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Abstract

Background: Genotyping requires biological sample collection that must be reliable, convenient and acceptable
for patients and clinicians. Finding the most optimal procedure of sample collection for premature neonates who
have a very limited blood volume is a particular challenge. The aim of the current study was to evaluate the use of
umbilical cord (UC) tissue and newborn dried blood spot (DBS)-extracted genomic DNA (gDNA) as an alternative to
venous blood-derived gDNA from premature neonates for molecular genetic analysis.
All samples were obtained from premature newborn infants between 24-32 weeks of gestation. Paired blood and
UC samples were collected from 31 study participants. gDNA was extracted from ethylenediaminetetraacetic acid
(EDTA) anticoagulant-treated blood samples (~500 μl) and newborn DBSs (n = 723) using QIAamp DNA Micro kit
(Qiagen Ltd., Crawley, UK); and from UC using Qiagen DNAeasy Blood and Tissue kit (Qiagen Ltd., Crawley, UK).
gDNA was quantified and purity confirmed by measuring the A260:A280 ratio. PCR amplification and pyrosequencing
was carried out to determine suitability of the gDNA for molecular genetic analysis. Minor allele frequency of two
unrelated single nucleotide polymorphisms (SNPs) was calculated using the entire cohort.

Results: Both whole blood samples and UC tissue provided good quality and yield of gDNA, which was
considerably less from newborn DBS. The gDNA purity was also reduced after 3 years of storage of the newborn
DBS. PCR amplification of three unrelated genes resulted in clear products in all whole blood and UC samples and
86%-100% of newborn DBS. Genotyping using pyrosequencing showed 100% concordance in the paired UC and
whole blood samples. Minor allele frequencies of the two SNPs indicated that no maternal gDNA contamination
occurred in the genotyping of the UC samples.

Conclusions: gDNAs from all three sources are suitable for standard PCR and pyrosequencing assays. Given that UC
provide good quality and quantity gDNA with 100% concordance in the genetic analysis with whole blood, it can
replace blood sampling from premature infants. This is likely to reduce the stress and potential side effects
associated with invasive sample collection and thus, greatly facilitate participant recruitment for genetic studies.
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Background
The reliability and performance of the molecular assays
such as polymerase chain reaction (PCR) and pyro-
sequencing are strongly influenced by the quality and
quantity of the starting template. The availability of high
quality gDNA from a large number of well characterised
patients and healthy controls is a prerequisite for the suc-
cess of genetic variation studies. Conventionally, gDNA
for use in clinical epidemiological studies is obtained from
peripheral blood samples because it provides high quality
and a good yield of gDNA [1-4]. However, obtaining per-
ipheral blood is invasive and unsuitable for certain cohorts
such as very low birthweight preterm infants because they
have a small circulating blood volume (~85 ml/kg); [5-7]
and it is not considered to be ethical to sample more than
1 ml for research purposes. Recalling these infants at a
later stage when suitable amount of whole blood can be
collected is problematic because the neonatal mortality
rate in the very low birthweight cohort is significant, par-
ticularly in the high risk preterm group [8].
An alternate source of gDNA, which is now used fre-

quently in molecular genetic studies, is newborn dried
blood spots (DBS) [9-13]. The blood is usually collected by
a heel-prick and applied on special filter paper, a conveni-
ent medium for transport and storage [14]. These newborn
DBS are used for neonatal metabolic screening and then
stored in repositories for follow-up testing and public
health research [15-18]. Using newborn DBS would be an
ideal replacement for the use of fresh human tissue for
gDNA extraction, as it is routinely carried out at birth
eliminating the need for additional needle pricks for sample
collection and for specialist storage conditions. The draw-
back of using newborn DBS for genetic analysis is the min-
iscule amount of blood available. The amount of gDNA
that can be extracted from a 3.2 mm punch of a newborn
DBS is about 60 ng [19]. In reality, only about one to max-
imum three 3.2 mm punches are available for academic
research purposes, which is not sufficient for large scale
single nucleotide polymorphisms (SNP) detection studies.
This problem can be overcome by using umbilical

