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Abstract

Background: Gene duplications play an important role in the evolution of functional protein diversity. Some
models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may
diverge as well, further complicating patterns of divergence among and within gene families. Consequently,
studying the link between protein sequence evolution and duplication requires the use of flexible substitution
models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of
codon substitution models, primarily Clade models, to explore how selective constraint evolved following the
duplication of a green-sensitive (RH2a) visual pigment protein (opsin) in African cichlids. Past studies have linked
opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore,
biochemical and regulatory differences between the RH2aa and RH2al3 paralogs have been documented. It thus
seems likely that selection varies in complex ways throughout this gene family.

Results: Clade model analysis of African cichlid RH2a opsins revealed a large increase in the
nonsynonymous-to-synonymous substitution rate ratio (w) following the duplication, as well as an even larger
increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2af opsins. Analysis using the
popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known
to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently,
suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence
appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates.

Conclusions: Our findings indicate that variation in selective constraint is associated with both gene duplication
and divergence among orthologs in African cichlid RH2a opsins. At least some of this variation may reflect an
adaptive response to differences in light environment. Interestingly, these patterns only became apparent through
the use of Clade models, not through the use of the more widely employed Branch-site models; we suggest that
this difference stems from the increased flexibility associated with Clade models. Our results thus bear both on
studies of cichlid visual system evolution and on studies of gene family evolution in general.
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Background

Gene duplication is known to play major roles in gen-
omic and phenotypic evolution, and often precipitates
divergent evolution of protein structure and function
[1,2]. A number of models have been proposed to ex-
plain the retention and evolution of duplicated genes in
the face of deleterious, pseudogenizing mutations [3-5];
these models differ in the predictions they make about
post-duplication sequence evolution and, consequently,
in how amenable they are to investigation. The classic
neofunctionalization model [3], for example, predicts a
fairly simple pattern of post-duplication protein se-
quence evolution, with one paralog diverging while the
other retains the ancestral function under a regime of
purifying selection. However, other models, such as the
duplication-degeneration-complementation model [6]
and the escape from adaptive conflict model [7,8], pre-
dict more complex forms of divergence. Furthermore, it
is becoming increasingly recognized that divergent pro-
tein evolution can occur without duplication—that is,
among orthologs—and that this can contribute to adap-
tive phenotypic evolution [9-11], contrary to classical
assumptions [12]. Distinguishing among models of gene
duplication, and determining the relative roles played by
adaptive and non-adaptive processes in protein evolu-
tion, thus requires approaches that can accommodate
complex patterns of sequence evolution.

Recent advances in codon substitution models that ac-
count for variation in site-specific selective constraint
among multiple clades or lineages [13,14] provide a
promising approach for distinguishing among models of
gene duplication and evolution. Branch-site models
[15,16] are commonly used to detect the signature of
strong site-specific positive selection along a pre-
specified lineage after gene duplication (cf. 'conserved-
but-different’ or "Type II' divergence patterns) [17,18].
Clade models [19,20], meanwhile, can be used to detect
more subtle differences in site-specific selective con-
straint among entire clades or partitions of a phylogeny
(cf. 'covarion-like' or '"Type I' divergence patterns)
[17,18]. Clade models are not restricted to detecting
strict cases of positive selection and can be used to con-
sider variation among multiple clades simultaneously
[21]. As such, Clade models may be better suited to
detecting complex forms of divergence in selective con-
straint across gene families than the Branch-site models
[22]. However, compared to the popular Branch-site
models, Clade models have been relatively under used.

Species derived from recent adaptive radiations are in-
triguing systems for studying patterns of evolution at the
molecular level, as rapid phenotypic evolution implies a
comparable degree of change in the underlying genome
[23,24]. The endemic and diverse cichlid fishes of the
Rift Valley of eastern Africa are thought to be the result
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of multiple, young, adaptive radiations [25,26]. The high
numbers of species found within the Rift Valley’s lakes
and rivers, as well as the impressive degree of pheno-
typic variation present among closely related species,
make these fishes ideal for studies on functional diversi-
fication and speciation. Recently, progress has been
made associating adaptive phenotypic evolution in
African cichlids with variation at the molecular level, for
example with regard to jaw morphology or colour pat-
terning, [27-30]. Perhaps most notably, a number of
studies have linked ecological and sexual divergence
among African cichlids to divergence in colour vision
genes, the opsins [31,32]. Opsins form the protein com-
ponent of visual pigments, the photosensitive com-
pounds expressed in the rod and cone photoreceptor
cells of the retina that absorb and transduce photons of
light into the biochemical signals that ultimately underlie
the visual sense [33-35]. Amino acid substitutions that
affect the opsin’s retinal chromophore binding pocket
can alter the pigment's absorbance spectrum, generating
variation in spectral sensitivity [36,37]. Recent studies of
African cichlid opsins have linked variation in opsin pro-
tein sequences and expression patterns to ecologically-
and sexually-selected divergence among closely related
populations and species [38,39] and, as a result, African
cichlids have emerged as model systems for study of the
molecular biology, evolution, and ecology of opsins
[31,32].

Compared to most vertebrates, African cichlids pos-
sess a large number of opsin genes, with seven cone
opsins and one rod opsin [40]. The resulting visual pig-
ments vary in spectral sensitivity, with the wavelength of
maximal absorbance (A,,) ranging from the ultraviolet
(UV) to the yellow. Most of these opsins are evolutionar-
ily ancient, with orthologs present in most teleosts, if
not most vertebrates. However, the green-sensitive
RH2aa and RH2af} opsins are relatively young [41,42],
and descend from a duplication event specific to the
African cichlid clade [43]. Spectrophotometric study of
RH2aa and RH2ap pigments from Oreochromis niloticus
(Nile tilapia) and Metriaclima zebra (Lake Malawi zebra
mbuna), expressed in vitro, revealed functional diver-
gence between the paralogs, with the RH2aa pigments
red-shifted (A\pna.x = 528 nm) compared to the RH2af
pigments (Apn.x ~ 518 nm) [41,42]. However, it has
proven difficult to broadly survey for variation in
RH2ao/P Amax via microspectrophotometry (MSP) due
to their fairly close A\, values and the noise inherent in
MSP [32]. Regulatory differences are also apparent
[42,44] but the high level of sequence similarity between
these paralogs (~95% identical at the nucleotide level)
makes quantitative PCR studies challenging. As a result
of these methodological difficulties, it is sometimes sim-
ply assumed that the RH2aa and RH2af paralogs are
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sufficiently similar to justify treating them equivalently
[45,46]. However, there is reason to believe that compar-
ably small differences in A, can be ecologically and
evolutionarily important in African cichlids [38], and
whether or not these opsins are functionally equivalent
from the perspective of African cichlid visual biology
and fitness is not clear. Comparative sequence analysis
may be able to provide useful insights into this system.

Given the important role vision plays in the African
cichlid adaptive radiation [31,32] as well as the import-
ant role gene duplication plays in functional diversifica-
tion in general [3], we set out to explore patterns of
sequence evolution associated with the RH2aa-RH2af
gene duplication event using both Branch-site and Clade
codon-substitution model approaches. We document
complex patterns of divergence among duplicated
African cichlid RH2aa and RH2ap opsins, reflecting both
paralog-specific and species-specific processes. Import-
antly, positive selection was documented not using
Branch-site models, but the less widely employed Clade
models. We discuss the implications of our findings in
light of gene duplication theory, cichlid visual ecology,
and opsin structure and function.

