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Many digital signal processing algorithms are first developed in floating point and later converted into fixed point for digital
hardware implementation. During this conversion, more than 50% of the design time may be spent for complex designs, and
optimum wordlengths are searched by trading off hardware complexity for arithmetic precision at system outputs. We propose a
fast algorithm for searching for an optimum wordlength. This algorithm uses sensitivity information of hardware complexity and
system output error with respect to the signal wordlengths, while other approaches use only one of the two sensitivities. This paper
presents various optimization methods, and compares sensitivity search methods. Wordlength design case studies for a wireless
demodulator show that the proposed method can find an optimum solution in one fourth of the time that the local search method
takes. In addition, the optimum wordlength searched by the proposed method yields 30% lower hardware implementation costs
than the sequential searchmethod in wireless demodulators. Case studies demonstrate the proposedmethod is robust for searching
for the optimum wordlength in a nonconvex space.
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1. INTRODUCTION

Digital signal processing algorithms often rely on long
wordlengths for high precision, whereas digital hardware im-
plementations of these algorithms need short wordlengths
to reduce total hardware costs. Determining the opti-
mum wordlength can be time-consuming if assignments of
wordlengths are performed by trial and error. In a complex
system, 50% of the design time may be spent on wordlength
determination [1].

Optimum wordlength choices can be made by solving
equations when propagated quantized errors [2] are ex-
pressed in an analytical form. However, an analytical form
is difficult to obtain in complicated systems. Searching the
entire space by simulation guarantees to find optimum
wordlength. Computation time, however, increases expo-
nentially as the number of wordlength variables increases.
For these reasons, many simulation-based wordlength opti-
mization methods have explored a subset of the entire space
[3–7].

Choi and Burleson [3] showed how a general search-
based wordlength optimization can produce optimal or
near-optimal solutions for different objective-constraint for-
mulations. Sung and Kum [4] proposed simulation-based

wordlength optimization for fixed-point digital signal pro-
cessing systems. These search algorithms try to find the
cost-optimal solution by using either “exhaustive” search or
heuristics.

Han et al. [5] proposed search algorithms that can find
the performance-optimal solution by using “sequential” or
“preplanned” search. Those algorithms utilize the distortion
sensitivity information with respect to the signal wordlengths
at the system output such as propagated quantized error.
Those algorithms assume that the hardware cost in each
wordlength is the same. However, complicated digital sys-
tems such as a digital transceiver possess different cost or
complexity in digital blocks.

A new algorithm that considers different hardware costs
is proposed in [7]. The new algorithm utilizes the measure
of the distortion sensitivity as well as complexity sensitivity.
The new algorithm speeds up the search time to find an op-
timum wordlength by considering performance and cost as
the objective function and the update direction.

This paper is organized as follows. In Section 2, related
work for floating-point to fixed-point conversion is pre-
sented. Section 3 gives the background for wordlength op-
timization. Various search methods to find optimum word-
length are reviewed in Section 4. New sensitivity measures to
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Table 1: Fixed-point conversion approaches for integer wordlength (IWL) and for fractional wordlength (FWL) determination.

Analytical approach Statistical approach

Range model for IWL Error model for FWL Range statistic for IWL Error statistic for FWL

Wadekar [8] Constantinides [9] Cmar [10] Cmar [10]

Stephenson [11] Shi [12] Kim [13] Kum [14]

Nayak [15] — — Shi [12]

Table 2: Optimum wordlength search methods.

Cost sensitivity Error sensitivity Nonsensitivity

Local search [3] Sequential search [5] Exhaustive search [4]

Evolutive search [6] Max-1 search [16] Branch and bound [3]

— Preplanned search [5]

Complexity-and-distortion measure search—proposed

update search directions are generalized in Section 5. Case
studies of the optimum wordlength design are presented
in Section 6. In Section 7, simulation results are discussed.
Section 8 concludes the paper.

