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Abstract
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Background: The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a
powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of
genes with transient biological phenotypes in cell division, cell death and migration. The original analysis of these
data proceeded by assigning nuclear morphologies to cells at each time-point using automated image classification,
followed by description of population frequencies and temporal distribution of cellular states through event-order
maps. One of the choices made by that analysis was not to rely on temporal tracking of the individual cells, due to the
relatively low image sampling frequency, and to focus on effects that could be discerned from population-level

Results: Here, we present a variation of this approach that employs explicit modelling by dynamic differential
equations of the cellular state populations. Model fitting to the time course data allowed reliable estimation of the
penetrance and time of appearance of four types of disruption of the cell cycle: quiescence, mitotic arrest,
polynucleation and cell death. Model parameters yielded estimates of the duration of the interphase and mitosis
phases. We identified 2190 siRNAs that induced a disruption of the cell cycle at reproducible times, or increased the

Conclusions: We quantified the dynamic effects of the siRNAs and compiled them as a resource that can be used to
characterize the role of their target genes in cell death, mitosis and cell cycle regulation. The described
population-based modelling method might be applicable to other large-scale cell-based assays with temporal
readout when only population-level measures are available.
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Background

High-throughput cell imaging assays allow broad and
quantitative measurement of the response of cell popula-
tions to perturbations including drugs [1], small molecules
[2] and small interfering RNA (siRNA) [3]. Screens have
revealed genes whose depletion affects cell cycle progres-
sion [4], measured the effects of drugs on the morphology
of HeLa cells [5] and identified novel DNA damage fac-
tors by grouping genes by phenotypic similarity [6]. Most
screening experiments are performed as endpoint assays
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and provide observations that in many cases are conse-
quences of unseen intermediate events. Thus, functional
interpretation of results from endpoint analysis can be
obscured by indirect effects. High-throughput time-lapse
imaging is a technique [7] that overcomes this limita-
tion and considerably extends the potential of biologi-
cal discovery by capturing the dynamic aspects of the
observed phenotypes. A typical feature of large-scale
assays is that the range of observed phenotypes has multi-
ple dimensions, reflecting for example the different effects
of perturbations on cell growth, cytoskeleton structure,
cell division or motility. A goal of the data analysis is the
extraction of multivariate, but relatively low-dimensional
phenotypic descriptors that are biologically meaningful,
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interpretable and robust to experimental noise. In the
case of time-resolved data, the time-dependence of the
observations needs to be appropriately described and
summarised.

The Mitocheck project performed a time-lapse imag-
ing assay that employed siRNAs to test the implication
of human genes in transient biological processes such
as cell division or migration genome-wide [8]. In this
experiment, HeLa cells stably expressing core histone 2B
tagged with green fluorescent protein (GFP) were seeded
on siRNA-spotted slides, incubated for 18 h and imaged
with automated fluorescence microscopy for 48 h. Video
sequences of cell populations on each siRNA-spot were
analysed by image segmentation, and at each frame, each
individual cell was categorised into one of 16 morpho-
logical classes mostly related to cell division (Table 1). By
comparing the abundances of the different morphological
classes to negative control experiments, 1249 genes were
identified as potential mitotic hits (“primary screen”).
Subsequently, further validation experiments were done
using independent siRNAs (“validation screen”) and res-
cue of 16 gene products using orthologous mouse genes.

This analysis of the Mitocheck data generated an enor-
mous wealth of results about the implication of human
genes in cell division, but did not fully exhaust the infor-
mation contained in the data. Several temporal features
including the time of mitotic arrest, cell death or cell cycle
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arrest, or the duration of mitosis were not quantified. In
principle, the nature of the data —time-lapse movies of
dividing cells— asks for analysis of the single-cell tracking
graphs [9,10]. However, reliable tracking of the cells used
in this experiment requires a time resolution between
image frames lower than 10 min. For the main Mitocheck
data set, the decision had been made to use a lower tem-
poral sampling frequency ((30 min)~!) in order to allow
for a larger volumes in other dimensions of the experi-
mental design, in particular, number of siRNAs tested and
number of cells per siRNA. In other experiments, there
may be analogous considerations that hinder tracking at
the single-cell level, while still providing population-level
time-course data.