Methods

Phylogenetic analyses were carried out on a data set
of 48 fish RH2 opsin sequences from 29 species; species
names and accession numbers are provided in
Additional file 1: Figure S1. Translated amino acid
sequences were assembled in MEGA 4 [47] and aligned
using ClustalW [48], after which the extreme N- and C-
termini of the opsin sequences were trimmed, leaving an
alignment 343 codons in length. Bayesian phylogenetic
analysis was carried out using MrBayes 3.2 [49] using
the GTR+I+I" nucleotide substitution model, which was
selected based on AIC rank, as calculated by MrModelt-
est 2.2 [50]. Four runs, each consisting of four chains
(three heated and one cold), were run for 5 x 10° gen-
erations, sampling every 100 generations. The first 25%
of the samples were considered ‘burn-in’ and discarded.
Adequate sampling and convergence were assured by
ensuring that (1) the standard-deviation of split frequen-
cies was less than 0.01 by the end of the analysis, (2)
post-scale reduction factors were approximately 1.000
for all parameter estimates and topological partitions, (3)
parameter estimate-by-generation plots were stationary,
and (4) effective sample sizes were greater than 100.
These checks were carried out through direct examin-
ation of the MrBayes output file and using Tracer 1.5
[51]. A codon-partitioned approach was employed as
well, assuming separate GTR+I+I substitution models
for each of the three codon positions. Maximum likeli-
hood (ML) phylogenetic analyses were carried out using
PhyML 3.0 [52] assuming the GTR+I+I nucleotide
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substitution model. Ten random trees plus a tree in-
ferred using the BION]J algorithm were used as starting
trees, and both nearest neighbour interchange (NNI)
and subtree-pruning and regrafting (SPR) tree-search
approaches were used to explore tree space. Node sup-
port for the ML tree was evaluated using the SH-like ap-
proximate likelihood ratio test approach [52]. For both
Bayesian and ML analyses, four rate categories were
assumed for the +I' distribution used to described
among-site rate variation [53].

After estimating the fish RH2 phylogeny, we focused
on the RH2a opsin clade for subsequent molecular evo-
lutionary analyses. Specifically, we extracted and ana-
lyzed the monophyletic sub-tree containing the
duplicated African cichlid RH2aa and RH2ap opsins plus
five outgroup RH2a sequences; species names and acces-
sion numbers for these sequences can be found in
Figure 1 and Additional file 1: Figure S1. Due to uneven
taxonomic coverage in online genetic databases, the
RH2ap clade possesses opsin sequences from three add-
itional species compared to the RH2ax clade. The three
extra sequences in the RH2ap clade are all derived from
Lake Tanganyikan cichlids, which were surveyed prior to
the discovery of the RH2a duplication event [54];
whether these species have retained or lost their RH2aa
opsins is currently not known, though current phylogen-
etic hypotheses for Lake Tanganyikan cichlids [55] sug-
gest that multiple deletions would be required for all
three species to truly lack RH2aa opsins in their respect-
ive genomes (see Additional file 1: Figure S2). Note that
the RH2apB sequences from Ophthalmotilapia ventralis
and Neolamprologous brichardi were obtained from
c¢DNA even though relative RH2a gene expression is
skewed towards the RH2aa paralog in Oreochromis nilo-
ticus and Lake Malawi haplochromine cichlids [42,44].
RH2a opsin sequences are available for many other Afri-
can cichlids, but often differ from one another at just
one or two positions; because including all such
sequences would greatly increase computational time
without adding much information, we chose to focus on
key sequences representing well-studied species and key
cichlid lineages.

We explored patterns of selective constraint across
this RH2a data set through the use of codon substitution
models that include the nonsynonymous to synonymous
substitution rate ratio (v or dN/dS) as a parameter
[56,57]. The w ratio speaks to the form and strength of
selective constraint operating on protein-coding DNA:
0 < w < 1 is consistent with purifying selection (nonsy-
nonymous substitutions are accumulating more slowly
than synonymous substitutions), » = 1 suggests neutral-
ity (nonsynonymous and synonymous substitutions are
accumulating at equivalent rates), and > 1 indicates
positive selection (nonsynonymous substitutions are
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Figure 1 RH2a opsin gene tree showing the African cichlid-specific duplication event that produced the RH2aa (thick, dotted, blue
branches) and RH2ap (thick, solid/dashed, red branches) opsins. Dashed red branches indicate RH2af lineages from Lake Tanganyikan
cichlids. Numbers adjacent to nodes indicate clade posterior probability, and branch lengths indicate expected number of substitutions per
nucleotide site. Branch model analyses (inset, upper left) revealed that w was significantly elevated along the Lake Tanganyikan branches
compared to the rest of the RH2ap clade. Species code abbreviations indicate the first letter of the genus and first two letters of each species: Cfr,
Crenicichla frenata; Lgo, Lucania goodei; Mau, Melanochromis auratus; Mze, Metriaclima zebra; Nbr, Neolamprologus brichardi; Ola, Oryzias latipes;
Oni, Oreochromis niloticus; Ove, Ophthalmotilapia ventralis; Ppu, Pundamilia pundamilia; Pre, Poecilia reticulata; Tdu, Tropheus duboisi; Tin,
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ongside the species codes.

accumulating faster than synonymous substitutions).
Three different approaches were used, each of which
makes different assumptions about how w varies across
the alignment and/or across the phylogeny: (1) Branch
models [58], (2) Branch-site models [16], and (3) Clade
models [20]. Models were fit to the data using the
codeml program of the PAML 4.2 software package
[59]. Within each of these model classes, likelihood
ratio tests (LRTs) were used to compare the fit of com-
plex models against simpler, nested models [60,61].
LRTs were carried out by comparing twice the differ-
ence in /n likelihood scores of nested models against a
x* distribution with the degrees of freedom equal to the
number of extra parameters estimated by the more
complex model. However, as LRTs can only be used to
compare nested models, we also used AIC scores [62]
to help convey the relative fit of the different Clade
models applied to our fish RH2a data set. In addition to
the selection pressure parameters (dN/dS, o; propor-
tions, p), the transition-to-transversion substitution rate
ratio (k) and branch lengths were optimized as well.
Codon frequencies were approximated using the F3x4