cord blood, aspirated from the placenta after birth, for
gDNA preparation. The practice of delayed cord clamp-
ing is advantageous to the preterm infant [20-22], facili-
tating an autotransfusion from the placenta. However,
this means that the volume of infant blood remaining in
the cut umbilical cord and placenta is significantly re-
duced. Cord blood is frequently required for clinical in-
dications, such as blood group haemoglobin and serum
bilirubin analysis, taking priority over research samples.
When cord blood is aspirated, there is also a potential
risk of contamination by maternal blood [23]. However,
umbilical cord tissue which would usually be discarded
as clinical waste following birth [24] can be collected
easily and potentially used for gDNA extraction [25].
In this study we compared three different sources for
gDNA extraction from very premature babies where a
large volume of whole blood or umbilical cord blood is
not available. The suitability of newborn DBS and umbil-
ical cord tissue for PCR and pyrosequencing was investi-
gated and the concordance of paired umbilical cord
tissue gDNA and whole blood from the same individual
was assessed. Our study showed that umbilical cord tis-
sue can effectively be used for genetic analysis of prema-
ture babies.

Methods
Sample collection and processing
Blood, newborn DBS and umbilical cord tissue were col-
lected from a subset of patients participating in an asso-
ciation study to investigate the genetic background of
premature infants to white matter brain injury. The
study received ethical approval in April 2008 from the
National Research Ethics Service, UK (REC reference
number 10/H0106/10). For the use of whole blood and
umbilical cord written informed consent was obtained
from the parents of eligible infants participating in the
study. Similarly, informed written consent was obtained
from healthy adult volunteers for the use of whole blood
samples. The archived newborn blood spot samples used
for the study were fully anonymised according to the
Human Tissue Act and MRC Guidance and used for re-
search without individual informed consent as permitted
by the UK newborn screening programme Code of Prac-
tice for the retention and Storage of Residual Spots
(April 2005, ISBN 0955013801).

Blood samples
Whole blood samples (~500 μl) were obtained from pre-
term infants between 24-32 week gestation during the
first week of life when stable on intensive care. Samples
were collected in K2-EDTA tubes, mixed by inversion
8-10 times after being drawn and stored at 4°C for up to
a month prior to gDNA isolation.

Dried blood spots (DBS)
Newborn DBS were collected from heel prick blood sam-
pling on blood spot screening cards prepared routinely
within 5-8 days of birth as part of the UK Newborn
Screening Programme [http://newbornbloodspot.screen-
ing.nhs.uk]. Samples, collected from infants 24-32 weeks
gestation within the past 3-22 years, were used in the
study. The newborn DBS samples from the participants
that were stored in the biobank were 3-5 years old (n =
25); 6-10 years old (n = 25); 11-15 years old (n = 20); and
16-22 years old (n = 30). Newborn DBS obtained within
the last three years were not available for analysis because
these samples might need to be recalled by the pathology
laboratories for further tests for up to 3 years after birth.

http://newbornbloodspot.screening.nhs.uk
http://newbornbloodspot.screening.nhs.uk
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All blood spot screening cards were stored in boxes at
room temperature. To compare yields and quality from
more recently prepared dried blood spots, 25 μl of whole
blood from volunteer adults was spotted onto a blood spot
screening card, air dried and stored at room temperature
for a period of one month (n = 20).

Umbilical cord tissue
A 5-10 cm long segment collected from the mid portion
of each cord was obtained immediately following deliv-
ery, washed in sterile water and stored in sterile 30 ml
specimen containers at−20°C until required for DNA
isolation (Figure 1).

DNA isolation
DNA from 100 μl of whole blood and all newborn DBS was
isolated using the QIAamp DNA Micro Kit (QIAGEN Ltd.,
Crawley, UK) following manufacturer’s guidelines. For new-
born DBS, one to three 3.2 mm disks were punched from
each card for DNA extraction. Umbilical cord DNA was ex-
tracted from the inner layer of the cord tissue including the
Wharton’s jelly and blood vessels (0.5 g wet tissue) using
the DNeasy Blood & Tissue Kit (QIAGEN Ltd., Crawley,
Figure 1 Isolation of Umbilical cord tissue for DNA extraction. (A) A s
a maternal sheath, b Wharton’s jelly; c umbilical vein; d allantoic duct; e um
i) Cord tissue was cut across as indicated with the white line. ii) Cross-secti
indicated with the white line. iii) The internal Wharton’s jelly with umbilical
UK) according to the manufacturer’s instructions. Umbilical
cords were thawed for 5 min at room temperature (~20°C),
and during the thawing whilst semi frozen, the outer layer
(Figure 1A&B) was removed with a sterile scalpel. This was
done to prevent cross-contamination of the infant genomic
DNA with maternal or other external DNA due to handling
following birth. 0.5 g of the inner layer of the cord tissue in-
cluding the Wharton’s jelly and blood vessels were used for
DNA extraction (Figure 1A&B). DNA was stored at −20°C
until analysis. The key steps of the DNA isolation protocols
are summarised in Table 1.

