculated doubling
time for intracellular B. pseudomallei is about 6.4 h, in-
dicating a slower growth rate compared to the control
bacteria in RPMI (doubling time of ~ 1.9 h). The number
of viable bacteria decreased consistently after 6 h post-
infection and a 2-log reduction in viable cells was noted
with prolonged incubation of up to 24 h. A similar de-
cline in bacterial numbers following prolonged incuba-
tion was previously reported in RAW264.7 cells [7,21].
Viability of infected U937 cells decreased over time and
was drastically reduced by 6 h post-infection, suggesting
a cytotoxic effect of B. pseudomallei on the host cells
(Figure 1).

An ultrastructural study of infected U937 cells showed
that the nuclei, mitochondria and vacuoles were swollen
whilst the nuclear material appeared diluted and the cell
membrane totally disrupted (Figure 2A). All these
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Figure 1 B. pseudomallei intracellular growth and viability of
infected U937. Intracellular survival of B. pseudomallei was
monitored over a 24 h period, along with U937 cell viability after
B. pseudomallei infection. The relative amount of bacteria recovered
(logyo scale) was plotted in grey bars while the relative % of viable
infected cells was indicated as a solid line. Vertical lines represent
the standard deviation (SD) obtained from three independent
experiments conducted in triplicate (n=9).

Figure 2 Transmission electron micrograph of intracellular B.
pseudomallei within U937 cells. (A) B. pseudomallei-infected U937
cells demonstrating oncotic-like morphology and disruption of cell
membrane. X7000 (B) Internalised B. pseudomallei within membrane-
bound phagosome (arrowed) were observed at early stage of
intracellular infection. x8000 (C) Loss of phagosome membrane was
clearly visible and free bacteria were seen in the cell cytoplasm
(arrowed). x8000 (D) A dividing bacillus in a phagosome with near-
intact membrane (arrowed). Some membrane dissolution can be
seen close to the ends of the bacterial cell. x8000.
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changes indicate that infected U937 cells displayed a
phenotype similar to oncotic cells as previously observed
in other cells infected with B. pseudomallei [21]. Loss of
phagosome membrane in B. pseudomallei infected
macrophage cells was established as early as 15 min
post-incubation similar to that previously reported [22].
At 2 h post-infection, loss of phagosome membrane is
evident and bacilli were seen in the cytoplasm
(Figure 2C). Moreover, replication of intracellular bac-
teria was seen in the cytoplasm of host cells (Figure 2D).

An infection period of 1 to 6 h was selected to study
changes in the expression profile as more than 85 % of
the infected U937 cells were still viable during this
period (Figure 1). This would ensure maximum recovery
of intracellular B. pseudomallei from viable cells to ob-
tain sufficient intact bacterial RNA. We adopted the dif-
ferential lysis method with saponin to prevent bacterial
cell lysis and easily recover bacterial RNA. This strategy
enriches the bacterial mRNA several thousand-fold [23].
Treatment with saponin specifically lyses eukaryotic cells
without affecting bacterial viability [24,25] and in our
study, the use of 0.1 % to 4 % saponin was not detrimen-
tal to B. pseudomallei (data not shown). Differential cen-
trifugation was combined with this method to efficiently
remove host cellular debris. Based on the RNA integrity
number (RIN) and the 16 S/23 S rRNA subunit ratio,
the electrophoretic profiles of the total RNA extracted
from intracellular bacteria showed no evidence of deg-
radation and only minor host RNA contamination was
detectable (Figure 3).

The global gene expression profile

Temporal gene expression profiles obtained from intra-
cellular B. pseudomallei were compared with the tran-
scriptome of control bacteria grown in cell culture
medium. Statistical analysis (p <0.01) combined with a
2-fold variation cut off indicated that 2,797 genes were
differentially expressed at 1 h, 2,755 at 2 h, 2,776 at 4 h
and 1,918 genes at 6 h. Hierarchical clustering of gene
expression levels revealed similar patterns of gene regu-
lation over the period of infection (Figure 4A). The ma-
jority of the genes with altered expression were down-
regulated throughout the infection period compared to
bacteria grown in control medium. Expression levels of
these genes continued to decrease up to 4 h before in-
creasing to levels lower or similar to control bacteria at
6 h. It appears that the adaptation of B. pseudomallei
within U937 cells is rapid and most of the changes oc-
curred as early as 1 h post-infection (Figure 5). With
time, the number of significantly deregulated genes grad-
ually decreased, suggesting that B. pseudomallei had be-
come adapted to the intracellular environment.
Functional classification of intracellularly modulated
bacterial genes at each time point showed that most of
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Figure 3 Size chromatographic separation of RNAs. Total RNA
were extracted from (I) unifected U937 cells, (Il) B. pseudomallei
harvested from infected U937 cells and (lll) B. pseudomallei grown
in vitro. Lane L represents RNA ladder (kb).
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these genes encoded core functions such as metabolism,
cell envelope, regulatory functions, transport and bind-
ing. Many genes encoding proteins with unknown func-
tion or hypothetical proteins were also modulated
during infection (Figure 6).

Of the 5,721 probes represented on our microarrays,
1,284 transcripts representing 22.4 % of the B. pseudo-
mallei ORFeome, were differentially expressed during
the infection time course. Of these, 25 genes demon-
strated increased expression (Table 1) while 1,259 genes
were down-regulated (Additional file 1). We performed
gene function enrichment analysis on these genes to fur-
ther categorize them into biological functions. Based on
the statistical analysis of KEGG biochemical pathways,
the number of genes involved in cellular functions such
as biosynthesis of flagella and capsule, energy metabol-
ism and regulatory systems was significantly higher dur-
ing intracellular infection (Table 2).

As an independent measure of differential gene ex-
pression, we examined the relative expression of six up-
or down-regulated genes selected from different func-
tional categories by real-time qPCR (Table 1 and Add-
itional file 1) on the same samples as those used for
microarray analysis. Changes in expression were verified
by real-time qPCR with a correlation of >0.95 to the
microarray data (Figure 7). The strong correlation
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Figure 4 Gene expression profile of B. pseudomallei during infection of U937 cells. (A) The cluster diagrams show the expression profile of
intracellular B. pseudomallei within U937 cells for 1 to 6 h relative to in vitro grown bacteria. Hierarchical clustering was performed with Euclidean
correlation in TIGR-MeV. Expression values are determined from the SAM analysis with red representing up-regulation (ratio of +8.0) and green
representing down-regulation (ratio of - 8.0) on a log, scale. (B) Average relative levels of expression of representative functional groups. The
vertical axis shows the fold change in expression on a log, scale. Data are the means from three biological replicates.
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Figure 5 Time-dependent transcriptional adaptation of B.
pseudomallei in U937 cells. The graph shows the total number of
B. pseudomallei genes which are significantly differentially expressed
(2-fold up or down, p < 0.01) at each time point.

to genes that have some functional information are
shown and discussed below. The identified genes are dis-
cussed according to functional categories.