calculation. Each model was fit to the data multiple
times from different starting parameter values to help
ensure local optima were avoided, with either w or «
perturbed, as needed, depending on the particular
model. As these methods assume that the aligned
sequences are related by a phylogenetic tree, not by a
reticulating network, the signature of gene conversion
within this data set was searched for using Phi [63], as
implemented in PhiPack. Significance was assessed ei-
ther assuming a normally approximated null distribu-
tion or via a permutation approach (with 1000
permutations), and analyses were run with the window
size left at the recommended default value of w = 100
and at w = 50. The results were qualitatively equivalent
in spite of these changes; as such, only results derived
using the normal approximation and w = 100 are
shown. Dot plots were created using eBioX 1.5.1 [64].
Branch models [65] assume that the o ratio varies
across branches of the phylogeny (specified a priori) but
that it is invariant across sites of the alignment; compar-
ing complex Branch models (i.e., ones with multiple w
ratios) against simpler, nested models tests whether
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varies significantly between sections of the phylogeny.
Since Branch models make the unrealistic assumption of
among-site homogeneity, they often lack power to detect
subtle patterns of divergence across phylogenies, and we
conducted post-hoc Branch model analysis simply to
help demonstrate our Clade model partitioning schemes
(described below). Branch-site models and Clade models
similarly allow for variation in @ among pre-specified
branches of the phylogeny, but, unlike Branch models,
also incorporate among-site variation in selective con-
straint. The signature of positive selection (w > 1) along
pre-specified lineages was tested for using the Branch-
site approach of Zhang, Nielsen, and Yang [16]. This
model assumes that there are four classes of sites and
that the phylogeny can be divided into ‘background’ and
‘foreground’ lineages based on an a priori hypothesis
about when positive selection may have occurred. The
first two classes of sites correspond to codons that ex-
perience selection consistently across the entire phyl-
ogeny, experiencing either purifying selection (0 < wg <
1) or neutral pressure (w; = 1), respectively. The final
two classes of sites correspond to codons that experience
purifying or neutral selection on the background
lineages, but positive selection (w, > 1) on the foreground
lineage. These four site classes comprise proportions pg
(universally-purifying site class), p; (universally-neutral
site class), po*po/(1 — po) (purifying-to-positive selection
site class), and p;*p,/(1 — p,) (neutral-to-positive selection
site class) of the total data set (where p, = 1 — pg — p1).
The goodness-of-fit of this Branch-site model is estab-
lished by comparing it via a LRT against a constrained null
model where w, = 1; this LRT thus tests for the presence
of positively selected sites.

The signature of divergent selective constraint across
the phylogeny was tested for using the Clade model C
(CmC) approach of Bielawski and Yang [20] as modified
by Yang, Wong, and Nielsen [66]. In its simplest form,
CmC assumes that the branches of the phylogeny can be
divided into two partitions, the ‘background’ branches
and the ‘foreground’” branches. CmC accommodates
among-site variation in the substitution process by as-
suming three site classes. As with the Branch-site ap-
proach described above, the first two classes of sites
correspond to codons that experience selection consist-
ently across the entire phylogeny, experiencing either
purifying selection (0 < wg < 1) or neutral pressure (w; =
1). The third site class accounts for codons that experi-
ence divergent selection pressures in different, pre-
defined partitions (i.e., w, > 0 for the background
branches and w3 > 0 for the foreground branches). These
site classes correspond to proportions po, p1, and p, of
the total data set (where p, = 1 — py — p1). Models M1a
and M2a_rel, neither of which incorporates among-
lineage variation in ®, were used as null models to test
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for the presence of divergently selected sites. M1a is the
standard null model for CmC analyses [66]; Mla pos-
sesses only two site classes: one for sites subject to puri-
fying selection (0 < wg < 1), and one for neutral sites
(w; = 1). However, our previous analyses of simulated
data sets revealed that the CmC versus Mla LRT is
prone to false positive test results when faced with
moderate among-site variation in selective constraint.
We therefore also employed our newly proposed
M2a_rel null model for CmC analyses [67]; M2a_rel
possesses purifying and neutral site classes, like the M1a
model, but also possesses a third site class under which
a single o ratio is estimated for all branches of the phyl-
ogeny (wy > 0). We checked the robustness of our
results to slight changes in model framework by reana-
lyzing the data using the Clade model D (CmD) frame-
work [20]; like CmC, CmD assumes three site classes
with the final class modeling divergent selection among
clades but, unlike CmC, no constraints are placed on the
w estimates for any of the site classes.

Yoshida et al. [21] recently extended CmC to allow for
more than two tree partitions, each with a separately esti-
mated o ratio. We refer to this as a ‘multi-clade’ ap-
proach, and we used this approach to examine complex
patterns of divergence in selection across the phylogeny
by comparing such models against simpler, nested mod-
els with fewer tree partitions. Assuming a phylogeny can
be partitioned into three clades (X, Y, and Z), the multi-
clade approach could be used to estimate three separate
w ratios for the three tree partitions (w, > 0 for clade X,
w3 > 0 for clade Y, and w4 > 0 for clade Z). Comparing
this model against a simpler, null model with only two
tree partitions (say, w, > 0 for clade X, and w3 > 0 for
both clade Y and clade Z) would constitute a test of
whether selective constraint is equivalent in clades Y and
Z (i.e., whether or not ws # w,). This LRT’s null model is
formed by imposing a single, non-boundary constraint
on the alternative model (i.e., the constraint that w; =
wy), reducing model size by one estimated parameter. As
a result, the null distribution for this LRT should follow a
x* distribution with one degree of freedom. We therefore
generated simulated data sets assuming a CmC frame-
work (with two tree partitions), and used these data sets
to evaluate this multi-clade LRT’s false-positive rate.

Simulated data sets were generated using the evolver
program of the PAML 4.2 software package [68]. Follow-
ing our earlier simulation study of CmC LRTs [67], 100
data sets of 10 taxa and 500 codons were simulated
under CmC assuming the topology, branch lengths, and
partitioning shown in Figure 2a. Half of the codons of
each simulated data set (py = 0.5) were generated assum-
ing strong purifying selection (o = 0.0), p; = 0.20 were
generated assuming neutrality (w; = 1.0), and the
remaining codons (p, = 0.3) were simulated assuming
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Figure 2 Simulation-based analyses were used to establish the false-positive rate of the LRT comparing CmC assuming three tree
partitions against a null version of CmC assuming only two tree partitions. (a) The two-partition tree used for simulating null data sets. (b)
The three-partition tree used as the LRT's ‘alternative’ model. (c) Histogram showing the distribution of LRT test-statistics from analysis of 100 data
sets simulated under the null model. (d) The same data as in (c), but here plotted as an empirical cumulative density function. For both (c) and
(d), the solid, curved line shows the expected x? distribution.

divergent selection pressure between the solid (w, =
0.15) and dashed (w3 = 0.65) tree partitions. Additional
parameters for the simulations were set as follows: the
transition to transversion substitution rate ratio (k) was
set to k = 2.0; the total tree length (TL) was set to TL =
3.0 substitutions per codon; and the equilibrium fre-
quency for each sense codon was set to 1/61. For null
model analyses, we ran CmC assuming the two parti-
tions shown in Figure 2a (i.e., correct partitioning), while
for alternative model analyses, we ran CmC assuming
the three partitions shown in Figure 2b (i.e., overly com-
plex partitioning). Branch lengths were freely estimated,
but x and the equilibrium codon frequencies were fixed
at their simulated values. Analyses were run multiple
times from different starting w values to help detect and
avoid local optima in the likelihood surface, as described
in Weadick and Chang [67]. The LRT test statistics for
each of the 100 simulated data sets—twice the difference
in In likelihood scores from the alternative and null

model analyses—were calculated, compiled, and com-
pared against the expected xi null distribution. Observed
and expected cumulative density functions were com-
pared via a one-sided Kolmogorov-Smirnov test and a
one-sided binomial test. We carried out additional ana-
lyses on the 100 simulated data sets where the phylogen-
etic partitioning of the alternative and null models was
misspecified, with branch 10 of the tree shown in
Figure 2a,b included in the ‘dashed’ partition, rather
than the correct ‘solid’ partition.