2. RELATEDWORK

During the floating-point to fixed-point conversion process,
fixed-point wordlengths composed of the integer wordlength
(IWL) part and the fractional wordlength (FWL) part are de-
termined by different approaches as shown in Table 1. Some
published approaches for floating-point to fixed-point con-
version use an analytic approach for range and error estima-
tion [8, 9, 11, 12, 15], and others use a statistical approach
[10, 12–14]. An analytic approach has a range and error
model for integer wordlength and fractional wordlength de-
sign. Some use a worst-case error model for range estimation
[8, 15], and some use forward and backward propagation for
IWL design [11]. Still, others use an error model for FWL
[9, 12]. The advantages of analytic techniques are that they
do not require simulation stimulus and can be faster. How-
ever, they tend to produce more conservative wordlength re-
sults.

A statistical approach has been used for IWL and FWL
determination. Some use range monitoring for IWL esti-
mation [10, 13], and some use error monitoring for FWL
[10, 12, 14]. The work in [12] also uses an error model that
has coefficients obtained through simulation. The advantage
of statistical techniques is that they do not require a range or
error model. However, they often need long simulation time
and tend to be less accurate in determining wordlengths.

After obtaining models or statistics of range and error
by analytic or statistical approaches, respectively, search al-
gorithms can find an optimum wordlength. Some published
methods search optimum wordlength without sensitivity in-
formation [3, 4], and with sensitivity information [3, 5, 16]
as shown in Table 2. “Exhaustive” search [4] and “branch-
and-bound” procedure [3] can find an optimum wordlength
without any sensitivity information. However, nonsensitiv-
ity methods have an unrealistic search space as the number
of wordlengths increases.

Some use sensitivity information to search an optimum
wordlength. “Local” search [3] and “evolutive” search in [16]
use cost sensitivity information. The advantage of cost sensi-
tivity methods is that they can find an optimum wordlength
in terms of cost. “Sequential” search and “preplanned” search
in [5] and “Max-1” search in [16] use error sensitivity infor-
mation. The advantage of employing error sensitivity is that
they find the optimum wordlength in terms of error faster
than the cost sensitivity method. However, both sensitivity
methods do not always reach global optimum wordlength.

Cantin et al. provide a useful survey of search algorithms
for wordlength determination. In this work, search algo-
rithms are compared, and the “preplanned search” shows the
smallest number of iterations to find a solution. However,
the heuristic procedures do not necessarily capture the op-
timum solution to the wordlength determination problem,
due to nonconvexity in the constraint space [9]. Thus, the
distance between a global optimum wordlength and a local
optimum wordlength searched by algorithms is considered.
The proposed method is robust to search a near optimum
wordlength. This paper discusses the distance and robustness
of the proposed algorithm in Section 7.

3. BACKGROUND

3.1. Fixed-point data format

When designers model at a high-level, floating-point num-
bers are useful to model arithmetic operations. Floating-
point numbers can handle a very large range of values and are
easily scaled. In hardware, floating-point data types are typi-
cally converted or built as fixed-point data types to reduce the
amount of hardware needed to implement the functionality.
To model the behavior of fixed-point arithmetic hardware,
designers need bit-accurate fixed-point data types.

Fixed-point data consists of an integer part and a frac-
tional part. The number of bits assigned to the integer
representation is called the integer wordlength (IWL), and
the number of bits assigned to the fraction is the factional
wordlength (FWL) [17]. Fixed-point wordlength (WL)
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corresponds to the following equation:

WL = IWL+FWL . (1)

The wordlengthmust be greater than 0. Given IWL and FWL,
fixed-point data represents a value in the range R, with the
quantization step Δ as

−2IWL ≤ R < 2IWL, for signed,

0 ≤ R < 2IWL, for unsigned ,

Δ = 2−FWL.

(2)

IWL and FWL are determined to prevent unwanted over-
flow and underflow. IWL can be determined by the following
relation:

IWL ≥ ⌈ log2 R
⌉
. (3)

Here, �x� is the smallest integer that is greater than or equal
to x. The range, R, can be estimated by monitoring the max-
imum and minimum value or mean and standard derivation
of a signal [13, 18]. FWL can be determined by wordlength
optimization or tradeoffs in the design parameters during
fixed-point conversion.