Intracellular metabolism and ion transport

In host-pathogen interactions, sufficient nutrition levels
are necessary for the successful survival of the pathogen.
Once intracellular, the bacteria must make metabolic
adjustments to adapt to changes in nutrient availability.
We noted a robust shutdown in the expression of B.
pseudomallei genes involved in metabolism. Genes
involved in glycolysis and oxidative phosphorylation
were consistently down-regulated in intracellular B.
pseudomallei. In addition, most genes involved in energy
metabolism such as ATP synthase and NADH dehydro-
genase were down-regulated (Figure 4B). Collectively,
these data suggest that intracellular B. pseudomallei have
lower energy requirements and limit their energy pro-
duction during the initial stage of infection. Several an-
aerobic metabolism genes were induced in intracellular
B. pseudomallei. Anaerobic metabolism pathway genes
such as BPSS1279 (threonine dehydratase), BPSL1771
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Figure 6 Functional classification of intracellular B. pseudomallei regulated genes. Bars indicate percentages of genes in each group that
were significantly regulated at any time point. Genes were divided into functional categories based on Comprehensive Microbial Resources (CMR)

Table 1 Twenty-five common up-regulated genes of B. pseudomallei during intracellular growth in host macrophages

relative to in vitro growth

Gene Description Fold Change (in vivo/in vitro) at the indicated time (h)

1 2 4 6
BPSLO184 Putative rod shape-determining protein 2383 1531 12.69 12.06
BPSLO842 Benzoylformate decarboxylase 7027 31.78 27.64 20.64
BPSLO886 Hypothetical protein 12.29 8.36 6.56 5.20
BPSL1067 Hypothetical protein 839 5.15 6.75 6.27
BPSL1771 Cobalamin biosynthesis protein CbiG 2536 16.66 15.21 15.76
BPSL1817 Putative lipoprotein 30.07 14.11 1267 11.33
BPSL1902 Hypothetical protein 3791 18.81 1246 8.39
BPSL2759 Putative short-chain dehydrogenase 16.54 831 593 561
BPSL2945 Allantoicase 27.90 9.57 8.83 741
BPSL3354 Putative cytochrome 18.66 11.70 8.64 762
BPSS0140 Sugar ABC transport system, lipoprotein 7.80 16.62 13.56 13.94
BPSS0142 * Sugar ABC transport system, ATP-binding protein 4.62 10.04 11.34 18.79
BPSS0143 ROK family transcriptional regulator 4.78 9.97 11.80 18.64
BPSS0404 Methylamine utilization protein 49.46 3631 30.14 2342
BPSS0433 Hypothetical protein 11.87 584 7.70 10.59
BPSS0529 Lipoprotein 2649 19.04 14.10 1068
BPSS1279 Threonine dehydratase 1747 11.84 10.80 11.03
BPSS1498 * tssD, type VI secretion system Hcp protein 7.38 9361 130.11 181.92
BPSS1499 tssE, type VI secretion system lysozyme 472 58.87 99.06 160.21
BPSS1505 tagB, type VI secretion system hypothetical protein 649 14.01 1840 2797
BPSS1508 tssJ, type VI secretion system lipoprotein 5.04 6.27 8.17 9.88
BPSS1728 * Secretion/activator protein 3.00 23.60 2933 24.54
BPSS1892 catA, catechol 1,2-dioxygenase 7.76 19.46 16.64 16.53
BPSS1893 catC, muconolactone delta-isomerase 10.57 9.30 733 6.30
BPSS2276 LysR family regulatory protein 59.21 41.83 26.33 19.45

Note: * Genes selected for real-time qPCR analysis.
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Table 2 Gene function enrichment analysis of B. pseudomallei common up-regulated and down-regulated genes

throughout growth within host macrophages

Functional class or pathway

No. of genes regulated

No. of genes in genome Significance (p-value)

Up-regulated genes
Benzoate degradation via hydroxylation 3

Down-regulated genes

Amino sugar and nucleotide sugar metabolism 22
Bacterial chemotaxis 23
Lipopolysaccharide biosynthesis 13

Peptidoglycan biosynthesis 11

Flagella assembly 11

Alanine, aspartate and glutamate metabolism 15
Fatty acid biosynthesis 9
Two-component system 30

Glycolysis/gluconeogenesis 11

Oxidative phosphorylation 15

29 333x107
39 7.98x107°
46 265% 107
24 236%10°
24 793x10™*
38 272%107
32 241%10°
21 6.33%107
104 368x10°
36 181x107
60 155107

(cobalamin biosynthesis protein CbiG) and BPSS0842
(benzoylformate  decarboxylase) were up-regulated
throughout the infection period. Nevertheless, none of the
components of the anaerobic respiratory chain showed
significant changes in expression except for BPSL2311
(putative respiratory nitrate reductase delta chain) and
BPSL2312 (putative respiratory nitrate reductase gamma
chain) that were induced at the early stage of infection.

Other induced genes were catAC genes, which are
involved in benzoate degradation, indicating that intra-
cellular B. pseudomallei utilized aromatic compounds as a
source of carbon. Increased expression of phenylacetic
acid (PA) pathway genes at the later stage of infection (4 h
and 6 h post-infection) was also observed (Figure 4B).
The major nitrogen source in the intracellular compart-
ment is most likely methylamine and purine as suggested
by the increased expression of methylamine utilization
protein (BPSS0404) and allantoicase (BPSL2945). Allan-
toicase is involved in purine metabolism and provides a
secondary nitrogen source under nitrogen limiting condi-
tions [26].

Expression of virulence and virulence-associated factors
We observed the repression of genes encoding proteins
that are well characterised as B. pseudomallei virulence
factors. These include the main capsular polysaccharide
biosynthesis (BPSL2787-BPSL2810) genes, two potential
surface polysaccharide biosynthesis gene clusters
(BPSS0417-BPSS0429 and BPSS1825-BPSS1834), major-
ity of genes in the lipopolysaccharide (LPS) biosynthesis
cluster and genes encoding for flagella assembly and
chemotaxis. We also noted the repression of bspR, a
regulator recently shown to control the expression of
TT3SS-3 genes [27]. The inhibition of this regulator
leads to the reduced expression of T3SS-3 controlled
genes in intracellular B. pseudomallei.

