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Abstract

practice, especially across many conditions.

over-segmentation error.
bioimages.

Unsupervised learning

Background: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous
system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However,
fully automated techniques to segment images are often susceptible to noise and heterogeneity in EM images
(e.g. different histological preparations, different organisms, different brain regions, etc.). Supervised techniques to
address this problem are often helpful but require large sets of training data, which are often difficult to obtain in

Results: We propose a new, principled unsupervised algorithm to segment EM images using a two-step approach:
edge detection via salient watersheds following by robust region merging. We performed experiments to gather EM
neuroimages of two organisms (mouse and fruit fly) using different histological preparations and generated manually
curated ground-truth segmentations. We compared our algorithm against several state-of-the-art unsupervised
segmentation algorithms and found superior performance using two standard measures of under-and

Conclusions: Our algorithm is general and may be applicable to other large-scale segmentation problems for

Keywords: Image segmentation, Superpixels, Salient watershed, Region merging, Electron microscopy,

Background
Electron microscopy (EM) images can reveal the phys-
ical structure of cellular and subcellular processes in
the nervous system at a fine level of resolution. Accu-
rately segmenting such images is a key component of
many bioimage related tasks — including labeling, visu-
alization, and classification — in structural biology and
neuroscience [1].

However, fully automated methods to segment EM
images are computationally challenging to develop due to
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both natural and synthetic noise in the images and irregu-
larity in cellular structures. Noise can emerge due to vari-
ations in histological preparations or in the image acqui-
sition process, or due to natural differences in the brain
tissue or organisms of interest. This noise is extremely
difficult to overcome experimentally and thus must be
accounted for computationally. The physical shape of
many structures (e.g. neural membranes) can also vary
widely and do not conform to a standard template for
detection [2], and intensity and contrast differences may
also be equally inconsistent across samples. High-quality
EM images can also be very large (millions to tens of mil-
lions of pixels), which further constrains the complexity
of image processing algorithms. While it may be possible
to fine-tune an algorithm to handle nuances within a spe-
cific EM preparation, few algorithms have been proposed

© 2013 Navlakha et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Navlakha et al. BMC Bioinformatics 2013, 14:294
http://www.biomedcentral.com/1471-2105/14/294

that can reasonably handle images across a variety of dif-
ferent imaging conditions and preparations. Supervised
or semi-supervised techniques are often helpful [3-9],
but they require large sets of training data, which are
often difficult to obtain in practice, especially across many
conditions.

An important initial step of image segmentation is
grouping pixels into coherent local regions called super-
pixels. Running algorithms on the decomposed set of
superpixels (instead of the original pixels) can aid exist-
ing supervised or semi-supervised approaches for EM
segmentation as well as other downstream computer
vision tasks by simplifying learning and inference. Indeed,
in recent years, many unsupervised algorithms have
been proposed to generate superpixels and range from
graph-based [10-13], to gradient-ascent-basad [14-17], to
clustering-based approaches [18] (see Achanta et al. [19]
for review). These algorithms have mostly been tailored
for processing natural images and are often sensitive to
variations in image quality and noise that are inherent to
the EM process. These algorithms also employ different
constraints and parameters (e.g. different rules to enforce
regularity of superpixel size and shape, different measures
of superpixel homogeneity, etc.) designed according to
their intended application.

In this paper, we propose a novel, principled unsu-
pervised segmentation algorithm designed specifically to
be robust to the types of variation and noise expected
in EM images of brain tissue. We propose a two-step
approach: First, we develop a novel watershed variant
that produces a coarse over-segmentation while strongly
preserving edges in the image. This is done by using
Canny [20] and probabilistic boundary [21] edges to
find high-confidence boundaries, which are then incorpo-
rated as constraints into the watershed algorithm. Second,
we design a new region merging algorithm to reduce
the number of superpixels by merging adjacent regions
based on a measure of similarity derived from intensity
and texture features. We formalize the merging prob-
lem as a graph-theoretic optimization function and use
an efficient agglomerative greedy algorithm to find a
final partition into the desired number of superpixels.
We performed experiments to gather EM images of the
fruit fly and mouse nervous systems using two differ-
ent histological preparations. Using two standard mea-
sures of over- and under-segmentation error, we show
that our approach offers a significant reduction in the
number of superpixels while preserving more true bound-
aries than existing state-of-the-art algorithms (Figure 1).
We also show qualitative results on several additional
images. Our results suggest that unsupervised tech-
niques can be used as a general first-pass technique to
reduce image complexity without significantly sacrificing
accuracy.
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Methods
The salient watershed algorithm
Given an EM image to segment, the first step is to pro-
duce accurate boundary-preserving superpixels. While
many algorithms exist for this purpose, the classi-
cal watershed algorithm [16] is a natural choice due
to its ease of use, efficiency, and scalability. Unfortu-
nately, the standard watershed algorithm suffers from
two significant problems: over-segmentation and leak-
age. Over-segmentation can usually be corrected with
post-processing steps (such as region merging); however,
to extract regions from EM images that correspond to
precise cellular structures, fixing leakage in the initial
segmentation is critical. While dataset-dependent heuris-
tics may help resolve leakage, this does not address the
general problem of watershed leakage when segment-
ing images across different EM preparations and imaging
conditions.