3.2. Formulation of the optimumwordlength

Thewordlength is an integer value, and a set of nwordlengths
in a system is defined to be a wordlength vector, that is,
w ∈ In such as {w1,w2, . . . ,wn}. We assume that the objec-
tive function f is defined by the sum of every wordlength
implementation cost function c as

f (w) =
n∑

k=1
ck
(
wk
)
, (4)

where ck has a real value so that ck : I → R. The quan-
tized performance function p indicates propagated precision
or quantized error and is constrained as follows:

p(w) ≥ Preq, (5)

where p has a real value so that p : I → R, and Preq is a
constant for a required performance. We also consider the
lower bound wordlength w and upper bound wordlength w
as constraints for each wordlength variable:

wk ≤ wk ≤ wk, ∀k = 1, . . . ,n. (6)

The complete wordlength optimization problem can then be
stated as

min
w∈In

f (w) subject to p(w) ≥ Preq, w ≤ w ≤ w. (7)

The goal of the wordlength optimization is hence to search
for the optimizer w∗ that minimizes the objective function
f (w) in (7).

3.3. Finding the optimumwordlength

One of the algorithms for searching the “optimum”
wordlength starts with an initial feasible solution w(0) and
performs an update via

w(h+1) = w(h) + sξ(h). (8)

Here, h is an iteration index, s is the integer step size, and ξ
is an integer update direction. A sound initial guess, a well-
chosen step size, and a well-chosen update direction can re-
duce the number of iterations to find optimum wordlengths.

Optimum wordlengths can be found by solving equa-
tions when the performance function p is expressed in an
analytical form. If there is no analytical form to express the
performance, then simulation-based search methods can be
used to search for optimum wordlengths by measuring the
performance function. Typical approaches involve assigning
wordlength vectorw(0) to a lower bound, an upper bound, or
a vector between the lower and upper bound. Step size can be
fixed or adapted. The update direction is adapted according
to the search algorithms in Section 4.

During iteration, the stopping criteria are dependent on
the search algorithm. The algorithm that starts from the
lower bound stops when the performance P reaches the re-
quired performance Preq. The algorithm that starts from the
upper bound stops when P falls below Preq. Other algorithms
stop when the performance P or cost c converges within a
neighborhood.

4. REVIEWOF SIMULATION-BASED
SEARCHMETHODS

Optimum wordlengths can be found by solving equations
when the performance function P is expressed in an analyti-
cal form. If there is no analytical form to express the perfor-
mance, then simulation-based search methods can be used
to search for optimum wordlengths by measuring the per-
formance at the system output.

4.1. Complete search

Complete search (CS) tests every possible combination of
wordlengths between the lower bound and upper bound and
measures the performance of each combination by simula-
tion. Then optimum wordlengths can be selected from the
simulations results.

For example, assuming that the number of indepen-
dent variables to find optimum wordlength is two, and the
lower bound and upper bound are {2, 2} and {8, 7}, respec-
tively, the possible wordlength combinations are shown in
Figure 1. The number of trial tests or trials is 42. The opti-
mum wordlength can be selected from the given simulation
results after simulation completes.

The total number of tests in N wordlength variables is

EN
CS =

N∏

k=1

(
wk −wk + 1

)
. (9)
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Figure 1: The possible wordlength combinations searching the en-
tire space in complete search (w = {2, 2}; w = {8, 7}; trials = 42).
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Figure 2: The direction of exhaustive search (w = {2, 2}; optimum
point = {5, 5}; distance d in (10) is 6; trials = 24).

Complete search is guaranteed to find a global optimum
point, but computational time and the number of tests
increase exponentially as the number of wordlength variables
increases.

4.2. Exhaustive search

Sung and Kum [4] search for the first feasible solution. They
search for a wordlength with the minimum wordlength as
the initial guess and increment the wordlength by one until
the propagated errormeets theminimum error. For example,
assuming that we are trying to find the optimum wordlength
for two variables, the minimum wordlengths are {2, 2}, and

each of wordlength cost is similar, the search path is shown in
Figure 2. An optimized point {5, 5} is given for a comparison
between search methods. The minimum number of trials is
24.