One of the six clusters of the type VI secretion system,
the tss-5 cluster (BPSS1493-BPSS1511), was up-
regulated up to 182-fold during intracellular infection
(Figure 8). This observation is consistent with previous
reports on the induction of three genes in this cluster,
tssH-5, tssl-5 and tssM-5, upon invasion of macrophages
[18]. We also observed the induction of genes flanking
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Figure 7 Real-time quantitative PCR validation of microarray data. Relative expression ratio by real-time gPCR (grey bars) or by microarray
experiments (white bars) at 6 h post-infection. The horizontal axis represents fold change in log, scale. Data are mean + SD of triplicate
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Figure 8 Regulation of the type VI secretion system tss-5
cluster. The heat-map shows the expression ratio of each gene in
the T6SS tss-5 cluster during intracellular growth in host
macrophages relative to in vitro growth. Expression values are
determined from the SAM analysis with red representing up-
regulation (ratio of +8.0) and green representing down-regulation

(ratio of -8.0) on a log, scale.

the tss-5 cluster, bimA (Burkholderia intracellular motil-
ity A)(BPSS1492) and BPSS1512 at 2 to 6 h post-
infection. Moreover, the hemolysin activator-like protein
precursor, fhaC (BPSS1728) gene was significantly up-
regulated during intracellular infection. Consistently, the
large filamentous hemagglutinin precursor, fhaB
(BPSS1727) gene, a potential virulence factor of B. pseu-
domallei [20], was induced between 2 to 6 h post-
infection.

Stress responses genes

The general stress-responsive alternative sigma factor
rpoS transcribes genes involved in bacterial survival
under conditions of environmental stress. In B. pseudo-
mallei, rpoS is a regulator of carbon starvation and oxi-
dative stress [28].We observed down-regulation of rpoS
throughout intracellular growth. Furthermore, the ex-
pression of most of the genes encoding sigma factors
was repressed in the intracellular bacteria. Under oxida-
tive stress, rpoS regulates oxyR and katG-dpsA operons
[29]. As expected, we observed down regulation of oxyR
and katG-dpsA expression at 1 and 2 h post-infection.
The expression of other genes in the oxy R regulon was
either repressed or did not change significantly relative
to control cells. Moreover, class I stress response genes
including dnaJ, dnaK, hrcA and groEL were not signifi-
cantly regulated, except for groES, which was induced at
6 h post-infection.

DNA topology and growth arrest within macrophages

Modification of DNA topology plays a major role in
assisting DNA replication and protein synthesis. Pro-
karyotic DNA is usually maintained in a negatively
supercoiled form by topoisomerases and the level of
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supercoiling can be affected by several environmental
parameters [30]. The ability of DNA gyrase to generate
negative supercoils in DNA is inhibited when ATP levels
are reduced [31]. In this study, DNA topoisomerase IV
subunit A (parC), DNA topoisomerase IV subunit B
(parB) and DNA gyrase subunit A (gray) genes were
down-regulated. The repression of gyrase suggests a re-
laxation in bacterial DNA supercoiling during B. pseudo-
mallei intracellular growth in U937. Additionally, the
nucleotide-associated regulator protein Fis was also
negatively regulated. Fis expression depends on super-
helical density whereby maximum density is observed at
high levels of negative supercoiling [32].

We found that bacterial genes involved in cell division
(ftsABH) were down-regulated indicating reduced cell
division activity. The repression of minD and minE
genes, which mediate spatial regulation of cytokinesis in
bacteria [33], and chromosome partitioning genes, parA
and parB was also observed. Furthermore, replicative
DNA helicase dnaB, DNA polymerase III subunit alpha
dnaE and DNA polymerase III subunit chi genes were
also down-regulated. Consistent with the down regula-
tion of catabolic and cell replication genes, the expres-
sion of RNA polymerase (rpoABCZ) and ribosomal
subunit genes (S1, S10, S21, L11 and L28) was also
reduced throughout the infection period. Collectively,
these support the view that cell division and replication
processes are interrupted during infection, leading to
slower growth kinetics of intracellular B. pseudomallei.

Discussion

Numerous studies have been conducted on the cellular
interaction between B. pseudomallei and eukaryotic
cells, especially the ability of this pathogen to survive
within host cells. In this study, we investigated the global
B. pseudomallei transcriptome profile during early stage
infection of human monocyte-like U937 cells. Initially,
we demonstrated that replication kinetics of intracellular
B. pseudomallei within U937 cells is similar to data from
a number of previous studies [8,34]. The bacteria were
able to survive in macrophage cells, albeit, at a slower
growth rate compared to bacteria grown in RPML
Reduced bacterial growth kinetics during infection was
also reported in a hamster model of melioidosis [35].
Furthermore, this reduced bacterial replication kinetics
in the intracellular environment in comparison with
in vitro growth is not limited to B. pseudomallei [36—
38]. B. pseudomallei infection was also cytotoxic to
macrophage cells with about 20 % cell mortality at 24 h
post infection which, to some extent, explains the
reduced number of recovered bacteria with prolonged
incubation. Electron micrographs of infected U937 cells
revealed disruption of internal structures and formation
of oncotic cells. The cytotoxic and cytopathy effects of
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B. pseudomallei infection in our study are in agreement
with Sun et al. [21], who reported high cytotoxicity (40-
70 %) and oncotic death in infected THP-1 cells. We
also observed the loss of phagosome membrane in
infected macrophages as early as 2 h post-infection
resulting in the presence of free replicating bacilli in the
cytoplasm at later time points.

The ability to survive within and lyse macrophage cells
most probably contributes to the spread of this bacter-
ium and disease progression. We attempted to identify
mechanisms that underlie the adaptive ability of B. pseu-
domallei during infection by comparing intracellular
bacteria transcripts to that of in vitro grown bacteria.
During infection, we observed that intracellular B. pseu-
domallei demonstrated a lower energy requirement and
production by shutting down metabolic activity. The
reduced expression of catabolic and house-keeping genes
is consistent with the reduced growth rate observed for
intracellular B. pseudomallei. The induction of anaerobic
metabolism pathway genes is suggestive of limited oxy-
gen concentrations in the cytosol although expression of
genes of the anaerobic respiratory chain was not signifi-
cantly altered. The importance of this finding requires
further investigation.