To tackle these issues, we propose a novel variant of the
watershed algorithm called Salient Watershed. The steps
of our algorithm are:

1. De-noise the image. We use non-local-means
smoothing [22] to both reduce the impact of local
noise when detecting boundaries and to reduce
unnecessary over-segmentation. In particular, we
pre-process the original input image I with a 3 x 3
pixel-wide non-local-means filter [22] to obtain I,;
(Figure 2B).

2. Detect high-confidence boundaries. First, we
apply the Canny edge detector [20] on I,,; to obtain
V]Z;mny . Second, we compute the Pb detector [21] on

I,,; for a coarse estimate of boundary probabilities Iﬁ b,
and then we compute an edge map VIf: f by

thresholding Iijlb at a conservative threshold (1/200).
Third, we combine these edges into a hybrid salient
edge map via pixel-wise multiplication:
VIZ‘;”em =vr lb. * VI /" (Figure 2C). It has been
previously shown that the probabilistic Pb edge
detector [21] by itself cannot adequately segment EM
images without re-training on specific type of images
[5]. Combining the Canny and Pb boundary
detectors gives us the ability to find high-likelihood
salient boundaries that retain precise edge
localization without resorting to parameter tuning or
re-training for different kinds of tissue samples.

3. Elevate watershed levels where Canny and Pb
coincide. Next, we compute the Euclidean distance

transform on VIZ‘l’lie”t to obtain Ifi?slie”t and then

_ salient
compute an enhanced edge map Jenhance — =215y

(Figure 2D). This step elevates the watershed along
the intersection of Canny and Pb lines and provides
an exponential fall-off as the distance to these lines
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Figure 1 Overview and example segmentations. A) Original 1000x1000-pixel EM image of the fruit fly ventral nerve cord. B) Manual
ground-truth segmentation. €) The result of our segmentation algorithm after k-means clustering. D-G) Segmentations of the highlighted region
in yellow returned by each algorithm using a total of roughly 1000 superpixels each (boundaries shown in red). Our algorithm better adheres to the

true edges compared to Watershed, SLIC, and TurboPixels.

increases. It also helps bridge small gaps that may
exist in the boundaries.

4. Run watershed on the enhanced image. Finally, we
apply the classical watershed algorithm on I¢##"¢¢ to
obtain the final over-segmented image ¢/
(Figure 2E).

By incorporating the notion of edge saliency into
the watershed computation, we ensure that salient
boundaries are preserved. This addresses the leakage
problem consistently. While this procedure adds addi-
tional computational complexity to the original water-
shed procedure, Salient Watershed is a more robust
algorithm that can be applied to many EM datasets
to produce a first-pass segmentation without tuning
parameters.

This algorithm produces an initial (over-segmented) set
of superpixels (regions), which are then further collapsed
using an agglomerative merging algorithm, as described
below.

The region merging algorithm

Region merging is often performed after superpixels are
generated to collapse neighboring regions. There are three
aspects to region merging: the features used to repre-
sent each region, a measure of similarity between regions
in feature-space, and an objective function for merging
regions. We describe each of these aspects below.

Each region is defined by a normalized intensity his-
togram and a set of normalized texture histograms com-
puted using pixel values in the region. Texture is an
important cue used by humans when manually segment-
ing and annotating EM images [23], and its use has
become popular in many computer vision tasks today [24].
Varma and Zisserman [25] proposed an effective set of
38 filters (6 orientations x 3 scales x 2 oriented filters +
2 isotropic filters), but only recorded the maximum filter
response across each orientation, leading to 8 total filter
responses at each pixel. Each region is thus represented by
a b x 9 feature matrix, where b = 32 is the number of bins
in each histogram.