We have generalized the total number of experiments of
the exhaustive search in N dimensions with the sum of the
distance. The sum of the distance, d, is defined as

d = dw1 + dw2 + · · · + dwN , (10)

where dwi is the distance between the minimum wordlength
and the optimumwordlength in ith dimension. The expected
number of experiments of the exhaustive search is calculated
by using the summation of combination-with-replacement
in [19] as

EN
ES(d) =

d−1∑

r=0
CR(N , r)

= CR(N + 1,d − 1) =
(
N + d − 1

d − 1

)

= (N + d − 1)!
{
(N + d − 1)− (d − 1)

}
!(d − 1)!

= (d +N − 1) · · · (d + 2)(d + 1)d
N !

.

(11)

The trials may be bounded as

EN
ES(d) ≤ EN ,d

ES < EN
ES(d + 1). (12)

The number of experiments is always less than that of com-
plete search if at least two feasible solutions exist. However,
the exhaustive search method is not always guaranteed in
finding the global optimum.

4.3. Sequential search

The basic notion of sequential search is that each trial elimi-
nates a portion of the region being searched [5]. This proce-
dure is also called a “Min+b search” in [16]. The sequential
search method decides where the most promising areas are
located, and continues in themost favorable region after each
set of experiments [20]. The sequential search algorithm can
be summarized by the following four steps.

(1) Select a set of values for the independent variables,
which satisfy the desired system performance during the one-
variable simulations.

(2) Evaluate the system performance.
(3) Choose feasible locations at which system perfor-

mance is evaluated.
(4) If the system performance of one point is better than

others, then move to the better point, and repeat the search,
until the point has been located within the desired accuracy.

The base point is the minimum wordlength as an initial
wordlength w(0) in (8). In step (3), the direction of search, ξ
as in (8) is chosen in accordance with maximum derivative
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Figure 3: The direction of sequential search (w = {2, 2}; optimum
point = {5, 5}; distance d in (10) is 6; trials = 12).

of their performance

ξj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 0, 0, . . . , 0}, ifmj = ∇ p

w1
,

{0, 1, 0, . . . , 0}, ifmj = ∇ p

w2
,

· · ·
{0, 0, 1, . . . , 0}, ifmj = ∇ p

wN
,

mj = max
(
∇ p

w1
,∇ p

w2
, . . . ,∇ p

wN

)
,

(13)

where∇ is the gradient operator.
In Figure 3, starting from wordlength base point {2, 2},

we measure performance of {2, 3} and {3, 2} from the
direction of sequential search in step (3). If the performance
of {3, 2} is better than that of {2, 3}, then a new wordlength
vector moves into {3, 2}. Simulations are repeated until sat-
isfying the desired performance.

We have generalized the trials of the sequential search in
N dimensions as

EN
SS = N · (dw1 + dw2 + · · · + dwN

)
. (14)

In this example, the numbers of trials are 12 from (14)
and also 12 from Figure 3. The number of trials is re-
duced by using sensitivity information. However, an opti-
mum wordlength can be a local optima.

Local search [3] uses sensitivity information with the
above procedure, but it uses cost sensitivity instead of per-
formance sensitivity.

4.4. Preplanned search

A preplanned search [5] is one in which all the experi-
ments are completely scheduled in advance. The directions
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Figure 4: The direction of preplanned search (w = {2, 2}; optimum
point = {5, 5}; distance d in (10) is 6; trials = 6).

are obtained from the sensitivity of performance of an inde-
pendent variable. The optimum point is found by employing
the steepest descent among local neighbor points.

The preplanned search algorithm in N dimensions is
summarized by the following steps.

(1) Select a set of values for the independent vari-
ables, which satisfy the desired performance during the one-
variable simulations.

(2) Make a performance sensitivity list from the one-
variable simulations.

(3) Make a test schedule with the sensitivity list to follow
the higher sensitivity points from base point.