gDNA quantification
DNA concentration was measured at 260 nm against
nuclease free water using a NanoDrop ND-1000 (Lab-
tech International Ltd, Ringmer East Sussex, UK). The
purity of gDNA was determined by measuring the 260-
280 nm absorbance ratio (A260:A280; Table 2). Optimal
purity is expected to be in the range of 1.7-2.0.

gDNA quality assessment by gel electrophoresis
The integrity of the gDNA samples were assessed by ana-
lysing the samples (10-50 ng) for evidence of degradation
chematic structure of the umbilical cord (cross sectional view).
bilical arteries. (B) Umbilical cord preparation for gDNA extraction.
on of the umbilical cord. The outer maternal sheath was removed as
vein and arteries was used for gDNA extraction.



Table 1 Comparison of the key steps of gDNA extraction protocols from the three different starting materials

DNA isolation step Starting material

3.2 mm DBS 100 μl WB 0.5 g UC

1. DNA binding column Silica-based Silica-based Silica-based

2. Use of carrier RNA* Yes Yes No

3. Duration of lysis step 1 h 1 h ~12 h

4. Elution volume 60 μl 100 μl 1 ml

5. Solution used for elution Nuclease free water Nuclease free water Nuclease free water

*Carrier RNA was added into the lysis buffer at manufacturer’s recommended concentrations (DBS: 0.01 μg/μl and WB: 0.005 μg/μl). DBS–dried blood spots;
WB–whole blood; UC–umbilical cord.
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using agarose gel electrophoresis. Genomic DNA samples
were run on an agarose gel (0.75% agarose) containing
0.5 μg/ml ethidium bromide alongside a DNA ladder,
lamda-HindIII (Thermoscientific, Massachusetts, USA)
for 90 min. Samples were visualised under ultraviolet
light (Gel Doc 1000, Bio Rad Laboratories Ltd, Hemel
Hempstead, UK). The size of the gDNA was determined
by comparison with the DNA ladder. Appropriate qual-
ity gDNA is expected to migrate predominantly above10
kb on agarose gels.
Assessment of genomic DNA by PCR amplification
To evaluate the gDNA quality, PCR amplification was per-
formed first on two randomly selected samples from each
group of DNA source and from each storage length, using
primers for human β-actin (GeneBank accession number
X00351) a house-keeping gene with the following primers
5′-TGCCCATCTACGAGGGGTATG-3′ and 5′-GAAAT
CGTGCGTGACATTAAGGAG-3′. To compare amplifi-
cation rates for gDNA extracted from different sources
(whole blood (n = 31), umbilical cord (n = 31) and newborn
DBS (n = 723)), amplification was also carried out flanking
two unrelated SNPs: rs1835740 [26] and rs4354668 [27].
All PCR assays were carried out for 35 cycles in a total vol-
ume of 25 μl, containing 1× high fidelity reaction buffer -
(100 mM Tris–HCl, 500 mM KCl pH 8.3), 1 mM of
MgCl2, 200 μM of each dNTP, 100 pmol of each oligo-
nucleotide primer, 1 unit of high fidelity Taq Polymerase
(FastStart High Fidelity Taq Polymerase, Roche Diagnostics
Limited, West Sussex, UK) and 2 μl (~1-30 ng) of gDNA.
Table 2 gDNA concentration measured at 260 nm

Sample DBS

Storage duration 1 month
n = 20

3-5 years
n = 25

6-10 years
n = 25

11-15 ye
n = 15

ng/μl 9.2 ± 1.5 6.2 ± 8.7 11.4 ± 6.9 7.9 ± 2

Total DNA (μg) 0.55 0.37 0.68 0.48

A260:A280 1.7 2.0 2.2 2.5

p < 0.01 WB vs UC, p < 0.001 DBS (3-22 years average) vs UC total DNA.
Assessment of the fidelity of gDNA obtained from
umbilical cords
To assess the fidelity of the gDNA obtained from umbil-
ical cords, two single nucleotide polymorphisms (SNPs)
rs1835740 [26] and rs4354668 [27] were genotyped by
pyrosequencing (Qiagen Ltd., Crawley, UK) using paired
gDNA isolated from both whole blood and umbilical
cords from the same individual (n = 31).