In this study, we used a cell population-level dynamic
model to represent the temporal evolution of dividing
cells. By fitting cell counts in four transient cellular states,
our model yielded parameters that quantify the dynamic
effects of siRNA treatments on cell population levels.
Model parameters allowed reliable estimation of the pen-
etrance and time of four disruption events of the cell cycle:
quiescence, mitosis arrest, polynucleation and cell death.
We also derived the interphase and mitosis durations
from penetrance parameters. We found 2190 siRNAs that
resulted in quiescence, mitosis arrest, polynucleation or
cell death at specific times, or increased interphase or
mitosis duration. Comparison of the results with known

Table 1 Nuclear morphology count statistics in the Mitocheck assay

Mitocheck nuclear morphology Number of cells

Percentage of total mitoODE cellular state

Interphase 1788193783 81.89 Interphase
Large 31803343 146 Interphase
Elongated 19680422 0.90 Interphase
Folded 14121061 0.65 Interphase
Hole 6374658 0.29 Interphase
Smalllrregular 18118093 0.83 Interphase
UndefinedCondensed 4266163 0.20 Interphase
Metaphase 12242280 0.56 Mitosis
Anaphase 44535322 2.04 Mitosis
MetaphaseAlignment 12854397 0.59 Mitosis
Prometaphase 17551608 0.80 Mitosis
ADCCM 4900034 022 Mitosis
Shape! 87196372 3.99 Polynucleated
Shape3 69356097 3.18 Polynucleated
Grape 5531756 0.25 Polynucleated
Apoptosis 27746493 1.27 Cell death
Artefact 19199683 0.88

Total 2183671565 100.00

The table shows the counts of the 16 nuclear morphologies (excluding the “Artefact” and “Total” rows) defined in the Mitocheck assay and the grouping into 4 cellular

states described in our manuscript.
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cell-cycle and cell death regulators and systematic gene
enrichment analysis indicate high sensitivity and accuracy
of the method. The reported list is a useful resource, con-
taining testable hypotheses about causal roles of genes in
cell cycle regulation and cell death.

Results and discussion

Modelling cell population dynamics

We considered the cell count data from the Mitocheck pri-
mary screen, consisting of 206,592 movies of siRNA spot
experiments targeting 17,293 genes (Figure 1). Most of the
genes (98.7%) were targeted by at least two independent
siRNA sequences, each done in at least three spots. Four
controls were repeatedly used on each slide: siScrambled,
a non-targeting negative control; siKIF11, targeting the
gene KIF11, which encodes a kinesin needed for centro-
some segregation; siCOPBI, targeting an essential protein
binding to the Golgi vesicle and siINCEND, targeting a
centromere-associated protein coding gene required for
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proper chromosome segregation and cytokinesis. Each
spot experiment yielded time courses of cell counts of
16 morphologically distinct transient nuclear morpholo-
gies, first acquired 18 h after cell seeding, and then
measured every 30 min for 48 h. In total, more than 2 bil-
lion nuclear morphologies were measured and classified
(Table 1).

In order to quantify the phenotypic effect induced by
siRNA treatments, we grouped the 16 nuclear morpholo-
gies into four cellular states recapitulating the cell cycle:
interphase, mitotic, polynucleated and dead. We used an
ordinary differential equation (ODE) model to charac-
terise the dynamic transitions between the four popula-
tions (Figure 2a). We assumed that cells could enter and
leave states with different, experiment-dependent transi-
tion rates. Among the twelve theoretically possible tran-
sitions between different states, we considered the six
following ones: interphase cells may enter mitosis or die,
mitotic cells may divide into twice as many interphase
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Figure 1 Examples from the Mitocheck screen data. (a) Images of Hel.a cells imaged 18 h and 42 h after seeding on a control spot containing