B. pseudomallei utilizes alternative metabolites during
infection [35]. Our study suggests that B. pseudomallei
utilize aromatic carbon compounds such as benzoate
and PA as carbon sources for intracellular survival. PA
can inhibit the inducible nitric oxide synthase (iNOS)
and LPS-induced expression of cytokines in rat primary
astrocytes, microglia and macrophages [39]. Moreover,
PA can repress DNA binding and transcriptional activ-
ities of NFkB, an important upstream modulator for
cytokine and iNOS expression in macrophages [40]. The
up-regulation of PA catabolic pathway genes in intracel-
lular bacteria might partly explain why macrophages
infected with B. pseudomallei failed to activate the pro-
duction of iNOS [41]. The putative B. cenocepacia ring
PA-coenzyme A hydroxylation system was found to be
essential for full pathogenicity in infected Caenorhabdi-
tis elegans [42].

There are three T3SSs present in B. pseudomallei and
only T3SS-3 is involved in virulence [43]. B. pseudomal-
lei T3SS-3 shows high homology to the Inv/Mxi-Spa
type III secretion systems of Salmonella and Shigella
[13]. As T3SS-3 is known to be essential in facilitating
invasion and early phagosomal escape into the cytosol
[13,14], the down-regulation observed in our study is
consistent with this function as it would be conceivable
that T3SS-3 is important at the beginning of intracellu-
lar life during invasion, but not important at the later
stages of intracellular infection. Similarly, the role of
T6SS-1 is reported to be crucial during the transition
from phagosome to cytosol [15]. Thus, it is possible that
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the induction of T6SS-1 in this study plays a major func-
tion in ensuring pathogen survival and replication in the
cytosol. In B. mallei, a close related species of B. pseudo-
mallei, an effector protein of T6SS (BMAAO0742) was
recognized by glanders antiserum, indicating production
of this protein in vivo during infection [44]. In this
study, high induction of tssD-5 (BPSS1498), an effector
Hcpl protein of T6SS was observed throughout the in-
fection period. A recent study on B. pseudomallei T6SS
Hcp proteins has shown that zssD-5 deletion mutant was
attenuated in a hamster infection model, exhibited
growth defects and was only weakly cytotoxic to
RAW264.7 macrophages [45]. Additionally, human meli-
oidosis serum samples were found to react with Hcpl
protein, consistent with our observation (data not
shown). These results suggest that Hcpl is produced by
B. pseudomallei in vivo during infection, is immunogenic
and vital for intracellular survival of B. pseudomallei.
The genes bimA, fhaB and fhaC are known proteins
that mediate actin tail formation involved in cell-to-cell
spread. In this study, expression of these three genes is
up-regulated. The over expression of BimA has previ-
ously been shown in intracellular B. pseudomallei and
mutation of bimA abolished actin-based motility of this
pathogen in J774.2 cell [46]. In Bordetella pertussis, the
FhaC dependent filamentous hemagglutinin (FHA) facil-
itates attachment to the host cell during infection [47]
and initiates killing of macrophages to avoid the host cell
mediated immune response whilst infection is being
established [48]. Through a genome-wide function
screen of B. pseudomallei strain K96243, both fhaB and
fhaC were found to form part of the anti-macrophage
loci and contribute to the formation of dramatic actin
projections extending towards neighbouring cells [49].
Interestingly, in our study, well-characterized virulence
genes of B. pseudomallei such as capsular polysacchar-
ide, LPS and flagella were either repressed or not signifi-
cantly expressed. Similar profiles were noted in a
hamster model, wherein most of the genes encoding for
capsule, LPS and flagella biosynthesis were either down-
regulated or not significantly changed in expression [35].
This could be due to the equal expression of these genes
under in vivo and in vitro conditions concomitant with
previous evidence that capsule, LPS, flagellum and other
virulent determinants are constitutively produced
in vitro [35]. A recent report of a similar study on
macrophages infected by B. cenocepacia demonstrated
that this intracellular pathogen’s ability to adapt and re-
spond to the intracellular milieu was not dependent on
the expression of any specific virulence-associated fac-
tors [50]. Hence, this ability to adapt to various niches
appears to be conserved amongst the soil-derived Bur-
kholderia spp. clinical pathogens. Down regulation of
flagella genes and subsequently the absence of flagellin,
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may also reflect the bacteria’s attempt to limit immune
recognition especially by toll-like receptors by modulat-
ing surface structures. In Gram negative bacteria, flagel-
lin is recognized by TLR5 which triggers the secretion of
various cytokines and chemokines, leading to an inflam-
matory response [51]. By dampening the activation of
TLR5, the innate immune response towards B. pseudo-
mallei is reduced and bacterial clearance is prevented.
Consistent with our observations, B. pseudomallei iso-
lates failed to significantly increase TLR5 expression in
both cell culture [52] and BALB/c mice infection models
[53]. Nanagara et al. [54] also suggested that the sup-
pression of B. pseudomallei surface antigens in naturally
infected human synovial tissues aids in bacteria survival
against host immune responses and antibiotic treatment.

Intracellular bacteria are constantly exposed to a range
of stresses such as oxidative burst and formation of oxygen
radicals by the host cellular defence mechanisms. Several
in vitro studies designed to mimic the host environment
have identified the expression of the dspA [55] and ahpC-
katG [56] genes as necessary for survival and growth under
oxidative stress. Surprisingly, in our study, expression of
the majority of oxidative stress related genes was repressed
or not significantly altered. This observation suggests the
ability of B. pseudomallei to rapidly evade oxidative stress
by escaping from the phagosome [22]. This enables the
bacteria to enter the cytoplasm, a more favourable envir-
onment for survival and growth where nutrients are freely
available and microbicides do not operate [7].

Conclusions

This is the first report of a complete transcriptome pro-
file of intracellular B. pseudomallei within macrophages.
We have determined that B. pseudomallei adapts rapidly
to the intracellular environment through the regulation
of bacteria metabolism and growth rate and the possibil-
ity of host cell immune response avoidance through
shutdown of known virulence factors. Proteins encoded
by genes induced during infection including genes en-
coding the T6SS cluster are potential diagnostic candi-
dates or targets for anti-microbial development.

Methods

Bacterial strain and growth conditions

B. pseudomallei D286, a clinical isolate previously
described by Lee [57], was grown on Ashdown agar for
48 h or in Luria-Bertani (LB) broth overnight at 37 °C.
Prior to infection, overnight cultures were diluted to
1:50 in LB broth and grown to mid-logarithmic phase
(ODgpp =0.4-0.6) at 37 °C, 250 rpm for 3 h.