Pyrosequencing
Single-stranded biotinylated PCR products were pre-
pared for the pyrosequencing reaction using a Vacuum
Prep Tool (Qiagen Ltd., Crawley, UK). The biotinylated
PCR products were immobilised onto high performance
streptavidin sepharose beads (Streptavidin Sepharose™
HP, GE Healthcare, Chalfont St Giles, Buckinghamshire,
UK). For a single sample, 3 μl of streptavidin sepharose
were added to 40 μl binding buffer (10 mM Tris–HCl,
2 M NaCl, 1 mM EDTA, 0.1% TweenTM 20, pH 7.6;
Qiagen Ltd., Crawley, UK) and mixed with 20 μl PCR
product and 17 μl deionised water on a mechanical
shaker for 5 min at room temperature (~20°C) in a 96-
well plate. The beads containing the immobilised tem-
plates were isolated by filter probes using vacuum and
then washed with 70% ethanol, denaturizing solution
(0.2 M NaOH; Qiagen Ltd., Crawley, UK) and then
washing buffer (10 mM Tris-acetate pH 7.6; Qiagen
Ltd., Crawley, UK) for 5 s each. Beads were released into
a PSQTM 96 well plate (Qiagen Ltd., Crawley, UK) con-
taining 38.4 μl annealing buffer (20 mM Tris-acetate,
5 mM magnesium acetate, pH 7.6; Qiagen Ltd., Crawley,
DBS average WB UC

ars 15-22 years
n = 30

3-22 years
n = 95

(<1 month)
n = 31

(<1 month)
n = 31

7.6 ± 4.2 8.3 ± 10.7 40.3 ± 10.9 117.3 ± 112.9

0.46 0.49 4.03 70.4

2.4 2.3 1.8 1.9
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UK) and 1.6 μl of the sequencing primer, rs1835740-
PyroSeq (0.4 μM final concentration). Annealing was
achieved by heating the samples to 80°C for 5 min
followed by cooling to room temperature (~20°C). Pyro-
sequencing reactions were performed on the PyroMark™
Q96 ID (Qiagen Ltd., Crawley, UK) according to the
manufacturer’s instructions using the PSQTM 96 SNP
Reagent Kit (Qiagen Ltd., Crawley, UK; Table 3) and the
genotype was determined using PyroMark™ ID program
(Qiagen Ltd., Crawley, UK).

DNA sequencing
Genotypes from pyrosequencing were confirmed by Sanger
sequencing (using ABI 3730xl 96 capillary DNA Analyzers)
at Eurofins MWG Operon (Ebesberg, Germany). Ten
samples were randomly selected for sequencing and PCR
products were purified using Wizard® SV Gel and PCR
Clean-Up System (Promega, Southampton, UK) following
the manufacturer’s instructions.

Statistical analysis
Basic statistical data (mean, standard deviation, standard
error) were derived using MS Excel. Statistical analysis
was carried out using a standard student’s t-test in
Microsoft Excel™.

Results
Assessment of gDNA quantity and quality
Genomic DNA concentration and quality was deter-
mined in 177 samples using spectrophotometry (Table 1).
The average concentration of gDNA was the highest in
the umbilical cord extractions (UC) followed by the
whole blood (WB) and then newborn DBS. A significant
difference was observed between the three groups
(Table 1; p < 0.01 WB versus UC; p < 0.001 newborn DBS
Table 3 Pyrosequencing primers and conditions used in the s