siKIF11, an siRNA targeting the kinesin gene KIF11. Interphase cells are outlined in white. Inhibition of KIF11 induced prometaphase arrest and led to
an accumulation of mitotic cells (red). Of the arrested cells many subsequently became polynucleated (green) and eventually died (blue). (b) Time
courses of cell counts in four spots. The negative control siRNA siScrambled led to normal cell growth in two replicated spots (top). siKIF11 led to an
early accumulation of mitotic cells, while at later times many of the arrested cells went into cell death (bottom-left). siCOPB1, which targets an
essential Golgi-binding protein, caused cell death, but no mitotic phenotypes (bottom-right). Y-axes scales were scaled to accommodate the
different dynamic ranges of the data.
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Figure 2 A differential equation model to quantify temporal phenotypes. (a) Cell populations were permitted to enter and leave states with
four different transition rates: ki, kmi, kvp and kp. Representative images of cellular states are shown within the nodes. (b) Transition rates were
allowed to vary over time, as modelled by parametric sigmoid functions. In the negative control spot (left), the interphase-to-mitosis transition rate
ki inflected at Ty = 54.5 h, as the capacity of the spot to support a growing number of cells became limiting. The death transition rate kp
remained constant and null. In the siCOPB1 spot (right), the death transition rate kp inflected at tp = 29.4 h, indicating the time of cell death.

(c) Cell population time courses (light solid lines) and fitted data (dotted lines) of the spots described in panel b.

cells, become polynucleated or die, and polynucleated
cells may die. We first considered a model with con-
stant rates; however, we found that the data from many
of the movies could not be fit satisfactorily. There-
fore, we extended the model by allowing a simple time-
dependence of the transition rates, motivated by the
notion that the effect of an siRNA on a cell population
occurs with a time delay after the transfection, reflect-
ing differences in RNAI efficiency and protein life-time.
Hence, to account both for experiment-dependent pen-
etrance and delay of phenotypic effects, the transition
rates were modelled with four parametric sigmoid func-
tions (Figure 2b), each dependent on two parameters:
a transition penetrance o, and an inflection time point
7x. The same transition rate function kp(¢) was used for
all three transitions into cell death. The interphase-to-
mitosis kypj(#) and mitosis-to-interphase kpqp(¢) transi-
tion rates were modelled with non-zero fixed intercepts,
representing the basal rates in the untreated, prolifer-
ating populations. The model represents the temporal
evolution of the four cell populations starting at cell
seeding time, with an unknown initial number of cells

no. To account for normal cell contamination, resulting
from untransfected cells moving into the spot region, we
introduced an additional contamination parameter p to
represent the fraction of the cell subpopulation that fol-
lows a basal cell growth. Under this model, each spot
experiment was described by 10 parameters: the initial
number of cells ng at seeding time, the contamination
parameter  and 8 transition parameters: penetrance o,
and inflection time 7, each for kp(¢), kipv (8), kpvip(¢) and
knip (8).

For each spot experiment, parameters were robustly
estimated by fitting the cell count time course to the
model by penalised least squares (Figure 2c). The mean
relative error (MRE), i. e., the average of absolute differ-
ences between the fitted and the measured cell counts
relative to the maximum number of cells, measured the
accuracy of the fit in one spot. 95% of the spot experi-
ments had an MRE lower than 3.2%, demonstrating the
overall high goodness of fit of the model. Spot experi-
ments with high MRE, indicative of lack of model fit, were
discarded from the analysis. We visually inspected a ran-
dom selection of about 10 of these movies and associated
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time courses, and in all cases, technical artefacts such as
loss-of-focus, spotting issues or well contamination were
identified as source of the misfit.

Analysis of siRNAs disrupting the cell cycle

In normal exponential growth, cells are transitioning from
interphase to mitosis and back to interphase at con-
stant rates. We focused on four types of disruptions
of the basal cell cycle shown in Figure 2: quiescence,
when cells stop dividing, mitotic arrest, when cells stop
going back in interphase, polynucleation, when cells
start becoming polynucleated and cell death, when cells
start to die. Each of these events was associated with
a corresponding transition penetrance and inflection
time.