Cell culture and infection model
Human monocyte-like U937 cells (CRL-1593.2) were
maintained in RPMI1640 medium (Gibco) supplemented
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with 10 % fetal bovine serum (Hyclone), 2 mM L-
glutamine, 10 mM HEPES and 1 mM sodium pyruvate
(Invitrogen). For infection assays, 2 x 10° cells/well were
seeded in 12-well cell culture plates, while for RNA ex-
traction, approximately 3 x 10” cells/flask were seeded in
T175 flasks. U937 cells were supplemented with 10 ng/
ml phorbol myristate acetate (PMA) (Sigma) to induce
macrophage differentiation 48 h prior to infection [58].
Induced U937 cells were washed once with Hanks” Bal-
ance Salt Solution (Gibco) to remove traces of PMA be-
fore addition of bacteria at a multiplicity of infection of
10. After 2 h at 37 °C, extracellular bacteria were
removed by extensive washing with PBS. Fresh media
containing 250 pg/ml kanamycin was added to each
plate or flask and infected cells were incubated at 37 °C
until lysed.

Intracellular survival and eukaryotic cell viability
determination

Intracellular survival of B. pseudomallei in U937 was
estimated as previously described with some modifica-
tions [8]. At different time points following the initial
2 h infection with B. pseudomallei, infected macrophage
monolayers were washed three times with PBS and
intracellular B. pseudomallei were harvested by adding
500 pl of 1 % saponin in PBS to each well. After 5 min
incubation at 37 °C, cell lysates were collected and seri-
ally diluted 10-fold in PBS and aliquots were plated onto
Ashdown agar to assess viable bacterial counts.

To determine the overall viability of macrophage cells
following bacterial infection, trypan blue exclusion was
used. At selected time points after infection with bac-
teria, the monolayers were washed three times with PBS
and gently scrapped off from the wells. Trypan blue so-
lution was added to cell suspensions and stained infected
cells were visualized under an inverted microscope.
Assays were performed in triplicate and repeated at least
three times. The number of intact viable cells was
expressed as a percentage relative to viable uninfected
cells.

Transmission electron microscopy

Transmission electron microscopy for infected U937
cells was performed as previously described [22] with
some modifications. Briefly, cells were fixed for 24 h in
4 % glutaraldehyde at 4 °C and washed three times in
PBS. After a secondary fix for 2 h in 1 % osmium tetrox-
ide at 4 °C, the specimens were washed three times in
PBS. The specimens were then dehydrated in a graded
series of acetone/water containing 30 % to 100 % acet-
one. The specimens were infiltrated with acetone-resin
mixture, embedded into resin hard mix and left to
polymerize at 60 °C for 24 to 48 h. Ultrathin sections
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were stained with lead citrate and viewed on a Hitachi
H-7100 transmission electron microscope.

RNA extraction

At each time point (1, 2, 4 and 6 h post-infection),
macrophage monolayers were washed and infected
macrophages from three T175 flasks were combined and
lysed in 1 % saponin in PBS (sterile and filtered) for
5 min at 37 °C [25]. Lysates were collected and subjected
to differential centrifugation; first at 800 x g for 5 min to
sediment eukaryotic cells and cellular debris, and sec-
ondly at 8,000 x g for 10 min to pellet bacterial cells. Pel-
lets were immediately snap-frozen in liquid nitrogen and
kept at -80 °C until extraction. Bacterial RNA was pre-
pared using the Qiagen’s RNeasy Mini Kit and on-
column DNase I digestion was performed. Total RNA
obtained was further purified by ethanol/ammonium
acetate precipitation. Control RNA from in vitro grown
bacteria was obtained by diluting overnight cultures and
growing stationary at 37 °C to mid-logarithmic phase in
complete RPMI1640 medium under 5 % CO,. These
conditions mimicked those used for the cell infection
experiments. Control bacteria were treated similarly and
RNA was isolated as described above. Control U937
RNA was isolated using Trizol and purified with the
RNeasy Mini Kit. The concentration, quality and integ-
rity of all RNA isolated were analysed using the Nano-
drop® ND-1000 and Agilent 2100 Bioanalyser.

A preliminary control experiment demonstrated that
incubation in 1 % saponin for 5 min at 37 °C did not
affect the viability of B. pseudomallei (data not shown).
Additionally, when comparing the transcriptional profile
of B. pseudomallei before and after treatment with sap-
onin and differential centrifugation, we found that these
treatments caused no significant changes in bacterial
gene expression (data not shown), consistent with stud-
ies on other bacterial pathogens [24,59].

Construction of B. pseudomallei DNA microarrays

Microarray containing probes to the annotated ORFs of
the B. pseudomallei reference strain K96243 was
designed using Agilent’s eArray 5.0 web-based tool and
synthesized using Agilent’s 60-mer Sure Print technol-
ogy. Probes were filtered using a perfect match filter to
eliminate probes with identical sequences and a similar-
ity score filter to discard probes with significant similar-
ity to other parts of the target genome. Quality control
of the probes was also done based on their base compos-
ition (BC) score. BC score is a numerical value that
defines the quality of the probe based upon its base
composition and distribution, with BC_1 being the best
and BC_Poor the worst. Filtered probes with higher BC
scores, namely BC_1 and BC_2, were included in the
array, while probes with lower BC scores, such as BC_3
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and BC_4, were excluded. A total of 5,721 probe
sequences passed the filtering and quality control criteria
and were replicated and randomly distributed in a
microarray of 15,000 probes to fit Agilent 8x15 K
microarray format. In summary, the B. pseudomallei
8x15 K microarrays (GEO reference GPL13233)
allowed for the analysis of 5,721 non-cross-hybridizing
OREFs of B. pseudomallei K96243.

Sample labelling and hybridization

Prior to labelling, bacterial RNA was polyadenylated and
reverse transcribed. Polyadenylation of bacterial RNA
was based on the PAP method using A-plusPoly(A)
Polymerase Tailing kit (Epicentre). Poly-a tailing was car-
ried out to provide a priming site for the synthesis of
first strand cDNA. Polyadenylation was terminated by
ethanol/ammonium acetate precipitation. cDNA synthe-
sis, labelling and hybridization were done according to
the Agilent one-colour microarray protocols (available at
http://www.chem.agilent.com/Library/usermanuals/Pub-
lic/G4140-90040_GeneExpression_One-color_v6.5.pdf).
Washes were also conducted according to standard Agi-
lent protocols. An additional wash with acetonitrile was
conducted to completely dry the arrays. Arrays were
scanned with the Agilent Technologies Scanner model
G2505B. Spot intensities and other quality control fea-
tures were extracted with Agilent’s Feature Extraction
Software version 9.5.3.1. In this study, 3 independent
hybridizations using RNA samples isolated from 3 separ-
ate assays (biological replicates) were performed for each
incubation time point and control bacteria.