Oligonucleotide Sequence 5′-3′

rs1835740PyroF CTCATTCGTTTTCTGCCTGTTG

rs1835740PyroR-BIO TCTTGCATATTTGAGCAGACTTTG

rs1835740PyroSeq CACAACTTGATTCCAATCT

Target sequence GC/TGTATGTAGATT

Nucleotide dispensation order AGCTCGTAT

rs4354668PyroF-BIO GGGGCTAAACCTTGCAATC

rs4354668PyroR GAGTGGCGGGAGCAGAGA

rs4354668PyroSeq GGGTGTGTGCGCGCC

Target sequence T/GGGGGAGGCGGTGGAGGCC

Nucleotide dispensation order CGTGCAGCGTGAGCGTGC

Primer pair rs1835740PyroF/rs1835740PyroR-BIO and rs4354668PyroF-BIO/rs435466
rs1835740 and rs4354668, respectively. Primers rs1835740PyroSeq and rs4354668Py
nucleotide dispensation for each pyrosequencing assay are listed. In the dispensatio
underlined. In optimal pyrosequencing conditions these nucleotides are not incorp
peak on the pyrogram (see also Figure 2). The nucleotide change in the target sequ
versus UC; p < 0.001 WB versus newborn DBS). There
was no significant correlation between the storage length
and gDNA concentration in the DBS samples (Table 2).
The quality of gDNA was comparable between whole

blood, umbilical cords and DBS prepared 1 month prior
to extraction. The average A260:A280 ratio of the gDNA
in these samples (1.7-1.9) fell within the optimal range
for gDNA purity (1.8-2.0). However, the purity of gDNA
in the DBS samples decreased with the storage length
from A260:A280 1.7 to 2.4 (p < 0.05) over the 22 year-
period (Table 2).

Analysis of DNA quality by agarose gel electrophoresis
To detect gDNA degradation in various samples, agarose
gel electrophoresis was carried out (Figure 2A&B). Rep-
resentative samples from each group were analysed for
gDNA purity. All WB and UC samples showed uniform
electrophoretic mobility and gDNA appeared as a single,
high-molecular-weight band >10 kb (Figure 2B) with no
low-molecular-weight fragmented bands present which
would indicate sample degradation. In contrast, there
was no clearly defined band at 10 kb visible in the DBS
samples and the DNA produced a smear of low-
molecular-weight fragmented bands on the gel indicat-
ing DNA degradation (Figure 2A). High quality gDNA is
expected to be mostly >10 kb.

PCR amplification of gDNA
PCR was performed to confirm the integrity of the gDNA
and to determine if any inhibitory materials (e.g. guani-
dium, RNA or proteins) were present in the extractions.
For this purpose a 325 bp fragment of a house keeping
gene, β-actin was amplified which showed a clear specific
band with the expected size (Figure 2C). All tested sam-
ples produced an amplicon at the expected size.
tudy

Product size (bp) T (°C) Modifications

300 60 None

5′Biotin

N/A None

166 60 5′Biotin

None

N/A None

8PyroR were used to generate biotinylated PCR products flanking SNPs
roSeq were used for pyrosequencing. The target sequence and the order of
n order the nucleotides used as negative controls for pyrosequencing are
orated into the target DNA sequence and thus their addition do not generate
ence is indicated in bold.