Transition penetrances proved to be reliable indicators
of disruptions of the cell cycle. As an example, in cell
death, cells growing in the control spots siCOPB1 had a
significantly higher mean cell death penetrance (1.63 x
1072 h™!) than cells seeded in the negative control spots
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(0.29 x 1072 h~!, Wilcoxon rank sum test, P < 1071?)
(Figure 3a). This is in agreement with the essential role
of COPB1 in binding Golgi vesicles. Similarly, cells sub-
ject to siKIF11 had a significant higher mean mitotic
arrest penetrance than negative control spots (5.58 x
1071 versus 0.27 x 1071 h™1, P < 1071%) and a high
mean cell death penetrance (1.40 x 10~2 h~!), consis-
tent with cell death that follows prometaphase arrest
induced by the treatment. Based on these observations,
we defined thresholds on each of the four transition pen-
etrances to detect the siRNAs that disrupt the cell cycle
(see Methods).

Transition inflection points quantified the times of
disruption of the cell cycle. For each siRNA, we sum-
marised the four times obtained from the replicate spots
by average and standard deviation. We identified genes
with reproducible cell cycle disruption times by requiring
standard deviation of less than 4 h and average of less than
50 h after seeding time; the latter criterion was motivated
by the generally lower confidence of the inflection time
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estimates at later times. Using these criteria, we found 168
siRNAs leading to quiescence at reproducible times, 289
inducing mitotic arrest, 390 leading to polynucleation and
171 causing cell death Additional file 1: Table S1).

The targets of the siRNAs inducing cell death included
the protein units of the Golgi vesicular coat COPA
and COPB2, several known apoptosis regulators such
as TP53AIP1 and the RAS family members RAB25 and
RAN. Interestingly, three siRNAs targeting COPA and
COPB2 induced cell death at similar time points (34.4 h,
35.3 h and 37.5 h), together with siCOPB1 (31.8 h). The
similarity of these timings is consistent with the fact
that the proteins are part of the same protein complex.
On the contrary, siRNAs directed at the RNA helicase
DDX39A induced an early cell death at 22.8 h, which
could reflect a different cell death mechanism from the
one caused by COPA and COPB2 inhibition. We also
identified several siRNAs inducing cell death and target-
ing uncharacterised genes such as C3orf26 (Figure 3b),
C3orf52 or Cl6orf90. However, due to the existence of
off-target effects in RNA interference, functional res-
cue of the phenotypes and secondary functional assays
would be needed to confirm the essential role of these
genes.

We found 289 siRNAs inducing mitotic arrest at repro-
ducible times, including the cyclin-dependent kinase
inhibitor CDKN2A at 26.1 h, the cell cycle progression
control protein CDC40 at 36.2 h or NEK2, a kinase
involved in the control of centrosome separation and
bipolar spindle formation, at 48.2 h. Due to the coupled
nature of mitotic arrest and cell death that may follow, we
analysed the 36 siRNAs that induced these two pheno-
types at reproducible times in Additional file 2: Figure S1.
As expected, Pearson correlation between time of mitotic
arrest and time of cell death was 0.80, confirming the
relationship between the phenotypes.
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Analysis of siRNAs increasing mitosis and interphase
duration

Average residence time in a cellular state can be
derived from transition penetrances using dimensional
arguments, as described in the Methods section. In
particular, we were able to estimate mitosis duration
(Figure 3c) and interphase duration from the model
parameters. Cells growing in negative control spots had a
median mitosis duration parameter of 51 min, in agree-
ment with live imaging studies in HeLa cells [11]. In
contrast, for cells treated with siKIF11 the value for this
parameter was strongly elevated to 8.8 h (Wilcoxon rank
sum test, P < 1071%), consistent with the essential role
of KIF11 in progression to metaphase. Similarly, for cells
treated with siINCENP the mitosis duration parameter
was 1.6 h (P < 1071%), reflecting the need of INCENP for
proper chromosome segregation.