(4) Evaluate the performance at those points.
(5) Move to the points, until the point has been located

within the desired accuracy.
In step (3), the direction of preplanned search is chosen

in accordance with maximum derivative of an independent
performance

ξj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 0, 0, . . . , 0}, ifmj = ∇ p1
w1

,

{0, 1, 0, . . . , 0}, ifmj = ∇ p2
w2

,

· · ·
{0, 0, 1, . . . , 0}, ifmj = ∇ pN

wN
,

(15)

where

mj = max
(
∇ p1
w1

,∇ p2
w2

, . . . ,∇ pN
wN

)
. (16)

In Figure 4, starting from the base point {2, 2}, the pre-
planned search makes a list of the directions of the steepest
ascent by comparing the gradients of the independent perfor-
mances in one dimension from the one-variable simulations.
If the gradient, which is calculated from the one-variable
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Figure 5: Analog and digital demodulators in CDMA receiver and performance measurement position.
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Figure 6: A digital demodulator block.

simulations at w1 of 2 bits, is larger than that at w2 for 2 bits,
then next feasible location is {3, 2}. Then, if the gradient at
w1 of 3 is smaller than that at w2 of 2, the next feasible lo-
cation is {3, 3}. The simulation path would be {2, 2}, {3, 2},
{3, 3}, and so forth. After scheduling the feasible points, the
performance of these points is evaluated until the value of
the performance meets the desired accuracy.

We generalized the trials of the preplanned search in N
dimensions as

EN
PS = dw1 + dw2 + · · · + dwN. (17)

In this example, the trials are 6 from (17) and from Figure 4.
The number of trials is the least among the search meth-
ods reported so far. However, finding the global optimum
wordlength is not guaranteed.

4.5. Search example in CDMA demodulator
wordlength design

Typical demodulators are implemented with an analog block
in front of an analog-to-digital converter (ADC) block as
shown in Figure 5(a). As the speed of the ADC increases,
analog parts are replaced with digital parts in communica-
tion systems [21]. We replaced the analog demodulator with
the digital demodulator as shown in Figure 5(b).

The demodulator converts modulated signals into base-
band signals. In the digital demodulator block of Figure 6,
the sampled data values output by the ADC are multiplied
by a carrier signal to shift the spectrum down to the base-
band. The out-of-band signal is removed by the lowpass fil-
ter (LPF). The variables in the digital demodulator are given
below [22, 23]:

(i) (Bi): input wordlength;
(ii) (Bc): carrier wordlength;
(iii) (Bm): multiplier output wordlength;
(iv) (Bf ): filter output wordlength;
(v) (Bf c): filter coefficient wordlength.

The output SNR is used for performance measurement
instead of frame error rate (FER), which is a general mea-
surement to evaluate CDMA systems because direct mea-
surement of FER requires at least 105 frames during the sim-
ulation [24]. The required output SNR in this system is over
0.8dB, or FER is under 0.03 [23].

For the initial point, minimum wordlength is selected
by the independent one-variable simulations in which one
variable changes while other variables keep high preci-
sion. Satisfying the output SNR of 0.8dB, the minimum
wordlength of {Bi,Bc,Bm,Bf ,Bf c} is {4, 3, 4, 5, 7}, which
is acquired from the one-variable simulations shown as
Figure 7. For a simplified example, we assume that the
cost-per-bit is one. In the exhaustive search, the next
points are searched: {5, 3, 4, 5, 7}, {4, 4, 4, 5, 7}, {4, 3, 5, 5, 7},
{4, 3, 4, 6, 7}, {4, 3, 4, 5, 8}, {5, 4, 4, 5, 7}, and so forth. The
search is continued until the communications performance
meets the specific desired requirement. In the sequential
search, the next point is one of the following: {5, 3, 4, 5, 7},
{4, 4, 4, 5, 7}, {4, 3, 5, 5, 7}, {4, 3, 4, 6, 7}, and {4, 3, 4, 5, 8}.
The next point would have the largest communication per-
formance among them. FromTable 3, {4, 3, 4, 6, 7} is the next
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Table 3: Sequence of the sequential search for CDMA demodulator (traffic channel rate set 1 in additive white Gaussian noise, input
SNR = −17.3dB, Eb/Nt = 3.8, rate = 9600 bps, and desired performance: output SNR > 0.8dB, FER < 0.03).