Figure 2 Agarose gel analysis of gDNA isolated from DBS (A), whole blood (WB) and umbilical cord (UC; B) samples. Lamda-HindIII
marker was used as indicated. For DBS 10 ng of gDNA and for WB and UC 50 ng of gDNA were loaded. PCR amplification of the human β-actin
gene (325 bp) is shown (C). 100 bp marker (Thermo Fisher Scientific, Hemel Hempstead, UK) is indicated on the left. Equal volumes of PCR
reactions were loaded on a 2% TAE agarose gel. Images were inverted using Adobe Photoshop™ to highlight details.
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Assessment of the fidelity of gDNA obtained from
umbilical cords
As a further test for the quality of the gDNA extracted
from umbilical cords, the genotype concordance between
the umbilical cord gDNA and whole blood gDNA samples
from the same individual were examined as a measure of
the accuracy and hence reproducibility of the genotype
calling. Thirty one individuals, where both umbilical cords
and whole blood were available, were genotyped for two
polymorphisms, SNP rs1835740 [26] and SNP rs4354668
[27] using pyrosequencing assays (Figure 3). The concord-
ance rate for both SNPs between the two starting mate-
rials in each individual was a 100% (Table 4). The C allele
frequency for SNP rs4354668 was high (0.42; Table 5) in
the entire cohort (n = 656) and all genotypes were cor-
rectly detected in the UC samples indicating that no
maternal gDNA contamination occurred. An example pyr-
ogram is shown on Figure 3 for SNP rs1835740, where
both umbilical cord and whole blood were used from the
same individual for genotyping. The pyrogram illustrates
that the signal strength and definition of peaks are very
similar from both sources and the same genotype was ob-
tained for both (Figure 3, top panels). Similarly, identical
pyrograms were obtained for DBS and WB (Figure 3, bot-
tom panels). The intensity of the signal generated from all
three sources was comparable (Figure 3).
Discussion
Genetic analysis in premature infants is hampered by the
very limited availability of samples suitable for gDNA ex-
traction. While whole blood is rarely collected and stored
for a long period from premature infants, newborn DBS
are routinely obtained from all newborns 5-8 days after
birth. These samples are often linked to databases which
contain information on clinical outcomes for patients and
gDNA can easily and quickly be extracted. However, in
some biobanks (e.g. in the UK) newborn DBS are not
readily available for academic research purposes within
3 years of collection because these samples may need to
be recalled for further tests by the clinical pathology la-
boratory. Furthermore, DBS is not collected from babies
who die within the first 4-5 days of life which could have
significant impact on association studies investigating the
impact of prematurity for example on brain injury. Simi-
larly to newborn DBS, umbilical cord tissue could poten-
tially be available for all newborns if appropriate ethical
approvals are in place. The notable advantages of umbil-
ical cord tissue are that i) it is available at birth for all in-
fants; ii) its collection is independent of mortality rate
which is significant in the very low birth weight preterm
cohort [8]; iii) it can be collected non-invasively following
birth and stored at -20°C until gDNA preparation and iv)
it can provide good yield and high quality gDNA. This



Figure 3 Pyrograms showing genotyping of SNP rs1835470 using paired umbilical cord (UC) and whole blood (WB) gDNA (top panels)
or dried blood spot (DBS) and whole blood (WB) gDNA (bottom panels) from the same individual. The position of the SNP is highlighted
in yellow boxes. Peak height is shown on the y-axes and the first nucleotide A and the fifth nucleotide C are negative controls and should not be
incorporated into the target DNA sequence. E and S indicate enzyme and substrate, respectively.
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study aimed to assess the suitability of newborn DBS and
umbilical cord tissue extracted gDNA as an alternative to
venous blood-derived gDNA from premature neonates for
genetic analysis.
The yields of gDNA extracted from whole blood and

umbilical cords are comparable to previous studies
where ∼6 μg gDNA/200 μl whole blood [28], ~100 μg
gDNA/ 200 μl umbilical cord blood [29] were obtained
(Table 2). The gDNA yield of DBS 180 ng/3.2 mm punch
however was higher than previously published ~60 ng
gDNA/3.2 mm punch [19] or 19-40 ng/3.0 mm punch
[30]. These differences are most likely due to the non-
uniform distribution of the blood on the card and the
type of filter paper used for blood collection [30]. In-
deed, blood spots which were not correctly collected
had to be used for research purposes leaving the cor-
rectly collected blood spots for further clinical path-
ology investigations. It is unlikely that a pathological
increase in white blood cells in the premature infants
would be responsible for the increased gDNA yield
Table 4 The number of samples successfully genotyped/
the total number of samples attempted for each SNP
tested

SNP Sample call rate
DBS

Sample call rate
WB

Sample call rate
UC

rs1835740 682/723 (94%) 31/31 (100%) 31/31 (100%)

rs4354668 625/723 (86%) 31/31 (100%) 31/31 (100%)
observed in our study because a similar yield was
achieved for both adults and newborns (Table 2,
1 month versus DBS samples 3-22 years). The gDNA ex-
traction method can also have a significant impact on
the yield. Carrier RNA was added to Buffer AL (Table 1),
which enhances gDNA binding to the QIAamp column
membrane, especially if there are very few target mole-
cules in the sample. To further enhance gDNA binding,
the column membrane was equilibrated with nuclease
free water and the bound gDNA was eluted in two steps
by adding 30 μl of nuclease free water twice.
The quality of gDNA from umbilical cord and newborn