We summarised the mitosis duration parameter for
each siRNA by computing the geometric mean of the val-
ues from the replicate spots. The geometric mean was
chosen over the arithmetic mean to reduce the influence
of outliers from highly variable large mitosis duration esti-
mates. We ruled that siRNA mitosis duration could not
be reliably estimated when the geometric standard devia-
tion, i. e. the exponentiated value of the standard deviation
of the log transformed values, of the replicate spots was
higher than 2 h. We found 1251 siRNAs, targeting 1190
unique genes, that increased mitosis duration to more
than 2 h, two times the basal mitosis duration (Additional
file 1: Table S1). Gene ontology (GO) enrichment analy-
sis of the target genes showed significant enrichment of
mitotic cell cycle regulation processes (Table 2). Many
known genes involved in mitosis progression were found,
including the mitogen-activated protein kinases MAP2K4
and MAP3K2, two subunits of the anaphase promoting
complex ANAPC1 and ANAPC4, the M-phase phos-

Table 2 Gene ontology terms enriched in the 1251 siRNAs increasing mitosis duration

Term p.value Odds.ratio  Annotated Hit  Description
1 GO0051437 87 x 10712 743 70 24  Positive regulation of ubiquitin-protein ligase activity involved in mitotic cell
cycle
2 GO:0032270 16 x 1077/ 2.36 391 55 Positive regulation of cellular protein metabolic process
3 GO:0072413 23 x 107/ 5.60 60 17 Signal transduction involved in mitotic cell cycle checkpoint
4 GO0000216 79 x 1077 4.72 72 18 M/G1 transition of mitotic cell cycle
5  GO:0031570 9.1 x 107/ 3.59 119 24 DNA integrity checkpoint
6  GO:0008380 22 x 107 241 291 42 RNA splicing
7 GO:0007093 38 x 107° 336 120 23 Mitotic cell cycle checkpoint
8  GO:0071843 1.1 x 1075 2.59 201 31 Cellular component biogenesis at cellular level
9  GO:0000075 28 x 1072 2.50 207 31 Cell cycle checkpoint

Shown is a selection of GO terms that were significantly over-represented (Fisher's exact test) with a p-value lower than 10™. Most of the terms are related to mitosis
and cell cycle regulation.
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phoprotein MPHOSPH6 and the cell cycle regulating
kinases NEK2, NEK9 and NEK10 [12]. Many siRNAs
targeting protein-coding genes with unknown functions
were found, including C12orf5, C3orf32 and CCDC9
(Figure 3d). As an example, targeting the coiled-coil
domain containing gene CCDC9 caused cells to undergo
mitosis in about 5.7 h. This result suggests that CCDC9
may be required for mitotic progression, and it will be
interesting to further investigate such candidates in vali-
dation experiments.

Similar to mitosis duration, we found 288 siRNAs that
increased interphase duration to more than 40 h, with a
geometric standard deviation lower than 4 h (Additional
file 1: Table S1). GO enrichment analysis of the 286 unique
targets revealed a significant enrichment of genes coding
for proteins involved in metabolic processes of amines,
carboxylic acids and alcohols (Fisher’s exact test, P <
5x 10~%). Perturbations of the metabolism of fast-growing
cells are a plausible reason for decelerated cell growth and
hence for an increase of interphase duration.

Clustering phenotypes

The fitted transition parameters quantified the pheno-
typic effect of a treatment on a cell population in a mul-
tivariate manner. The parameters were designed to not
depend on the initial number of cells at seeding time or
on contamination by untransfected cells moving into the
spot region. Moreover, the penetrance parameters were
time independent and unaffected by possible delays that
could have occurred during slide preparation. As a result,
most of the variability due to cell seeding, siRNA spot-
ting or delays in plating should have small influence on the
parameter estimates. Therefore, our model can be seen
as a efficient method to estimate the phenotypic effect of
a treatment on a cell population, separating the biologi-
cal signal from the technical variability coming from the
assay.