Most previous approaches compute the similarity
between two regions in feature-space based on the
Euclidean or Manhattan distances [26], by comparing
means and standard deviations of feature vectors [27,28],
or using information-theoretic measures [29]. The down-
side of these measures is that they treat each histogram
bin independently and, as a result, two histograms that
differ slightly in adjacent bins are treated as equally dis-
tant as two histograms that differ equally in far-apart
bins. To avoid this problem, we use the Earth Mover’s
Distance (EMD) [30], which computes the minimum cost
to transform one histogram to exactly match the other
using transformation costs that depend on the linear dis-
tance between bins. EMD can be solved quickly using a
constrained bipartite network flow routine [31]. Overall,
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C Intersecting Canny and Pb edges

See 3 for full description of each step.

Figure 2 The Salient Watershed algorithm. A) The original input image. B) Non-local meanis filter applied to de-noise the image. €) Detecting
high-confidence boundary edges. D) Elevating watershed levels where Canny and Pb coincide. E) Final watershed output on the enhanced image.

B Non-local means filter
S .

the similarity between two adjacent regions r and r’ is
defined as:

s(r, ") = exp(— min(7sige, 7.
8
—a ) EMD(Texty,, Text, ), (1)
i=1

size)) + exp(—EMD(Int,, Int,/)

where the first term biases towards collapsing smaller
regions; Int, is the normalized intensity histogram of
region r; Text,; is the i normalized texture histogram of
region r; and « is a parameter to weigh the contribution
of the texture component (we set « = 1/8). We use EMD
to compute the similarity between both normalized fea-
tures (intensity and texture), and thus born terms lie on
roughly the same scale.



Navlakha et al. BMC Bioinformatics 2013, 14:294
http://www.biomedcentral.com/1471-2105/14/294

The final aspect of the algorithm is the merging opti-
mization function [26]. We define a predicate P that
states that every region r should be “sufficiently” different
compared to each of its neighbors. Formally:

ifs(r,7) < t,Vr' e N(r)
otherwise,

true
false

P(r) = { b)

Algorithm 1 Region-Merging (I, L, NumSPs)
1: === Compute RAG and region features ===
2: G <« region_adj_graph (L)
3: Reg2Intensity <«
region intensity histogram(I,L)
4: Reg2Texture < region text histograms
(I,L)

5

6: === Populate heap with edge costs ===
7. forallu,v € E(G) do

8 H <« push(s(u,v),u,v)

9

: end for

10:

11: === Iteratively merge most similar regions ===

12: while |G| < NumSPs do

13: == Find the most similar pair of neighboring
regions

14 (s,u,v) <« H.pop()

15:

16: == Remove the (u,v) boundary and any heap
entries with u or v ==

172 G <« contract_ edge(G,u,Vv)

18: L < remove_ boundary(L,u,V)

190 H <« remove_all (H,u)

20 H < remove_all (H,V)

21:

22: == Compute features for new region, uv ==

23: Reg2Intensity <«

update intensity(I,L,u,v,uv)
24: Reg2Texture <

update_ texture(I,L,u,v,uv)

25:

26: == Add heap entries for new region uv ==
27 forallx € G.neighbors (uv) do

28: H <« push(s(uv,x),uv,x)

29:  end for

30: end while

31: return G

Note: The function s (u,v) computes the similarity
between regions u and v using Reg2Intensity and
Reg2Texture (see Equation 1). I is the original image
and L is the label matrix that defines region boundaries.
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where N(r) are the regions adjacent to r. If this state-
ment is true for region r, we call  an “island”. We seek to
find a segmentation such that P holds for every region.
In graph-theoretic terms, we start with the region adja-
cency graph G = (V,E), defined by nodes V (regions)
and with edges E connecting adjacent regions. To merge
two regions means to contract the edge between them;
our goal is thus to find a set of edges whose contrac-
tion results in a graph satisfying P for every region.
We find such a set using a greedy agglomerative algo-
rithm: we start with the regions produced by the Salient
Watershed algorithm, and iteratively merge the pair of
neighboring regions that are most similar. This process
can stop either when the similarity between any two
adjacent regions is < v (at which point every region is
guaranteed to be an island according to ) or when the
desired number of superpixels is met (as we do here).
Pseudocode of the region merging algorithm is shown in
Algorithm 1.