Following Clade model analysis, a Bayes empirical
Bayes (BEB) approach was used to identify specific
codons with high posterior probability (PP) of being in
the ‘divergent selection” site class [66]. BEB-identified
sites were then mapped on to the three-dimensional
crystal structure of bovine rhodopsin (PDB accession
1ul9) [69] using MacPyMol (Delano Scientific). The
phylogenetic location of specific amino acid substitu-
tions was inferred by using ancestral reconstruction
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methods [70] to estimate the most probable residue at
each node under the WAG+F+I' amino acid substitution
model [53,71]. Site numbering is based on alignment
against bovine RH1 opsin (rhodopsin).

Results

Phylogenetic analyses recovered reciprocally monophy-
letic clades of African cichlid RH2aa and RH2af} opsins
and a sister relationship between the African cichlid
RH2a opsin clade and the RH2a opsin of the Neotropical
cichlid Crenicichla frenata (Figure 1). Trees estimated
via the codon-partitioned Bayesian approach and the
ML approach were highly similar, and only differed with
respect to the arrangement of a few of the highly similar
haplochromine cichlid RH2a opsin sequences; the full
Bayesian (codon-partitioned) and ML trees are provided
in Additional file 1: Figure S1. The non-partitioned and
codon-partitioned Bayesian methods yielded trees with
equivalent branching patterns (result not shown). For
molecular evolutionary analyses, we focused on the sub-
tree corresponding to the RH2a opsins of cichlids and
those of closely related atherinomorph fishes (guppy,
Poecilia reticulata; bluefin killifish, Lucania goodei; and
medaka, Oryzias latipes) from the codon-partitioned
Bayesian phylogeny (Figure 1). Fitting the simple MO
codon substitution model to this data set provided an
overall  estimate of 0.1476, indicating that purifying se-
lection is the predominant force shaping the evolution
of these RH2a opsin sequences. Estimates of dS, calcu-
lated for each branch given the branch length, the num-
ber of nonsynonymous and synonymous sites in the
sequence, and the overall o estimate calculated under
the MO model, were always well below one, indicating
that saturation of synonymous substitutions is unlikely
to adversely affect our analyses.

Gene conversion between paralogs violates the
assumptions of ML methods for estimating ®, and can
even cause spurious signatures of positive selection
under some conditions [72]. It has previously been sug-
gested that gene conversion is unlikely to affect the
African cichlid RH2a opsins because the paralogs are
arranged in a head-to-head manner [42]. However, re-
cent work on rodent genomes has shown that duplicates
oriented in such a fashion are as prone to gene conver-
sion as those oriented in the typical head-to-tail manner
[73]. We therefore used Phi to test for local correlations
in phylogenetic incompatibility across the data set (i.e.,
across the alignment). While we did detect a significant
signature of recombination (P = 0.028), this reflected
gene conversion between the distantly related RH2B and
RH2C paralogs of the medaka (Oryzies latipes), not gene
conversion between the African cichlid RH2a opsins.
Unlike the African cichlid RH2a paralogs, these dupli-
cated medaka opsins are oriented in a head-to-tail
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manner, indicating an independent duplication event
[40]. Visual inspection revealed that the third and fourth
introns of the medaka’s RH2B and RH2C paralogs are
highly similar, while the first and second introns are di-
vergent (Additional file 1: Figure S3), and removing ei-
ther (or both) of the medaka RH2B/C paralogs from the
data set eliminated the signature of conversion (P > 0.50
in all cases). Furthermore, strong gene conversion
should result in sequences clustering by species, not by
paralog, and this pattern is not observed within the Afri-
can cichlid RH2a opsin portion of the estimated phyl-
ogeny (Figure 1). These results suggest that gene
conversion has not had a notable impact on the evolu-
tionary trajectories of the coding sequences of the dupli-
cated African cichlid RH2a opsins and thus should not
have adverse effects on our analyses. Visual inspection
of the RH2aa and RH2ap opsins of Oreochromis niloti-
cus [74], however, revealed that introns one and four are
highly similar, while introns two and three are relatively
divergent (Additional file 1: Figure S3). This may indi-
cate that natural selection is maintaining distinct opsin
coding sequences in spite of at least some intronic gene
conversion, as occurs in human red and green opsins
[75]. Alternatively, the fact that these introns are highly
similar may reflect strong purifying selection on non-
coding motifs with roles in gene regulation or splicing
control; more intronic RH2a sequence data, obtained
from numerous species, will be needed to address these
possibilities.

Several amino acid substitutions occurred along
the RH2aa and RH2ap post-duplication branches
(Additional file 1: Table S1), but in neither case did we
obtain evidence indicative of adaptive divergence follow-
ing gene duplication using Branch-sites methods
(Table 1). The Branch-site LRT for positive selection [16]
was applied four times, with different branches set as the
foreground partition: (1) the RH2aa post-duplication
branch; (2) the RH2ap post-duplication branch; (3) both
post-duplication branches, combined; and (4) the branch
joining the paralogous clades in a reduced data set for
which outgroup sequences were excluded. Our Branch-
site tests remained non-significant even when a more lib-
eral null distribution (a 50:50 mixture of 0 and X%) was
employed instead. We do note, however, that the substi-
tutions inferred along the RH2af post-duplication
branch were densely clustered (substitutions occurred at
six sites in a 13 site stretch: sites 27—-39; Additional file 1:
Table S1). This region of the protein has recently been
proposed to serve as the entry channel for the retinal
chromophore into the protein’s binding pocket [76].
One of these substitutions (I36F) involved the replace-
ment of a non-aromatic isoleucine residue with an aro-
matic phenylalanine residue at a site located at the base
of the proposed entry channel; aromatic residues are
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Table 1 Parameter estimates, log-likelihood scores, and likelihood ratio test (LRT) P values obtained from Branch-site
analyses of the RH2a data set

Model (n.p.) Site class 0 Site class 1 Site class 2 K InL LRT P
wo Po w; P w, P2 value

BrS-A a (37) 0.0235 0.8241 1 0.1759 1.0000 0.0000 1.7670 —3789.9781 1.0000

BrS-N a (36) 0.0235 0.8241 1 0.1759 1 0.0000 1.7670 —3789.9781

BrS-A B (37) 0.0230 0.6151 1 0.1296 1.0000 0.2553 1.7652 —3789.1087 1.0000

BrS-N (3 (36) 0.0230 06151 1 0.1296 1 02553 1.7652 —3789.1087

BrS-A af 37) 0.0234 0.8205 1 0.1746 2.8146 0.0049 1.7670 —3789.9535 0.8643

BrS-N af (36) 0.0235 0.8182 1 0.1743 1 0.0076 1.7669 —3789.9681

BrS-A af reduced (27) 0.0000 0.7487 1 02514 1.0000 0.0000 22643 —2200.6106 1.0000

BrS-N af3 reduced (26) 0.0000 0.7487 1 02514 1 0.0000 2.2643 —2200.6106

NOTE—n.p number of parameters.

thought to assist in retinal uptake [76], suggesting that
this change may enhance visual pigment regeneration
rate.