To generate a phenotypic profile for each siRNA, we
used the inflection time parameters and the logarithm-
transformed penetrance parameters and summarized
measurements from multiple spots per siRNA by the
median. Phenotypic profiles were projected in two dimen-
sions using linear discriminant analysis between the siS-
crambled, siCOPB1 and siKIF11 control spots (Figure 4).
The projection recapitulated many of the previous find-
ings: the vesicular coat protein-coding genes COPA,
COPBI1 and COPB2 clustered in the same region, char-
acterised by cell death. The kinase genes NEK9 and
NEK10 also clustered together, characterised by a com-
plex phenotype dominated by mitosis defect, polynu-
cleation and cell death. C3orf26 fell into a phenotypic
region dominated by cell death, while CCDC9 was located
between siCOPB1 and siKIF11, consistent with their phe-
notypes observed in Figure 3. Similar to the approach
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used in [6], genes with similar phenotypic profiles are fre-
quently functionally related, and further studies can be
performed to annotate the function of uncharacterised
genes.

Conclusions

Time-lapse data can provide more information than end-
point assays. For instance, the endpoint cell death can
be reached by different avenues, and intermediate phe-
notypes, such as mitotic arrest, that precede the eventual
outcome provide important information on mechanistic
or causal specifics of the final outcome. We have pre-
sented a population-based modelling approach to quan-
tify dynamic phenotypes from time-lapse cell imaging
assays. The temporal information helps to localise the
timing of events such as cell death, mitotic arrest or qui-
escence, and to estimate the duration of processes such as
mitosis.

Our approach models the temporal evolution of the
population size of cellular states by a system of ODEs. This
choice was motivated by the fact that sufficiently accurate
tracking information on individual cells was not available
for these data. It is possible to interpret the ODE model as
an approximation of the time evolution of the mean cell
numbers (expectation values) of an underlying stochastic
Markov process in the discrete space of cell state frequen-
cies, from which it emerges by Q2-expansion of the master
equation [13]. For the population sizes and transition
types and rates of interest here, the approximation holds
well, and effects of the discrete or stochastic nature of such
a process on the evolution of the means [14] is expected to
be negligible compared to the experimental variability of
the data. However, if tracking information had been avail-
able, then using it might have given more direct results,
e.g., on residence time distributions of the cells in the dif-
ferent states. Due to the presence of cell death and cell
division, tracking needs to be integrated with the model
fitting of a suitably defined stochastic process. An example
of such an approach was presented in the CellCognition
methodology [10].

We used a 10-parameter ODE model with 4 cellular
states and 4 independent transition rates. We selected this
model based on the following criteria: complexity of the
model, goodness-of-fit, parameter identifiability and bio-
logical significance of the parameters. We were able to
fit our model on the vast majority of spot experiments,
demonstrating its overall high goodness-of-fit, despite the
broad variety of dynamic phenotypes of the Mitocheck
assay, the overall low cell counts, the cell misclassifica-
tion noise and the presence of untransfected cells. At the
same time, we were able to reliably estimate the 10 model
parameters with satisfactory precision, as is indicated by
the reproducibility between the control spots, shown in
the clear separation of control phenotypes in Figure 4.
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As part of the model development, we tested simpler and
more complex models. The models with fewer parame-
ters, however, failed to model the complex phenotypes
of some of our positive controls, such as siKIF11 (data
not shown). Parameter identifiability was a problem in
more complex models, e. g., when allowing three separate
cell death transition rates, or two different polynucleated
states. In these models, some parameters could not be
reliably estimated due to low cell counts and cell mis-
classification noise, and they were often shrunk to zero
due to the penalized estimation procedure. Our model
was primarily designed to quantify the phenotypes of
a large-scale imaging assay with relatively low tempo-
ral resolution and showing a broad variety of dynamic
phenotypes. Depending on the biological question, more
targeted models could be envisioned to focus on certain

dynamic aspects, such as introducing different modes of
cell death or using a finer model of the mitosis phase.