Data analysis

Microarray quality was assessed through the use of Agi-
lent’s control features and only arrays that passed the
recommended criteria were included in the analysis.
Processed signals obtained from Feature Extraction were
used as signal intensities for analysis. The data was fil-
tered using a signal to noise ratio criteria and only fea-
tures for which the background-subtracted signal was
2.6 times above the background standard deviation for
that feature in at least 13 of the 15 arrays, were retained.
A total of 5,391 genes passed the filtering process.
Arrays were median normalized with BRB-ArrayTools
(http://linus.nci.nih.gov) to adjust the scale of intensities
across samples and arrays. Filtered and normalized data
were subjected to Significance Analysis of Microarray
(SAM) analysis in which a two class unpaired analysis
was performed and genes with a false discovery rate
(FDR) < 0.01 and fold change >2 were defined as signifi-
cantly differentially expressed. Hierarchical clustering
analysis with Euclidean correlation was performed using
TIGR-MeV software version 4.3.2 (www.tigr.org). Func-
tional classifications were carried out based on
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Table 3 List of oligonucleotides used in real-time qPCR experiments

Gene Primer name Nucleotide sequence (5'- 3')
cydB cydB_F cydB_R GATCCGAAGAGCAGCC
CAGCCCGTGTAGAGCAG
BPSS0142 BPSS0142_F ACCGATAACCTGTTCCG
BPSS0142_R CGTAGATTTCCGCCATC
BPSS1498 BPSS1498_F TCAAGGTCAAAGGAAAAAC
BPSS1498_R AAGGCGAGGATGTGGAT
BPSS1728 BPSS1728_F AGAGCCGCCAAGATCAA
BPSS1728_R GCCGAGACCCGAGTTAT
atpB atpB_F atpB_R GTGGCTTTAACGATATGGC
TGATGCGAGGTGGAGAA
fliC fliC_F fliC_R CAGACGAACTACAACGGC
ATGCTTTGCGTGAGGTC
BPSS1835 BPSS1835_F BPSS1835_R CGTGAAGAAAATCGTCG GAGTCGTAATGTCCCCAC

Comprehensive Microbial Resources (CMR) annotations
(www.cmr.jevi.org). Gene function enrichment analysis
was performed on the DAVID 6.7 database (http://david.
abcc.ncifcrf.gov/home.jsp) [60] using a Fisher Exact test
with Benjamini and Hochberg multiple testing correc-
tion (p <0.05). All microarray results have been depos-
ited in the GEO database (http://www.ncbinlm.nih.gov/
geo/) with the GEO series accession number GSE27558.

Real-time quantitative PCR

Total RNA was treated with DNase I (Invitrogen) to re-
move any traces of DNA and converted to cDNA using
Superscript III (Invitrogen) with random hexamers,
according to the manufacturer’s instructions. Real-time
quantitative PCR was performed on 10 ng cDNA in a final
volume of 20 pl in a SDS7500 with Power Sybr Green
PCR Master Mix (Applied Biosystems). All experiments
were conducted three times, which yielded 9 measure-
ments per gene (representing 3 technical replicates of 3
biological replicates) and the relative expression ratios
were calculated using REST-MCS [61]. The gene coding
for cytochrome d ubiquinol oxidase subunit II, cydB, was
used as the reference gene for normalization. CydB was
chosen as the reference gene because it did not show any
significant changes in expression in the microarray experi-
ment. Primers are described in Table 3. The correlation
between expression ratios obtained from the microarray
and real-time qPCR was evaluated with Pearson correl-
ation (Microsoft Office Excel).

Additional file

Additional file 1: List of 1259 common down-regulated genes of B.
pseudomallei during intracellular growth in host macrophages
relative to in vitro growth.

Competing interests
The authors declare that they have no competing interests

Authors’ contributions

SC contributed to the design of the study, performed all the experiments
and data analysis and wrote the manuscript. LC contributed to the
microarray interpretation and analysis and helped in performing real-time
quantitative PCR. SN conceived and coordinated the study, contributed to
the experimental design and wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements

This project was funded by the Ministry of Science, Technology and
Innovation of Malaysia under the R&D Initiatives Grant Program awarded to
S.N. We are grateful to the RNA Biology Laboratory and the Microarray
Facility of the University of Aveiro for assistance in microarray data analysis,
and to the Electron Microscopy Unit of Universiti Kebangsaan Malaysia and
Universiti Putra Malaysia for assistance in electron microscopy.

Author details

'School of Biosciences and Biotechnology, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia. “CESAM
and Departamento de Biologia, Universidade de Aveiro, Campus de
Santiago, Aveiro 3810-193, Portugal.

Received: 18 October 2011 Accepted: 23 July 2012
Published: 23 July 2012

References

1. White NJ: Melioidosis. Lancet 2003, 361:1715-1722.

2. Brett PJ, Woods DE: Pathogenesis of and immunity to melioidosis. Acta
Trop 2000, 74:201-210.

3. Cheng AC, Currie BJ: Melioidosis: epidemiology, pathophysiology, and
management. ClinMicrobiol Rev 2005, 18(2):383-416.

4. Currie BJ, Fisher DA, Anstey NM, Jacups SP: Melioidosis: acute and chronic
disease, relapse and re-activation. Trans R Soc Trop Med Hyg 2000,
94:301-304.

5. Jenney AW, Lum G, Fisher DA, Currie BJ: Antibiotic susceptibility of
Burkholderia pseudomallei from tropical northern Australia and
implications for therapy of melioidosis. Int J Antimicrob Agents 2001, 17
(2):109-113.

Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ: Melioidosis:
insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev
Microbiol 2006, 4(4):272-282.


http://www.cmr.jcvi.org
http://david.abcc.ncifcrf.gov/home.jsp
http://david.abcc.ncifcrf.gov/home.jsp
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.biomedcentral.com/content/supplementary/1471-2164-13-328-S1.xls

Chieng et al. BMIC Genomics 2012, 13:328
http://www.biomedcentral.com/1471-2164/13/328

20.

21.

22.

23.

24.

25.

Harley VS, Dance DAB, Tovey G, McCrossan MV, Drasar BS: An
ultrastructural study of the phagocytosis of Burkholderia pseudomallei.
Microbios 1998, 94:35-45.

Jones AL, Beveridge TJ, Woods DE: Intracellular survival of Burkholderia
pseudomallei. Infect Immun 1996, 64(3):782-790.

Inglis TJJ, Rigby P, Robertson TA, Dutton NS, Henderson M, Chang BJ:
Interaction between Burkholderia pseudomallei and Acanthamoeba
species results in coiling phagocytosis, endamebic bacterial survival, and
escape. Infect Immun 2000, 68(3):1681-1686.