Given our initial findings using Branch-site methods,
we explored alternative signatures of divergence in se-
lective constraint using the Clade model C (CmC) ap-
proach [20,21,66]. First, we built on our earlier
simulation-based study of CmC LRTs [67] in order to
evaluate the appropriateness of the xi null distribution
for the multi-clade LRT comparing CmC with three tree
partitions against a simpler, nested version of CmC with
only two tree partitions [21]. The empirical and expected
distributions of LRT test statistics from our simulation
analyses are plotted in Figures 2c and 2d, and it can be
seen that the two distributions follow one another quite
closely. Parameter estimates under the alternative and
null model are summarized in Additional file 1: Figure
S4. Although eight of the 100 tests indicated positive test
results, this value is not significantly different from the
expected 5% (one-sided binomial test: P = 0.1280). Fur-
thermore, a Kolmogorov-Smirnov test comparing the
observed and expected cumulative density functions was
non-significant, indicating a good fit to the expected null
distribution (one-sided test for an empirical distribution
falling below the xi distribution: D = 0.0609; P =
0.4759). Our simulation results therefore suggest that
the LRT comparing CmC with three tree partitions
against a simpler, nested version of CmC with two tree
partitions can be evaluated using a x; null distribution,
though we note that further analyses are needed to fully
evaluate the reliability and power of this approach. Re-
cently, Gossmann and Schmid [77] carried out similar
simulation-based analyses of this LRT, concluding that it
has fair-to-good power and a relatively low false positive
rate; however, these analyses were carried out on smaller
data sets than we employed here.

Additional analyses of the simulated data sets were
carried out using an incorrect phylogenetic partitioning
strategy. Given the tree shown in Figure 2b, we treated

the branch leading to tip #10 as part of the ‘dashed’ par-
tition, rather than the correct ‘solid’ partition, and we
then tested for divergence (i.e., w3 # w4) by comparing
the ‘dotted’ partition against the expanded, heteroge-
neous ‘dashed’ partition. Based on the simulated branch
lengths and @ parameter values, misspecifying the phylo-
genetic partitioning in this way should reduce the w3 es-
timate (to w3 ~ 0.52) compared to the w, estimate (w4 ~
0.65), generating a signature of divergence. We found
that 23 of the 100 LRTs were significant, suggesting
weak power for this test under the given conditions.
Maximum likelihood estimates of the parameter values
appeared to be accurate for most of the parameters (w,
Wy, W3, Po, P2), though slightly upwardly biased for the
w, estimate (Additional file 1: Figure S4). Given these
results, we conclude that the properly specified multi-
clade LRT is statistically sound, but caution that care
must be taken when designating partitions for Clade
model analyses. Specifically, we recommend that parti-
tioning choices be carefully based on external considera-
tions, such as gene duplication theory, taxonomic
sampling, or phylogenetic patterns of niche variation. Of
course, additional simulation-based studies of this LRT’s
properties will be beneficial, and future work should ad-
dress the performance of this test using larger data sets
and assuming more complex evolutionary scenarios
designed to challenge the assumptions of the alternative
and null models.

We first applied CmC with either the entire RH2a«
clade (‘CmC o) or the entire RH2ap clade (‘CmC f’) set
as the foreground partition (Figure 1); all other branches
comprised the background partition. In both cases, the
w ratio for the divergent selection site class changed
from less than one on the background lineages (w, =
0.55-0.65) to greater than one on the foreground
lineages (w3 ~ 1.15-1.53), with approximately 21% of the
data set assigned to the divergent selection site class
(Table 2). These estimates suggest that selective con-
straint was relaxed following duplication, and may
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Table 2 Parameter estimates, log-likelihood scores, and AIC weights obtained from Clade model analyses of the RH2a

data set
Model (n.p.) SCo SC1 SC2 K InL A AIC AIC weight
Wo Po W P Wy, W3, Wy P2

CmC aBvr & Br (39) 0.0142 0.7890 1 0.0000 w,: 04988 02110 1.7071 —3773.9921 — 06394
ws: 1.0919
Wy 26122

CmC ap (38) 0.0151 0.7925 1 0.0000 ws: 0.5062 02075 1.7089 —3776.0852 2.19 02143
ws: 1.3889

CmCa & B (39) 0.0147 0.7911 1 0.0000 w,: 0.5037 0.2089 1.7085 —3775.7671 355 0.1084
ws: 1.1308
wy: 1.5420

CmC 3 (38) 0.0127 0.7838 1 0.0000 w,: 0.5471 02163 1.7033 —3778.3671 6.75 0.0219
ws: 1.5315

CmC Br (38) 00115 0.7789 1 0.0000 w,: 0.5882 0.2211 1.6971 —3778.6874 739 0.0159
w3 2.5296

CmCa (38) 0.0138 0.7882 1 0.0000 ws: 0.6458 02119 1.6993 —3784.5357 19.09 0.0000
ws: 1.1498

M2a_rel (37) 0.0089 0.7639 1 0.0512 w,: 0.5401 0.1849 1.6956 —3785.9512 19.92 0.0000

M1a (35) 0.0235 0.8241 1 0.1759 - - 1.7669 —3789.9781 23.97 0.0000

NOTE—n.p. = number of parameters; SC = site class.
Models are ranked according to AIC score.

indicate the action of weak positive selection as well.
Both models fit the data significantly better than the
M1a null model, but ‘CmC o’ did not fit the data signifi-
cantly better than the more reliable M2a_rel null model
(Table 3). However, this ‘CmC o model includes the
RH2ap clade as part of the ‘background’ partition along-
side the outgroup orthologs of non-African cichlids. This
may be inappropriate, as the ‘CmC [ vs. M2a_rel LRT
suggested a large increase in w for the RH2ap clade. To
evaluate this possibility, we employed a multi-clade
CmC approach assuming three partitions: the RH2aa
branches, the RH2ap branches, and the outgroup ortho-
logous branches. Using this model, which we call the
‘CmC a & p’ model, it was estimated that approximately
21% of the data set evolved under divergent selective
constraint across the three partitions, with a o ratio less
than one along the outgroup branches (w, = 0.50),
slightly above one along the RH2aa branches (w; =
1.13), and somewhat higher still along the RH2af
branches (o, = 1.54) (Table 2). Comparison against the
‘CmC B’ model yielded a significant LRT result (Table 3),
indicating that selective constraint did indeed change
after duplication in the RH2ax clade; this difference only
became statistically significant once the elevated o ratio
for the RH2ap clade was accounted for in the model.
Comparison against a different null model, one where all
African cichlid RH2a branches were considered as a sin-
gle foreground partition (termed the ‘CmC aff model),

revealed that the w ratios estimated for the RH2aa and
RH2ap partitions under the ‘CmC o & B model were
not significantly different from one another (Table 3),
with a common o ratio estimate of w3 = 1.39 (Table 2).
Our RH2a data set was taxonomically unbalanced,
possessing three Lake Tanganyikan cichlid RH2af
sequences without corresponding RH2aa paralogs, and
our Branch model analyses revealed that selective con-
straint was significantly different between the branches
corresponding to these Lake Tanganyikan cichlid opsin
RH2ap lineages and the remaining RH2af branches
(Figure 1, inset). It is therefore possible that the increased
w ratio observed for the RH2ap clade in our CmC analyses
was driven by these Lake Tanganyikan RH2af sequences.
In lieu of removing these taxonomically-unbalancing
sequences from the alignment, which would represent an
unfortunate loss of data, we carried out further analyses
using the recently developed multi-Clade approach [21].
Specifically, we added a third partition to the ‘CmC aff
model that separated the Lake Tanganyikan RH2af
branches (Br) from the Lake Malawi, Lake Victoria, and
riverine RH2aa and RH2ap branches (afprvr). Using this
model, which we call the ‘CmC afyyvr & Bt model, it was
estimated that approximately 21% of the data set evolved
under divergent selective constraint, with a o ratio less
than one along the outgroup branches (w, = 0.50), slightly
above one along the afyrvr branches (w3 = 1.09), and sub-
stantially higher along the Pt branches (0w, = 2.61)
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Table 3 Likelihood ratio test (LRT) P values for nested Clade model C (CmC) comparisons

Null model Alternative model

Mila M2a_rel CmCa cmC B CmC af CmC Bt
CmC aBmvr & Br < 0.0001 (4) < 0.0001 (2) - - 0.0408 (1) 0.0022 (1)
CmCa&p < 0.0001 (4) < 0.0001 (2) < 0.0001 (1) 0.0226 (1) 04251 (1) -
CmC ap < 0.0001 (3) < 0.0001 (1) - - - -
CmCa 0.0124 (3) 0.0925 (1) - - - -
CmC < 0.0001 (3) 0.0001 (1) - - - -
CmC By < 0.0001 (3) 0.0001 (1) - - - -

Degrees of freedom for each LRT are indicated in parentheses.