We applied our model to the Mitocheck assay and
derived six new phenotypic descriptors not considered in
the original analysis: time of quiescence, time of mitotic
arrest, time of polynucleation and time of cell death, mito-
sis duration and interphase duration. We established a list
of 2190 siRNAs where these phenotypes could be reliably
estimated. This list can be seen as a resource to build new
hypotheses on the associations between genes and biolog-
ical processes. However, due to the possibility of off-target
effects of siRNA perturbations, unavoidable experimental
variability and the use of a cell line with a heavily rear-
ranged genome, for general validity these results must
be confirmed by independent assays, for instance, rescue
experiments in another cell line [8].
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Methods

The Mitocheck time-lapse imaging screen data

We used the Mitocheck primary screen data avail-
able from http://www.mitocheck.org, an online
database containing the siRNA sequences, movies and cell
count times courses. The screen consisted of 206592 time-
lapse spot experiments, including 164875 sample spots,
using 51766 different siRNA constructs and targeting
17293 genes (based on a mapping to the Ensembl version
27 annotation of the human genome). Spot experiments
were organised in slides, each containing 7 to 8 negative
and 8 to 11 positive control spots. A cervix carcinoma cell
line (HeLa) that stably expresses GFP-tagged H2B histone
was used for fluorescence microscopy. Cells were filmed
starting 18 h after seeding for a duration of 48 h, with
an imaging rate of one per 30 min. After acquisition, cell
nuclei were segmented, quantified and classified into one
of 16 morphological classes by a fully automated algo-
rithm [8]. We grouped the 16 nuclear morphologies into 4
cellular states representative of the cell cycle: “interphase’,
“mitosis’, “polynucleated” and “cell death” (Table 1).

Ordinary differential equation model

We considered four cellular states: interphase (I), mitotic
(M), polynucleated (P) and dead (D). We modelled the
number of cells 7, (¢) of state p, at time ¢ with the system
S of differential equations, depicted in Figure 2a:

np(8) = — (ki (8) + kp () np(8) + 2kpip ()i (0)

iy (2) = kv (Dnp(8)
— (kv1(®) + kp (8) + kvp () mv (6)
ip(t) = knip (v (8) — kp ()np(©)
np(t) = kp(O)n1(8) + kp (O)np(8) + kp O)np (),
with:

kv (@) = O‘?M —am/ (1 + exp(tiM — t))
knmi(6) = ag/H —apmi/ (1 + exp(tmy — 1))
knip () = apip/ (14 exp(emp — 8))

kp(#) = ap/ (1 + exp(zp — 1))

where 71, (?) is the time derivative of 7, (¢), with the initial
conditions n1(0) = (1 — wo)np, np(0) = wong, np(0) =
np(0) = 0, and ng is the number of cells at seeding
time ¢ = 0. In agreement with observations of untreated
cells, the mitotic index at seeding time was set to wy =
0.05, the basal interphase-to-mitosis penetrance to a?M =
0.025 h~! and the basal mitosis-to-interphase penetrance
O‘%/[I = 0.57 h™!. To account for contamination of spots
by normal cells, due to untransfected cells moving into
the spot region, we assumed that cell counts were a
mixture of two independent, growing cell populations:
a treated population, modelled by S with parameters

{1 — wno, aiM> M1, &MP> @D» TIM> TMDI TMP> TD}
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and an untreated population, modelled by S with param-
eters {ung, 0, 0, 0, 0, 0, 0, 0, 0}. In total, 10 parameters
were required to model a cell count time course: the initial
cell number at seeding time np, the normal contamina-
tion fraction parameter p and 8 transition parameters

{etM, aMD, @MPs @D» TIM» T™MI: TMP» ™D}

Estimation of model parameters

Model parameters 6 = {ng, 1, ¥IM> EMI CMP> D> TIM>
™I TMP> TD]} Were estimated by penalised least squares
regression, minimising the cost function:

1
JO) = =303 0p® —mp@O) +2 3 e, (1)

teT peP keK

where 7 is the set of observed time points, y,(¢) the
observed number of cells of state p at time £, A a con-
stant to weigh the penalty term and the set of penalised
parameters X = {u, oM, oMl oMp> op}- Given
the parameters, the ODE system was integrated using
the Runge-Kutta fourth-order method. Minimisation
of the penalised criterion / was achieved with the
Levenberg-Marquardt algorithm [15], applying a positiv-
ity constraint to the components of 6. To decrease the
risk of finding local minima, each numeric minimisation
was run 64 times with different initial parameters that
were randomly sampled from previous fitted parameters
with Gaussian noise added. Using 64 initial conditions
greatly decreased the variance of the estimated param-
eters, as shown in the Additional file 3: Figure S2. The
regularisation parameter A was selected to maximise the
classification performance of the model parameters on the
data subset of control siRNAs, computed by 5-fold cross-
validation and linear discriminant analysis. We chose the
value A = 4, leading to a classification performance
of 94.2%. The regularisation did not substantially alter
the overall goodness-of-fit in terms of residual sum of
squares. The penalty term accounted, on average over all
spots, for 6.3% of the cost function (1).

The associated software, which is designed to also be
applicable to analogous time-lapse cell count data, and
the code to reproduce the results shown in this paper, are
available in the Bioconductor/R package mitoODE.

Data transformation and quality control

For the estimation of the time of disruption of the
cell cycle, we selected those spot experiments that
had sufficiently high transition penetrance parameters
{orv, oM, @mps o@p)- That is, we required these param-
eters to be higher than 0.025, 0.5, 0.25 or 0.005, respec-
tively. These values corresponded approximately to the
90% quantile of the corresponding values in the negative
control (siScrambled) spots. An example of the distribu-
tion of the cell death penetrance is shown in Figure 3a.
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Dimensional arguments show that the mean residence
time in a cellular state is proportional to the reciprocal of
the output transition rate. Therefore, we defined the mean
mitotic duration as ypr/(epp + op — o) and the mean
interphase duration as y;/(a¢p—ap ), where yu and yy are
experiment-specific parameters. Average mitosis duration
of 50 min and interphase duration of 23 h are observed
in untreated HeLa cells in higher-resolution live cell imag-
ing experiments, and based on these values we calibrated
ym = 0.6 and y; = 1.

To account for experimental artefacts such as accumu-
lation of cell clusters, transient loss-of-focus, spot con-
tamination and seeding issues, we implemented a quality
control (QC) filter. We disregarded all spots that did not
pass the the original Mitocheck spot QC filter [8], had a
cost value of J (Equation (1)) higher than the 95% quan-
tile of all /, had a normal contamination fraction p higher
than 0.5, or had an estimated mitosis duration of less than
20 min, which is biologically implausible. In total, 83.4%
of the 164875 sample spot experiments passed the qual-
ity filter. Visual inspection confirmed that discarded spots
were mostly experimental artefacts.

Additional files

Additional file 1: Table S1. List of 2190 siRNAs inducing a disruption of
the cell cycle. The "Mitocheck sirnalD” column indicates the siRNA IDs, as
referenced in the http://www.mitocheck.org database. The “target.hgnc”
column indicates the HUGO gene symbol targeted by the siRNAs. The four
next columns are the different times of disruption of the cell cycle induced
by the siRNAs, in hours. The two next columns are the measured durations
of the interphase and mitosis phases induced by the siRNAs, in hours.

Additional file 2: Figure S1. Correlation between time of mitotic arrest
and time of cell death. Pearson’s correlation between the time of mitotic
arrest and the time of cell death measured in 36 siRNAs inducing both
phenotypes was 0.80, confirming the relationship between the
phenotypes.

Additional file 3: Figure S2. Effect of multiple initial conditions in
parameter estimate variance. The variance of the estimate of the
mitosis-to-interphase ayy penetrance rate in the siKIF11 spot shown in
Figure 1b (bottom-left) depends of the number of initial conditions used in
the fitting procedure. For each of the boxes shown, we estimated 32 times
the penetrance rate oy of the spot, keeping the lowest cost estimate from
different numbers of initial conditions (1,4, 16 and 64), randomly sampled
from previously fitted spots. As expected, the variance of the estimates
decreased greatly with increasing number of initial conditions. The
horizontal red line shows the final estimate used in the analysis.
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