Comparing segmentations versus ground-truth

To evaluate performance, we performed experiments and
collected three 1000x1000-pixel EM images of the ner-
vous system: 2 images were from the fruit fly ventral nerve
cord fixed using a high pressure freezing (HPF) protocol,
and 1 image was from the mouse cortex using a perfusion
DAB-based protocol (e.g. [32]). We manually segmented
membranes, mitochondria, and other neuronal structures
in these images (Figure 1A and 1B) and extracted ground-
truth boundary matrices for each. We also collected two
additional images of the mouse cortex using HPF, which
we analyzed qualitatively.

To compare an algorithm’s segmentation P with the
ground-truth Q, we use two standard metrics: the asym-
metric partition distance (APD) and the symmetric par-
tition distance (SPD) [33]. APD(P, Q) computes, over all
regions r € P, the maximum percentage of pixels in r
that map onto a single ground-truth segment. SPD(P, Q)
finds the maximal matching between regions in P and Q
and computes the overall percentage of pixels that must
be deleted from both images in order to make each pair
of matched regions equivalent. APD penalizes “spill-over”
of segments across ground-truth boundaries, but does
not penalize over-segmentation. On the other hand, SPD
measures exact 1-1 correspondence between segmenta-
tions and does penalize over-segmentation. We report
1-SPD(P, Q) as a percentage, so in both measures higher
percentages are better.

Results and discussion

We compared our algorithm against TurboPixels [17] and
a MATLAB implementation of SLIC [19,34]. TurboPixels
uses geometric flows to find regions that are approxi-
mately uniform in size and shape while also preserving
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smooth boundary edges, and it is specifically designed
to produce high-quality over-segmentations. SLIC is a
clustering method based on k-means that was shown to
be superior to several graph-based and gradient-ascent-
based algorithms on segmenting mitochondria in EM
images [18]. It was also recently shown in a large-scale
comparison to be amongst the best performing algorithms
on the Berkeley segmentation dataset [19], and thus repre-
sents the current state-of-the-art. We ran each algorithm
on our EM images and varied the number of superpix-
els returned by adjusting parameters in the algorithm. For
each segmentation, we computed the over- and under-
segmentation error (SPD and APD, respectively).

Our algorithm more strictly adheres to true boundaries
compared to the other algorithms across nearly the entire
range of superpixels (Figure 1D-G and Figure 3A). For
example, at roughly 2000 superpixels on the first fruit fly
image, our algorithm has an APD of 93.72% compared to
88.98% for TurboPixels and 86.89% for SLIC. Thus, we can
achieve over three orders of magnitude reduction in the
number of superpixels (compared to the original image)
while still preserving over 90% of the true boundaries.
Some predicted boundary contours may indeed be correct
but do not align exactly with the ground-truth bound-
aries; thus, this value actually represents a lower-bound
on performance. In practice, over-segmentation is often
more permissive than under-segmentation because it is
relatively easy for downstream analyses to specify addi-
tional merges (e.g. via classification) but more difficult and
labor-intensive to reconstruct a lost boundary.

Our algorithm also outperforms the other methods
in extracting true regions in their entirety (Figure 3B).
The SPD penalizes over-segmentation and measures exact
concordance between the ground-truth and algorithm
partitions. At 1000 superpixels, our algorithm has an aver-
age SPD of almost 50% compared to 7% (TurboPixels)
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and 30% (SLIC). This means that half the pixels in our
partition are exactly matched to ground-truth regions.
Our ground-truth was constructed to consider entire
membranes as single regions (as a biologist might), but
there may be small substructures within membranes
that persist due their markedly different features. These
regions will naturally be left unmerged by each algorithm;
a more fine-grained ground-truth segmentation would
thus increase these percentages further. TurboPixels espe-
cially suffers on the SPD measure because it generates
regular- and grid-like superpixels (Figure 1F); EM images,
however, contain many irregularly-shaped structures that
do not fit this mold.