Step {Bi, Bc, Bm, Bf , Bf c} Output SNR FER Result

1, 2 {4, 3, 4, 5, 7} 0.711 0.038 Fail

3 {5, 3, 4, 5, 7} 0.735 — —

3 {4, 4, 4, 5, 7} 0.694 — —

3 {4, 3, 5, 5, 7} 0.712 — —

3 {4, 3, 4, 6, 7} 0.759 — Max

3 {4, 3, 4, 5, 8} 0.704 — —

4 {4, 3, 4, 6, 7} 0.759 0.035 Fail

3 {5, 3, 4, 6, 7} 0.763 — —

3 {4, 4, 4, 6, 7} 0.722 — —

3 {4, 3, 5, 6, 7} 0.773 — Max

3 {4, 3, 4, 7, 7} 0.751 — —

3 {4, 3, 4, 6, 8} 0.749 — —

4 {4, 3, 5, 6, 7} 0.773 0.034 Fail
...

...
...

...
...

3 {6, 3, 5, 6, 7} 0.798 — —

3 {5, 4, 5, 6, 7} 0.802 — —

3 {5, 3, 6, 6, 7} 0.805 — Max

3 {5, 3, 5, 7, 7} 0.803 — —

3 {5, 3, 5, 6, 8} 0.798 — —

4 {5, 3, 6, 6, 7} 0.805 0.029 Pass
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Figure 7: Result of the independent one-variable simulations on a
CDMA demodulator.

location because it has the largest communication perfor-
mance. The simulation moves the current point to the new
point and continues to search until the performance exceeds
the specific desired requirement, which is an output SNR of
0.8dB in this case. The final point is {5, 3, 6, 6, 7}, as shown
in Table 3. The distance between the base and the optimum

point is 4 by using (10). The number of trials for the sequen-
tial search to find an optimum wordlength is 20 by using
(14).

In the preplanned search, the search path is esti-
mated from the sensitivity of each one-variable simulation
shown in Figure 7. Starting from the minimum wordlength
or base point, {4, 3, 4, 5, 7}, the first expected point is
{4, 3, 4, 6, 7} because Bf has the greatest derivative among
each wordlength at the base point from Figure 7. The se-
quence of the preplanned search points is {4, 3, 4, 5, 7},
{4, 3, 4, 6, 7}, {4, 3, 4, 6, 8}, {4, 3, 5, 6, 8}, {4, 4, 5, 6, 8}, and so
forth. Simulations move the current point to the next point
until the performance exceeds the specific desired require-
ment. The optimum point is {5, 4, 5, 6, 8} and distance is 5
by using (10). The number of trials of the preplanned search
to find an optimum wordlength is 5 by using (17).

4.6. Comparison

The four search methods are compared with the trials from
(9), (11), (14), and (17), as shown in Table 4. The numbers
of trials are calculated besides the one-variable simulations
which all of the search methods use. The complete search
needs 283920 trials to find optimum wordlength from (9)
with wk = {16, 16, 16, 16, 16} and wk = {4, 3, 4, 5, 7} assum-
ing that the maximum wordlength is 16 bits. If the computer
simulation to calculate frame error rate per trial in CDMA
system takes about 10 minutes, the complete search to find
an optimum wordlength would require 5 years, which is un-
realistic design time.
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Table 4: Comparison of complete, exhaustive, sequential, and preplanned search (N = 5, wk = {16, 16, 16, 16, 16}, wk = {4, 3, 4, 5, 7}, and
the term d is defined in (10)).

Search Distance (d) Equation for number of experiments from (9), (11), (14), (17) Trials

Complete —
∏N

k=1(wk −wk + 1) 283920

Exhaustive 4 (d + 4)(d + 3) · · · (d)/5! 56

Sequential 4 5 · d 20

Preplanned 5 d 5

The exhaustive search needs 56 trials by using (11), which
is less than the complete search. The exhaustive search is,
however, inefficient to find the optimum wordlength when
the wordlength variables for optimization are numerous and
the distance between base and optimum point is longer.