(Table 2). Out of the Clade models considered, the ‘CmC
apmvr & Br’ model was the best fitting according to AIC
scores, and comparison against the ‘CmC off’ model
yielded a significant LRT result (Table 3), indicating that
the w ratio differs significantly between the Lake Tanganyi-
kan cichlid RH2a} opsins (the Pr partition) and the
RH2aa and RH2af opsins of other African cichlids (the
afmvr partition). Importantly, partitioning the tree in this
manner did not eliminate the w ratio increase observed for
African cichlid RH2a opsin clade compared to the outgroup
orthologs (LRT against ‘CmC Br’; Tables 2, 3). Finally, the
divergent  ratio estimate for the Lake Tanganyikan RH2af3
branches (the Br partition) was significantly greater than
o = 1 (Table 4), indicating that the increase in w seen for
the Pr partition is due to site-specific positive selection and
not simply relaxed functional constraint. Conversely, the di-
vergent w ratio estimated for the afyrr partition, though
elevated, was not found to significantly exceed o = 1
(Table 4).

Reanalyzing the data under the CmD framework gave
broadly similar results (compare Tables 2 and 3 with
Additional file 1: Tables S2 and S3). First, parameter esti-
mates were qualitatively similar between CmC and CmD
analogues. Second, the rank order of CmC and CmD analo-
gues was almost completely equivalent, with the only
difference being the relative position of the two and
three site-class null models (M1la and M2a_rel for CmC;
M3 (K = 2) and M3 (K = 3) for CmD), which in both cases
were very poor fits to the data. And, finally, P values for the
various LRTs were generally similar, with only three tests
providing qualitatively different results under the two
model frameworks (one test achieved significance under
CmbD but not under CmC, and two others achieved signifi-
cance under CmC but not CmD); notably, non-significant

P values were still less than P = 0.10 for these each of these
three cases. Notwithstanding these few differences, the
broad similarity of AIC ranks, the majority of the LRTs,
and the qualitative agreement in parameter estimates sug-
gest that our CmC analyses have provided reliable infer-
ences on cichlid RH2a opsin evolution.

Eighty-one of the 343 total codons in the alignment
were variable at the amino acid level and, of these, 27
were identified by BEB analysis as members of the diver-
gently evolving site class under the best fitting ‘CmC
afymvr & Br’ model (PP > 0.75 for each site) (Table 5).
Included among these identified sites are seven of the 10
sites that substituted along the RH2aa and RH2af post-
duplication branches (Additional file 1: Table S1). The
position of these sites within the opsin protein's second-
ary and tertiary structure are shown in Figure 3. Most of
these sites are situated within the opsin protein’s extra-
cellular half (Figure 3) and several are, or are adjacent
to, known RH2 pigment spectral tuning sites (Table 5).
Most prominent among these is site 122; all African
cichlid species in our data set possess a glutamate resi-
due (E122) at this site except for the Lake Tanganyikan
species Ophthalmotilapia ventralis, which instead pos-
sesses a glutamine residue (Q122). The E122Q substitu-
tion is known to have a large effect on RH2 pigment
spectral sensitivity, shifting A\, to shorter wavelengths
by ~12-16 nm [78-80]. Moreover, this substitution is
known to dramatically affect non-spectral properties of
visual pigments (discussed below). Two other notable
substitutions occurred along this same branch: F213V
and G273V. Mutating site 273 has been shown to affect
retinal uptake [76,81], while substitutions at site 213 are
known to have slight effects on A, in zebrafish (Danio
rerio) RH2 opsins [80]. Furthermore, substitutions at site

Table 4 Likelihood ratio tests (LRTs) to determine whether foreground w estimates from the ‘CmC afyyr & B’ model

significantly differ from w = 1

Foreground partition Unconstrained w estimate InL with constraint w = 1 P-value
aByvr (RH2aa and non-Tanganyikan RH2a( branches) 1.0919 —3774.0580 0.7166
Bt (Tanganyikan RH2aB branches) 26122 —37772771 0.0104

Both LRTs have 1 degree of freedom.
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Table 5 Sites identified as divergently evolving by Bayes
empirical Bayes inference under the ‘CmC af3yyr & Br’
Clade model

Site PP Location Notes on Opsin Structure-Function

22 090 N-term

24 081 N-term

27 091 N-term

31 0.75 N-term

36 086 N-term/TM1  RH2 spectral tuning site [80]. Situated on
edge of retinal uptake/release channel [76].

56 090 TM1

99 091 TM2

107 096 EI Adjacent to RH2 spectral tuning site
(site 108) [80].

109 086 E1/TM3 Adjacent to RH2 spectral tuning site

(site 108) [80]. Adjacent to cysteine bond
site (site 110) [82].

112 080 TM3 RH2 spectral tuning site [80]. Adjacent to

opsin counterion (site 113) [83].

122085 TM3 Major RH2 spectral tuning site [78]. Also
influences G protein activation efficiency,
active-state decay rate, and visual pigment
regeneration rate [84].

149 077 C2/TM4 Possible phosphorylation site [85,86].

158 086 TM4
162 094 TM4
165 079 TM4
179 088 E2
213 075 TMS
214 089 TMS

Possible RH2 spectral tuning site [80].

RH2 spectral tuning site [80].

Adjacent to RH2 spectral tuning site
(site 213) [80].

218 086 TM5 RH2 spectral tuning site [80].
263 090 TM6

273 085 TM6 Role in retinal uptake [76,81].

277 090 TM6/E3
282 080 E3
284 075 E3

290 093 TM7
304 097 TM7
335 079

C-term Possible phosphorylation site [85,86].

NOTE— Site numbering follows bovine RH1 opsin. Approximate location
follows Sakmar et al. [34]. Abbreviations: N-term N-terminal tail, TM
Transmembrane helix, E, Extracellular loop, C Cytoplasmic loop, C-term
C-terminal tail.

Only sites with posterior probability (PP) > 0.75 are shown. Underlined sites
are those which substituted along branches within the Lake Tanganyikan
cichlid RH2ap partition of the phylogeny.

213 and 273 have been experimentally shown to influ-
ence the decay rate of the activated visual pigment in
zebrafish RH1 opsins (J.M. Morrow and B.S.W. Chang,
unpublished data). Interestingly, these three sites (122,
213, and 273) all substituted independently along the
branch terminating with the Oryzies latipes (medaka)
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RH2C sequence, which suggests that some non-spectral
opsin properties may be evolving convergently.