Our algorithm and SLIC perform similarly under both
metrics when the number of desired superpixels is large
(Figure 3 at 10,000 superpixels), but diverge as fewer
superpixels are requested. This suggests that both meth-
ods may be comparable at high numbers of superpix-
els, but that our region merging algorithm is more
robust at preserving boundaries than the clustering-based
approach used by SLIC.

We also compared our Salient Watershed algorithm to
the classical watershed algorithm [16]. On the first image,
for example, the latter produced a segmentation with
43,252 regions and an APD of 94.17%. Salient Water-
shed produced a segmentation with 13,252 regions and
an APD of 95.25%. APD can not increase with subse-
quent merges; the fact that our segmentation produces
a higher APD with more than 3x fewer regions testi-
fies to the strong edge-preserving property of our salient
watersheds.

Next, to determine whether our superpixels may
be used for classification, we took the 1000 superpix-
els generated by our algorithm and clustered them in
feature-space using k-means (Figure 1C). Co-clustered
regions were assigned the same color (we used k = 13

>

100

80

Asymmetric partition distance (%)

—e— Our algorithm
sLic
—=— TurboPixels
o i i i i i i
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
# of superpixels

Figure 3 Under- and over-segmentation error of each algorithm with respect to ground-truth. The average and standard deviation of
A) APD and B) SPD for each algorithm on our EM benchmark dataset. Overall, our algorithm preserves more true ground-truth boundaries (APD)
and better captures true ground-truth segments within a single region (SPD) compared to TurboPixels and SLIC.
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but found similar results for many k). Visual inspection
shows that indeed many similar structures — in particular
mitochondria (light green) and membranes (purple) —
are similarly colored. This implies that the superpixels
that comprise these regions represent homogeneous
biologically structures and that they are well-separated
by intervening boundaries in feature space. This clus-
tering represent a first-pass unsupervised labeling of
EM images that can be further improved via supervised
techniques [3,5].

Finally, we demonstrate the performance of our algo-
rithm versus SLIC and TurboPixels qualitatively on two
additional images of the mouse cortex prepared using
high pressure freezing (Figure 4). The previous images
of the mouse cortex were obtained using DAB. With-
out altering any parameters, we ran each algorithm using
2,000 superpixels and visually compared the predicted
boundaries. As with the previous images, our method pre-
serves intricate membrane boundaries much better than
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the other techniques and produces more homogeneous
regions. We also find superior performance when cap-
turing irregularly-shaped regions, and we are better able
to separate regions that are separated by a thin bound-
ary (e.g. two membrane boundaries that lie adjacent to
one another; Figure 4). Both of these types of heterogene-
ity are widespread in EM images and not easily captured
by methods that make assumptions about edge proper-
ties or the distribution of noise in EM images [28]. This
further suggests that our unsupervised approach is robust
to some natural variations caused by different histological
preparations in EM neuroimages.

Conclusions

Accurately segmenting electron microscopy images is an
important problem for many neuroimage related tasks,
but it also presents several computational challenges
due to the noise and variation inherent in tissue sam-
ples and in the EM chemistry and image acquisition
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Our
Algorithm

SLIC

Turbo-
Pixels

Our
Algorithm

methods, despite no adjustment of parameters.

SLIC

Turbo-
Pixels

Turbo-
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Figure 4 Qualitative results on two additional images. \We ran SLIC, TurboPixels, and our algorithm on two additional images of the mouse
cortex prepared using a high-pressure freezing EM protocol. Our approach again preserves boundaries and edges with more fidelity than the other
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processes. We presented an unsupervised algorithm to
generate boundary-preserving superpixels by combin-
ing a salient watershed algorithm with robust region
merging. On a benchmark dataset of noisy EM images,
our algorithm outperformed two state-of-the-art meth-
ods using two standard measures of over- and under-
segmentation error. While our method has additional
computational complexity, we place emphasis on accu-
racy and contend that downstream time spent in EM
image analysis will be reduced through more accurate
segmentations.

While aspects of this general pipeline for segmentation
(edge detection, watershed, region merging) have been
used in previous works [8,9,28], the specific sequence of
steps as outlined in this paper is novel. This combination
of components offers our unsupervised approach a level
of generality and robustness that can handle many types
of noise present in heterogeneous EM data. Our approach
also uses few parameters and may be usable across differ-
ent EM histological preparations and for other large-scale
bioimage segmentation problems (e.g. segmentation of
cells, nuclei, or proteins within fluorescence microscopy
images).
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