The sequential search and preplanned search requires 20
and 5 trials, respectively, which are less than the other search
methods. The preplanned search has the lowest number of
experiments among search methods, but its distance using
(10) is larger than that for sequential search. It implies that
the wordlength of the sequential search method is closer to a
global optimum with respect to hardware cost.

The sequential search and preplanned search have a loss
of direction problem encountered by techniques based on the
gradient projection method. This problem can be solved by
adapting the step size.

The sequential search and the preplanned search reduce
the trials by rates of 64% and 91%, respectively, when com-
pared to the exhaustive search for wordlength optimization
in the CDMA demodulator design. However, preplanned
search seldom converges to the same optimum point, and the
distance is longer than that of the other search methods.

5. SENSITIVITYMEASUREMENTS

The sensitivity information used for update directions in (8)
can help reduce the search space dramatically. The sensi-
tivity information can be obtained by measuring hardware
complexity and distortion or propagated quantized precision
loss. Complexity measure is used for hardware cost function
in [3]. Distortion measure in [5] utilizes the sensitivity infor-
mation of a propagated quantization error. Complexity-and-
distortion measure in [7] combines two measures to update
the search direction.

5.1. Complexitymeasure

The complexity measure method considers hardware com-
plexity function as the cost function in (4) and uses the
sensitivity information of the complexity as the direction to
search for the optimum wordlengths. The local search in [3]
uses complexity measure. The sensitivity information is cal-
culated by gradient of the complexity function. For steepest
descent direction, the update direction is

ξCM = −∇ fc(w), (18)

where∇ is gradient of function.

Complexity measure method updates wordlengths from
the direction of the lowest sensitive complexity until a sys-
tem meets a required performance such as Preq in (5). The
complexity measure method searches the wordlengths that
minimize hardware complexity. However, it demands a large
number of iterations since it does not use any distortion sen-
sitivity information that can speed up to find the optimum
wordlengths. For example, in a system composed of adders
and multipliers, the complexity sensitivity of a multiplier is
larger than that of an adder. The complexity measuremethod
increases the wordlength in the adder with the right of pri-
ority during an increase procedure even if the wordlength in
the multiplier affects the propagated quantized performance
more. It would waste computer simulation time if the com-
plexity sensitivity of an adder is much smaller than that of a
multiplier.

5.2. Distortionmeasure

The distortion measure method considers distortion func-
tion as the objective function in (4) and uses the sensitiv-
ity information of the distortion for the direction to search
for the optimum wordlengths. Sequential search uses distor-
tion measure. This method assumes that every cost or com-
plexity function would be the same or equal to 1, and selects
wordlengths with the update direction according to the dis-
tortion sensitivity information.

The complexity objective function is replaced with the
distortion objective function d(w) as

fd(w) = d(w), (19)

and the complexity minimization problem is changed into a
distortion minimizing problem by

min
w∈In

fd(w), subject to d(w) ≤ Dreq,

c(w) ≤ Creq, w ≤ w ≤ w,
(20)

where Dreq is required distortion, and Creq is a complexity
constant.

The sensitivity information is also calculated by gradient
of the distortion function. For the steepest descent direction,
the update direction is

ξDM = −∇ fd(w). (21)

For the distortion, Fiore and Lee [25] computed an error
variance, and Han et al. [5] measured output SNR.

The distortion measure method reduces the number
of iterations for searching the optimum wordlengths, since
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Figure 8: Wordlength model for a fixed broadband wireless access demodulator.

the search direction depends on the distortion by chang-
ing the wordlengths. This method rapidly finds the opti-
mum wordlength satisfying the required performance by a
fewer number of iterations compared to complexity measure
method. However, the wordlengths do not guarantee the op-
timum wordlengths in terms of the complexity.