DBS was comparable to whole blood gDNA (1.7 and 1.9
versus 1.8, Table 1). A good quality gDNA sample should
have an A260:A280 ratio between 1.7-2.0 [31,32]. In addi-
tion to measuring the A260:A280 ratio, a random selec-
tion of samples were analysed on agarose gels to
eliminate the possibility of contaminants in the samples
(i.e. guanidium, RNA or proteins; [31-34]; Figure 2A&B).
Table 5 Distribution of alleles in the sample cohort

SNP WT/WT WT/MT MT/MT Mutant allele frequency

rs1835740 60% 33% 7% 0.23

rs4354668 30% 57% 13% 0.42

Distribution of the three genotypes (WT/WT, WT/MT, MT/MT in %) for SNPs
rs1835740 and rs4354668 is shown. The frequency of the mutant allele
(T allele for rs1835740 and C allele for rs4354668) is indicated in the
last column.
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These contaminants as well as degraded gDNA migrate
at different rates compared to intact gDNA and thus
can be detected on an agarose gel. No obvious contam-
ination of gDNA was observed in the WB and UC sam-
ples (Figure 2B).
The length of storage of the dried blood spots did not

significantly affect the total amount of gDNA recovered
(Table 2). In contrast, the purity reduced significantly
with storage length from 1.7 to 2.4 (Table 2). This is in
line with previous studies that showed reduced gDNA
quality following 25 years storage [35,36]. Similarly to
our observation, even after 6 years of storage at room
temperature the gDNA quality was reduced [35,36].
However, others reported that gDNA is stable for at least
11 years at ambient tropical conditions [37]. It is well
documented that there are several factors that may com-
promise sample integrity which includes high humidity,
temperature, persistence of nucleases and other chemical
agents as well as other sub-optimal conditions that may
occur not only during transport, but also within storage
facilities [38]. Dry storage of nucleic acids has been rec-
ommended to eliminate the need for cold storage based
on the assumption that nucleic acids are stable when
dry. However there are numerous examples where deg-
radation occurs during storage, in the cold or at ambient
conditions, that can irreversibly damage samples in solu-
tion or even those that are dehydrated [39]. Although
dried blood spots provide a valuable bioresource for re-
search, DNA from this source has been shown to deteri-
orate with prolonged storage [40] which is in line with
our observation. It has also been reported that the col-
lection filter paper might have an impact on gDNA qual-
ity [30,35], but unfortunately there is no information
available on the type of filter paper used for the collec-
tion of our samples or whether more than one type has
been used.
To test the ability to detect the short DNA fragment of

the β-actin gene in the samples, PCR amplification was
used (Figure 2C). All whole blood, umbilical cord and
DBS samples amplified β-actin successfully. All of these
samples were then used to detect two unrelated SNPs by
pyrosequencing (Figure 3). No direct link was observed
between storage length and positive outcome with either
PCR or pyrosequencing. While all of the samples from
whole blood or umbilical cord produced conclusive pyro-
grams (Table 4), 6% and 14% of the DBS samples were
unsuccessful for the detection of rs1835740 [26] and
rs4354668 [27], respectively (Table 4). However, different
samples failed the two PCR and pyrosequencing assays
suggesting that the source of gDNA played an important
role in the success of the analysis and the storage length
did not seem to have a major impact. This is in line with
previous observations [37,41] that gDNA fragmentation
over time with storage has little impact on short DNA
detection (200-700 bp). The variation observed in the
PCR success rate might be dependent on the amount of
natural PCR inhibitors (protein, haemoglobin, iron)
present in the newborn DBS [40]. The concordance rate
for both SNPs in gDNA prepared from umbilical cord tis-
sue and whole blood was 100% (Table 4). The minor allele
frequency for SNP rs4354668 was high in our premature
infant cohort (0.42; Table 5) and all genotypes were cor-
rectly detected in the UC samples indicating that no ma-
ternal gDNA contamination occurred.

Conclusions
This study established that both umbilical cord tissue
and newborn DBS can be used as alternatives to whole
blood for gDNA extraction from premature infants with
suitable quality and fidelity for standard PCR and
pyrosequencing-based genotyping. Considering the nu-
merous advantages of using umbilical cord tissue for
gDNA extraction, as discussed above, this could poten-
tially improve recruitment to clinical studies and reduce
ethical and logistical challenges associated with blood
sample collection across multicentre studies. The quality
and yield of gDNA from umbilical cord tissue makes it
highly suitable for genome wide studies.
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