Stevens MP, Friebel A, Taylor LA, Wood MW, Brown PJ, Hardt WD, Galyov
EE: A Burkholderia pseudomallei type Ill secreted protein, BopE, facilitates
bacterial invasion of epithelial cells and exhibits guanine nucleotide
exchange factor activity. J Bacteriol 2003, 185(16):4992-4996.
Kespichayawattana W, Rattanachetkul S, Wanun T, Utaisincharoen P,
Sirisinha S: Burkholderia pseudomallei induces cell fusion and actin-
associated membrane protrusion: a possible mechanism for cell-to-cell
spreading. Infect Immun 2000, 68(9):5377-5384.

Stevens MP, Galyov EE: Exploitation of host cells by Burkholderia
pseudomallei. Int J Med Microbiol 2004, 293:549-555.

Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P, Jones PW, Wallis
TS, Gaylov EE: An Inv/Mxi-Spa like type Ill protein secretion system in
Burkholderia pseudomallei modulates intracellular behaviour of the
pathogen. Mol Microbiol 2002, 46(9):649-659.

Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S,
Lertmemongkolchai G, Bancroft GJ, Korbsrisate S: Multinucleated giant cell
formation and apoptosis in infected host cells is mediated by
Burkholderia pseudomallei type Ill secretion protein BipB. J Bacteriol 2005,
187(18):6556-6560.

Chen Y, Wong J, Sun GW, Liu Y, Tan GG, Gan Y: Regulation of type VI
secretion system during Burkholderia pseudomallei infection. Infect Immun
2011, 79(8):3064-3073.

Ma AT, McAuley S, Pukatzki S, Mekalanos JJ: Translocation of a Vibrio
cholerae type VI secretion effector requires bacterial endocytosis by host
cells. Cell Host Microbe 2009, 5(3):234-243.

Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL,
Joachimiak G, Ordofez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ: A
virulence locus of Pseudomonas aeruginosa encodes a protein secretion
apparatus. Science 2006, 312:1526-1530.

Shalom G, Shaw JG, Thomas MS: In vivo expression technology identifies a
type VI secretion system locus in Burkholderia pseudomallei that is induced
upon invasion of macrophages. Microbiology 2007, 153:2689-2699.

Pilatz S, Breitbach K, Hein N, Fehlhaber B, Schulze J, Brenneke B, Eberl L,
Steinmetz I: Identification of Burkholderia pseudomallei genes required for
the intracellular life cycle and in vivo virulence. Infect Immun 2006, 74
(6):3576-3586.

Holden MTG, Titball RW, Peacock SJ, Cerdefo-Tarraga AM, Atkins T,
Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M,
Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis
GL, Cherevach |, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D,
Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE,
Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K,
Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest
M, Whitehead S, Yeats C, Barrell BG, Oyston PCF, Parkhill J: Genomic
plasticity of the causative agent of melioidosis, Burkholderia
pseudomallei. Proc Natl Acad Sci USA 2004, 101(39):14240-14245.

Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH: Caspase-1 dependent
macrophage death induced by Burkholderia pseudomallei. Cell Microbiol
2005, 7(10):1447-1458.

Harley VS, Dance DAB, Drasar BS, Tovey G: Effects of Burkholderia
pseudomallei and other Burkholderia species on eukaryotic cells in tissue
culture. Microbios 1998, 96:71-93.

Waddell SJ, Burcher PD, Stoker NG: RNA profiling in host-pathogen
interactions. Curr Opin Microbiol 2007, 10:297-302.

Du Y, Lenz J, Arvidson CG: Global gene expression and the role of sigma
factors in Neisseria gonorrhoeae in interactions with epithelial cells. Infect
Immun 2005, 73(8):4834-4845.

Grifantini R, Bartolini E, Muzzi A, Draghi M, Fringimelica E, Berger J, Ratti G,
Petracca R, Galli G, Agnusdei M, Giuliani MM, Santini L, Brunelli B, Tettelin H,
Rappuoli R, Randazzo F, Grandi G: Previously unrecognised vaccine
candidates against group B meningococcus identified by DNA
microarrays. Nat Biotechnol 2002, 20:914-921.

26.

27.

28.

29.

30.

32.

33.

34.

35.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Page 12 of 13

Trijbels F, Vogels GD: Allantoicase and ureidoglycolase in Pseudomonas
and Penicillium species. BiochimBipphysActa 1966, 118(2):387-395.

Sun GW, Chen Y, Liu Y, Tan GYG, Ong C, Tan P, Gan YH: Identification of a
regulatory cascade controlling type Ill secretion system 3 gene
expression in Burkholderia pseudomallei. Mol Microbiol 2010,
76(3).677-689.

Subsin B, Thomas MS, Katzenmeier G, Shaw JG, Tungpradabkul S, Kunakorn
M: Role of the stationary growth phase sigma factor RpoS of
Burkholderia pseudomallei in response to physiological stress conditions.
J Bacteriol 2003, 185(23):7008-7014.

Jangiam W, Loprasert S, Tungpradabkul S: Role of Burkholderia
pseudomallei RpoS in regulation of catalase activities under hydrogen
peroxide induction. Science Asia 2008, 34(1):23-29.

Dorman CJ: DNA supercoiling and environmental regulation of gene
expression in pathogenic bacteria. Infect Immun 1991, 59(3):745-749.
Drlica K: Control of bacterial DNA supercoiling. Mol Microbiol 1992, 6
(4):425-433.

Schneider R, Travers A: The expression of the Escherichia coli fis gene is
strongly dependent on the superhelical density of DNA. Mol Microbiol
2000, 38(1):167-175.

Rothfield LI, Shih YL, King G: Polar explorers: membrane proteins that
determine division site placement. Cell 2001, 106(1):13-16.

Wand ME, Muller CM, Titball RW, Michell SL: Macrophage and Galleria
mellonela infection models reflect the virulence of naturally occurring
isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC
Microbiol 2011, 11:11.

Tuanyok A, Tom M, Dunbar J, Woods DE: Genome-wide expression
analysis of Burkholderia pseudomallei infection in a hamster model of
acute melioidosis. Infect Immun 2006, 74(10):5465-5476.

Boyce JD, Wilkie |, Harper M, Paustian ML, Kapur V, Adler B: Genomic scale
analysis of Pasteurella multocida gene expression during growth within
natural chicken host. Infect Immun 2002, 70(12):6871-6879.

Lucchini S, Liu H, Jin Q, Hinton JCD, Yu J: Transcriptional adaptation of
Shigella flexneri during infection of macrophages and epithelial cells:
insights into the strategies of a cytosolic bacterial pathogen. Infect
Immun 2005, 73(1):88-102.

Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S,
Domann E, Chakraborty T, Hain T: Intracellular gene expression profile of
Listeria monocytogenes. Infect Immun 2006, 74(2):1323-1338.