A total of 178.5 amino acid changes were estimated to
have occurred across the entire tree (given an alignment
of 343 codons and a total tree length of 0.52032 amino
acid substitutions per site, as estimated under the WAG
+F+I amino acid substitution model). By reconstructing
the ancestral amino acid residues at each node, we infer
that 86 nonsynonymous changes, at minimum, occurred
at the 27 BEB identified sites (mean + SD = 3.19 + 1.11
amino acid changes per BEB site; range = 2—-6). For 18
of these 27 BEB sites, substitutions occurred along
branches within the Lake Tanganyikan cichlid RH2ap
partition. Examining the changes at these sites in the
context of the phylogeny reveals a few interesting pat-
terns (Figure 4, Additional file 1: Table S4). First, BEB
identified sites 273 and 277 both substituted along the
branch terminating in the Ophthalmotilapia ventralis
RH2ap opsin sequence; these two sites are situated ap-
proximately one a helical turn apart in the opsin’s sixth
transmembrane « helix, suggesting coevolutionary
change. Possibly, this pattern reflects compensatory evo-
lution, as one of the substitutions (G273V) introduced a
larger amino acid while the other (M277L) introduced a
smaller one. Similarly, BEB identified sites 158 and 162
are both situated one a helical turn apart in the fourth
transmembrane a helix, and both substituted along the
branch terminating in the Tropheus duboisi RH2ap opsin
sequence. Again, we see one substitution introduce a lar-
ger reside (L158F) and the other introduce a smaller
residue (I1162V). These two sites both project outwards
into a proposed opsin dimerization interface [87], and
position 162 has been experimentally shown to contrib-
ute to dimerization in the homologous dopamine D2 re-
ceptor proteins [88]. Changes at these sites may thus
influence dimerization strength, which, in turn, can in-
fluence G protein binding [87]. Interestingly, these
changes also occurred along the RH2aa post-duplication
branch, suggesting not simply coevolution, but conver-
gence as well. Finally, a cluster of BEB identified sites
(sites 107, 109, and 112) found at the boundary between
the opsin’s first extracellular loop and third transmem-
brane a helix all substituted along the branch leading to
the last common ancestor of the Ophthalmotilapia ven-
tralis and Neolamprologus brichardi RH2a opsin
sequences. Site 112 is a known RH2 pigment spectral
tuning site [80], while sites 107 and 109 surround an-
other known RH2 spectral tuning site (site 108) [80].
The substitution at site 109 is particularly interesting, as
the inferred change (F109S) is quite physicochemically
severe, replacing a bulky, hydrophobic phenylalanine
residue with a smaller, hydroxyl-bearing serine residue.
More broadly, it can be seen that more sites known to
affect spectral sensitivity (or that are adjacent to such
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Figure 3 Opsin snake plot (a) and 3D model (b) showing sites inferred to be evolving under divergent selection pressure according to
Bayes empirical Bayes analysis with the CmC aByyr & Br Clade model. Only sites with PP > 0.75 are shown. (a) The seven transmembrane a
helixes (TM1-TM7), helix 8 (H8), and the extracellular (E1-E3) and cytoplasmic (C1-C3) loops are labeled. Every 10" amino acid (starting with AA
10) is shaded grey and drawn in thicker stroke. (b) The opsin backbone is shown as a gray ribbon, while the retinal chromophore is shown in
black stick format. The 3D model is viewed with the extracellular side on top. For both (a) and (b) the protein structure and numbering follow

J

sites) substitute within the RH2af} clade compared to the
RH2aa clade. Most of this difference stems from
changes along the branch ancestral to Ophthalmotilapia
ventralis and Neolamprologus brichardi, and along the
branch terminating in Ophthalmotilapia ventralis.

Discussion

Evolution after gene duplication is often characterized
by some combination of relaxed selective constraint and
the positively selected fixation of advantageous muta-
tions, ultimately resulting in functional divergence
among paralogs [3-5,89]. Consistent with these expecta-
tions, our results (1) revealed a dramatic change in se-
lective constraint following the African cichlid RH2a
opsin duplication event and (2) identified the signature
of divergent evolution at several amino acid sites of
known functional importance in RH2 visual pigments.
Clade model analyses revealed that, after duplication, the
selective regime experienced by many alignment sites
changed from weak purifying selection to either neutral
evolution or weak positive selection. Interestingly, this
switch in constraint applied to both duplicated clades
relative to the outgroup orthologs, and this pattern was
only detected once divergence among entire clades was
considered but not when just the branches immediately
following the duplication event were considered.

While the patterns of evolution we observed in the fish
RH2a opsin data set are consistent with a dramatic
change in selective constraint following the African cich-
lid RH2a opsin duplication event, it is not obvious which
models of gene duplication are operating here, as the
observed patterns do not neatly fit the predictions of
most models. The adaptive and non-adaptive (Dykhuizen-
Hartl) neofunctionalization models [3,90] both posit
that one copy accumulates previously deleterious substi-
tutions, potentially leading to the evolution of a new func-
tion, while the other retains the ancestral function under
a regime of purifying selection. These neofunctionaliza-
tion models thus predict asymmetrical rates of evolution
after duplication between paralogs, but our results indi-
cate approximately equal shifts in selective constraint
after duplication in both duplicates (with w changing
from w = 0.5 before duplication to w = 1.1-1.5, after-
wards). The segregation avoidance model [3,91] proposes
that duplication may beneficially fix both alleles at loci
harbouring balanced polymorphisms, thus eliminating
costs associated with segregation load. This model
predicts that functional divergence occurs among alleles
before duplication, not long after the duplicate loci have
fixed as we have found. The dosage model operates
when possessing multiple loci provides a beneficial in-
crease in gene product [3,92]; this model seems inappro-
priate as well, as RH2af} opsin expression is generally
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Figure 4 RH2a cladogram showing the inferred location of amino acid substitutions at the 27 ‘divergently evolving’ sites listed in
Table 5. Posterior probabilities of inferred ancestral amino acids are provided in Additional file 1: Table S4. Lines are drawn to indicate the RH2aa
(dotted blue branches), RH2ap (thick red branches), and Lake Tanganyikan tree RH2a partitions (dashed red branches), as in Figure 1.

quite low in both Oreochromis niloticus and Lake Malawi
haplochromine cichlids [42,44], and as the paralogs are
known to be functionally divergent, contrary to model
predictions. The popular duplication-degeneration-com-
plementation model applies to multifunctional proteins,
and describes a scenario by which each daughter protein
neutrally loses one or more of the multiple functions
such that both copies are then needed to perform all
tasks [6]. This model could explain increases in ® seen
in both daughter clades, but this model seems unlikely
to apply to opsins, at least at the protein coding level, as
it is difficult to conceive of a way opsin protein bio-
chemistry could be subfunctionalized. Opsin proteins
have several measurable biochemical phenotypes (includ-
ing Amax active state stability, and regeneration rate), but
proper visual pigment functioning requires an integrated
protein for successful phototransduction. Subfunctionali-
zation could occur at the regulatory level, however [93].
The ‘gene sharing’ model (also referred to as the
‘specialization’” or ‘escape from adaptive conflict’ model)

[7,8] seems to be the most appropriate model for our
cichlid opsin data set. If a single-copy protein’s ability to
efficiently serve two roles is compromised due to plei-
otropy then, after duplication, each copy can adaptively
specialize on one of the two roles (assuming both roles
are suboptimal in the ancestor). The post-duplication @
increases we observed for our RH2a data set may indi-
cate weak positive selection in both paralogs, which
would be consistent with this prediction. While this
model is typically applied to multifunctional proteins
that carry out two totally different roles (e.g., a structural
role and an enzymatic role, as in « lens crystallins), it
can also apply to proteins that perform a single bio-
chemical task (e.g., a particular enzymatic reaction) if
there is a benefit to having copies with subtly different
rates or efficiencies [4]. With regard to opsins, this could
mean that a property such as A, diverged in both cop-
ies compared to the ancestor, one to a longer wavelength
and one to a shorter wavelength. Similarly, structural
constraints may prevent co-optimization of different
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aspects of the protein’s overall function. Such predic-
tions are testable through ancestral reconstruction and
functional characterization of the single-copy ancestor.
Of course, it should be noted that many of these models
of gene duplicate retention and evolution can act in con-
cert or subsequent to one another [94]. Indeed, the pat-
terns of amino acid substitutions inferred along the
RH2ap post-duplication branch are quite different than
those inferred along the RH2aa post-duplication branch,
with six highly-clustered sites substituting along the
RH2af branch (Additional file 1: Table S1). Changes at
these sites could conceivably influence pigment regener-
ation rate [76], and this may indicate that both neofunc-
tionalization and specialization occurred following the
RH2a duplication event in this system. Furthermore,
here we have only considered the evolution of protein
biochemistry, but these models of duplicate gene evolu-
tion can also be considered with regard to gene expres-
sion patterns.

The fact that we uncovered among-lineage w variation
when Clade models were used, but not when Branch-
site models were used, opens the possibility that diver-
gence among African cichlid RH2a opsins is also influ-
enced by a collection of lineage-specific processes.
Consistent with this hypothesis, we documented a large
increase in ® along Lake Tanganyikan cichlid RH2af
opsin branches that was above and beyond the increase
already described for the RH2ap clade. The estimated o
ratio for this tree partition was significantly above one,
clearly indicating the action of positive selection. This
finding is of note given that our initial focus was only on
divergence associated with gene duplication, not diver-
gence among orthologs. Our study thus serves as an ex-
ample of how the evolution of duplicated genes can be
driven by both paralog-specific and species-specific pro-
cesses [11]. This point has practical importance as well.
Many studies within the field of visual ecology assume
functional equivalence among ortholgous pigments and
model focal species’ perceptual abilities using data from
close relatives [95]. Our results suggest that such an ap-
proach should only be applied tentatively for studies on
cichlid visual ecology.

At this point, it is difficult to say what factors are be-
hind the positive selection operating along the Lake Tan-
ganyikan cichlid RH2ap opsin lineages, as the visual
niches inhabited by the three Lake Tanganyikan species
included in our data set have surely evolved over the
time-scale captured by our phylogeny. These three spe-
cies inhabit distinct visual niches, varying in colour pat-
terning, habitat depth, and diet [96], and these
ecological differences could precipitate divergent selec-
tion on opsin biochemistry and expression; the detection
of divergent sexually selected courtship signals or food
sources may select for divergence in A, while vision
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under brighter or dimmer conditions could select for di-
vergence in non-spectral, kinetic properties of visual pig-
ments. Interestingly, some of the sites identified as
positively selected along Lake Tanganyikan RH2a} opsin
lineages are known to effect both spectral (i.e., A\pax) and
non-spectral attributes of visual pigments (Table 5).
Most notably, the E122Q substitution, which occurred
along the terminal branch leading to the Lake Tanganyi-
kan cichlid Ophthalmotilapia ventralis, is known to in-
crease the Aj.x of RH2 pigments by a large amount
(~12-16 nm) [78-80], and to affect a number of non-
spectral, kinetic properties, including the photoactivated
pigment’s decay rate, the efficiency with which the acti-
vated pigment activates the downstream G protein, and
the rate of visual pigment reformation following retinal
release [84,97]. For each of these properties, experimen-
tally adding the E122Q substitution to rod pigments
produces mutant pigments that behave in a more cone-
like manner (i.e., with a faster rate of active state decay
and faster pigment regeneration). Ophthalmotilapia ven-
tralis is known to generally reside at shallower depths
than the other two Lake Tanganyikan cichlids in our
data set (approximate depth range: O. ventralis 2—10 m;
N. brichardi 5-30 m, T. duboisi 3—15 m) [96], where the
visual environment is expected to be somewhat brighter.
We thus see a compatible pattern between opsin mo-
lecular evolution and comparative visual ecology in this
system. Overall, our results suggest that the RH2af
opsins play an important role in vision in at least some
Lake Tanganyikan species, despite the fact that the
RH2ap opsin has generally been found to be lowly
expressed in other African cichlids.

It is notable that we were only able to uncover among-
lineage w variation once Clade models were employed, but
not when the more popular Branch-site models were used.
A number of factors are expected to affect the power of
the Branch-site test [98], and it may be that future ana-
lyses of larger data sets will yield different results, though
we suspect otherwise, as substitutions occurred at several
amino acids along both of the post-duplication branches.
It appears that functional divergence simply occurred in a
manner undetectable by the Branch-site methods.
Branch-site models assume a very specific form of func-
tional divergence—that is, a punctuated burst of adaptive
sequence turnover—but functional divergence can instead
manifest as variation in the overall strength of constraint
or residue conservation between clades [99]. Most of the
sites that substituted along the RH2aa and RH2ax post-
duplication branches also substituted along other
branches of the phylogeny, and such substitution patterns
may not fit neatly within the site classes defined by the
Branch-site models. The design of Clade models makes
them better able to detect this alternative signature of
functional divergence. Furthermore, the patterns we
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uncovered were only detectable because the Clade model
approach was recently expanded to allow for multiple
foreground partitions [21], which allowed us to fit models
that accommodate multiple shifts in the w ratio across the
phylogeny. To date, only three other studies have
employed this new approach: Yoshida et al. [21] uncov-
ered variation in the strength of positive selection affecting
HIV env genes sampled from different decades; Wei and
Ge [100] documented divergent selective constraint
among duplicated MADS-box transcription factors in
grasses; and, finally, Gossmann and Schmid [77] studied
genome-wide patterns of divergence among duplicated
Arabidopsis thaliana genes. We note that our study is the
first, to our knowledge, to explicitly investigate divergence
among both orthologs and paralogs in the same data set.
Finally, it is noteworthy that several studies have used the
results of Clade model analyses to support arguments of
positive selection [101,102], but whether or not the rele-
vant o estimates significantly exceed @ = 1 has not been
explicitly tested, as we have done here; this point, while at
first glance technical in nature, is of large importance, as
o estimates larger than o = 1 may occur due to chance.

In conclusion, our results are indicative of functional
divergence among African cichlid RH2a opsins driven, at
least in part, by positive selection. Combined with the
insights of past studies, which indicate biochemical and
expression differences among paralogs and among spe-
cies, our results suggest that there is much to be learned
by distinguishing among African cichlid RH2a opsin
sequences, rather than grouping them together on ac-
count of their high sequence similarity. Furthermore,
these results provide a framework for mechanistic stud-
ies of functional diversification among cichlid RH2a
opsins, and help establish African cichlid RH2a opsins as
a useful system for research on how function and linkage
shape the evolution of young tandem duplicates [103].
Finally, our study adds to a growing body of research
directed towards uncovering the molecular signature of
diversification within the rapidly speciating African cich-
lid clade.
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