Pahan K, Sheikh FG, Namboodiri AM, Singh I: Lovastatin and phenyl
acetate inhibit the induction of nitric oxide synthase and cytokines in rat
primary astrocytes, microglia, and macrophages. J Clin Investig 1997,
100:2671-2679.

Park JS, Lee EJ, Lee JC, Kim WK, Kim HS: Anti-inflammatory effects of short
chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine
macrophage cells: involvement of NF-kappaB and ERK signaling
pathways. Int Immunopharmacol 2007, 7:70-77.

Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, Chaisuriya
P, Sirisinha S: Burkholderia pseudomallei interferes with inducible nitric
oxide synthase (iNOS) production: a possible mechanism of evading
macrophage killing. Microbiol Immunol 2001, 45(4):307-313.

Law RJ, Hamlin JNR, Sivro A, McCorrister SJ, Cardama GA, Cardona ST: A
functional phenylacetic acid catabolic pathway is required for full
pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans
host model. J Bacteriol 2008, 190(21):7209-7218.

Warawa J, Woods DE: Type Il secretion system cluster 3 is required for
maximum virulence of Burkholderia pseudomallei in a hamster infection
model. FEMS Microbiol Lett 2005, 242:101-108.

Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D,
Lipscomb L, Kim HS, Mrézek J, Nierman WC, Deshazer D: Type VI secretion
is a major virulence determinant in Burkholderia mallei. Mol Microbiol
2007, 64(6):1466-1485.

Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N,
Scorpio A, Milne TS, Dean RE, Fritz DL, Peacock SJ, Prior JL, Atkins TP,
DeShazer D: The cluster 1 type VI secretion system is a major virulence
determinant in Burkholderia pseudomallei. Infect Immun 2011,
79(4):1512-1525.

Stevens MP, Stevens JM, Jeng RL, Taylor LA, Wood MW, Hawes P,
Monaghan P, Welch MD, Galyov EE: Identification of a bacterial factor
required for actin-based motilityof Burkholderia pseudomallei. Mol
Microbiol 2005, 56(1):40-53.



Chieng et al. BMC Genomics 2012, 13:328 Page 13 of 13
http://www.biomedcentral.com/1471-2164/13/328

47.  Jacob-Dubuisson F, Buisine C, Mielcarek N, Clément E, Menozzi FD, Locht C:
Amino-terminal maturation of the Bordetella pertussis filamentous
hemagglutinin. Mol Microbiol 1996, 19(1):65-78.

48. Abramson T, Kedem H, Relman DA: Proinflammatory and proapoptotic
activities associated with Bordetella pertussis filamentous hemagglutinin.
Infect Immun 2001, 69(4):2650-2658.

49.  Dowling AJ, Wilkinson PA, Holden MT, Quail MA, Bentley SD, Reger J,
Waterfield NR, Titball RW, Ffrench-Constant RH: Genome-wide analysis
reveals loci encoding anti-macrophage factors in the human pathogen
Burkholderia pseudomallei K96243. PLoS One 2011, 5(12):215693.

50.  Tolman JS, Valvano MA: Global changes in gene expression by the
opportunistic pathogen Burkholderia cenocepacia in response to
internalization by murine macrophages. BMC Genomics 2012, 13:63.

51. Hayashi F, Smith KD, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill
DM, Aderem A: The innate immune response to bacterial flagellin is
mediated by Toll-like receptor 5. Nature 2001, 410:1099-1103.

52. Feterl M, Govan BL, Ketheesan N: The effect of different Burkholderia
pseudomallei isolates of varying levels of virulence on toll-like-receptor
expression. Trans R Soc Trop Med Hyg 2008, 102(Suppl 1):582-588.

53.  Chin CY, Monack DM, Nathan S: Genome wide transcriptome profiling of
a murine acute melioidosis model reveals new insights into how
Burkholderia pseudomallei overcomes host innate immunity. BMC
Genomics 2010, 11:672.

54. Nanagara R, Vipulakorn K, Suwannaroj S, Schumacher HRJ: Atypical
morphological characteristics and surface antigen expression of
Burkholderia pseudomallei in naturally infected human synovial tissues.
Mod Rheumatol 2000, 10:129-136.

55.  Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S: DpsA protects the
human pathogen Burkholderia pseudomallei against organic
hydroperoxide. Arch Microbiol 2004, 182(1):96-101.

56. Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S: Compensatory
increase in ahpC gene expression and its role in protecting Burkholderia
pseudomallei against reactive nitrogen intermediates. Arch Microbiol 2003,
180(6):498-502.

57. Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, Nathan S:
Burkholderia pseudomallei animal and human isolates from Malaysia
exhibit different phenotypic characteristics. Diagn Microbiol Infect Dis
2007, 58(3):263-270.

58.  Abu Kwaik Y, Eisenstein Bl, Engleberg NC: Phenotypic modulation by
Legionella pneumophila upon infection of macrophages. Infect Immun
1993, 61(4):1320-1329.

59. Bergman NH, Anderson EC, Swenson EE, Janes BK, Fisher N, Niemeyer MM,
Miyoshi AD, Hanna PC: Transcriptional profiling of Bacillus anthracis
during infection of host macrophages. Infect Immun 2007,
75(7):3434-3444.

60. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: database for annotation, visualization, and integrated discovery.
Genome Biol 2003, 4(5):P3.

61. Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool
(RESTO) for group-wise comparison and statistical analysis of relative
expression results in real-time PCR. Nucleic Acids Res 2002, 30(9):e36.

doi:10.1186/1471-2164-13-328
Cite this article as: Chieng et al.: Burkholderia pseudomallei
transcriptional adaptation in macrophages. BMC Genomics 2012 13:328.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Infection model and bacterial RNA isolation

	link_Fig1
	link_Fig2
	The global gene expression profile

	link_Fig3
	Intracellular metabolism and ion transport

	link_Fig4
	link_Fig5
	link_Fig6
	link_Tab1
	Expression of virulence and &b_k;virulence-&e_k;&b_k;associated&e_k; factors

	link_Tab2
	link_Fig7
	Stress responses genes
	DNA topology and growth arrest within macrophages

	Discussion
	link_Fig8
	Conclusions
	Methods
	Bacterial strain and growth conditions
	Cell culture and infection model
	Intracellular survival and eukaryotic cell viability determination
	Transmission electron microscopy
	RNA extraction
	Construction of B. pseudomallei DNA microarrays
	Sample labelling and hybridization
	Data analysis
	Real-time quantitative PCR

	Additional file
	Competing interests
	Authors´ contributions
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_Tab3
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61