5.3. Complexity-and-distortionmeasure

The complexity-and-distortion measure combines the com-
plexity measure with the distortion measure by a weighting
factor. In the objective function, both complexity and distor-
tion are simultaneously considered. We normalize the com-
plexity and the distortion function and multiply them with
complexity and distortion weighting factors, αc and αd, re-
spectively. The new objective function is

fcd(w) = αc · cn(w) + αd · dn(w), (22)

where cn(w) and dn(w) are normalized complexity function
and distortion function, respectively. The relation between
the weighting factors is

αc + αd = 1, (23)

where

0 ≤ αc ≤ 1, 0 ≤ αd ≤ 1. (24)

Using (22), the objective function gives a new optimiza-
tion problem

min
w∈In

fcd(w), subject to d(w) ≤ Dreq,

c(w) ≤ Creq, w ≤ w ≤ w,
(25)

where Dreq and Creq are the required distortion and a com-
plexity constant, respectively. This optimization problem is
to find wordlengths that minimize complexity and distortion
simultaneously according to the weighting factors.

The update direction for the steepest decent direction to
find the optimum wordlength w is

ξCDM = −∇ fcd(w). (26)

From (22) and (26), the update direction is

ξCDM = −
(
αc · ∇cn(w) + αd · ∇dn(w)

)
. (27)

Setting the complexity and distortion weighting factor,
αc or αd from 0 to 1, the complexity-and-distortion method
searches for an optimum wordlength with tradeoffs be-
tween complexity measure method and distortion measure
method. The complexity-and-distortion measure becomes
the complexity measure or the distortionmeasure when αd =
0 or αc = 0, respectively.

The complexity-and-distortion measure method can re-
duce the number of iterations for searching the optimum
wordlengths, because the distortion sensitivity information
is utilized. This method can more rapidly find the optimum
wordlength that satisfies the required performance by using
less iteration compared to the complexity measure method.
However, the wordlengths are not guaranteed to be optimal
in terms of the complexity.

6. CASE STUDY

6.1. OFDMdemodulator design

Digital communication systems have digital blocks such as a
demodulator that needs wordlength optimizations. Search-
ing algorithms in Section 4 were applied to the wordlength
optimization of CDMA demodulator design in Section 4.5.
From the CDMA case study, the sequential search is one
of the promising methods to find an optimum wordlength.
In this section, complexity measure, distortion measure,
and complexity-and-distortion measure in Section 5 are
applied in the sequential search framework to determine
wordlengths for a fixed broadband wireless demodulator.

Fixed broadband wireless access technology is intended
for high-speed voice, video, and data services, which is
presently dominated by cable and digital subscriber line
technologies [26]. One of the designs for orthogonal fre-
quency division multiplexing (OFDM) demodulators for
fixed broadband wireless access is shown in Figure 8. For the
wireless channel, we used Stanford University Interim mod-
els [27, 28].

The main blocks in the demodulator for finite word-
length determination are the fast fourier transform (FFT),
equalizer, and estimator. For wordlength variables, we choose
the wordlengths that have the most significant effect on com-
plexity and distortion in the system. For the OFDM demod-
ulator, we select wordlength variables w0, w1, w2, and w3 for
the FFT input, equalizer right input, channel estimator input,
and equalizer upper input, respectively, as shown in Figure 8.
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Figure 9: Wordlength effect for the demodulator in Figure 8, with
Stanford University Interim wireless channel model number 3, SNR
of 20 dB, FFT length of 256, and least-squares comb-type channel
estimator without error-control coding.

We assume that the internal wordlengths of the given
blocks have already been decided. In simulation, only the
inputs to each block are constrained to be in fixed-point
type, whereas the blocks themselves are simulated in floating-
point type.

For the hardware complexity, the number of multipli-
cations is measured assuming that processing units are not
reused. The number of multiplications in a K-point FFT
block is

Cost FFT = K

2
log2 K , (28)

where K is the number of taps. The cost of the 256-point
FFT in the fixed broadband wireless access is estimated to
be 1024. Approximately, the simplified complexity vector c
of the wordlength per bit is assumed to be {1024, 1, 128, 2}
from [4, 29].

We also assume the complexity increases linearly as
wordlength increases to simplify demonstration. For the dis-
tortion measurement, bit error rate (BER) is measured. The
minimum wordlength searched by changing one wordlength
variable, while other variables have high precision (i.e., 16
bits), is used for the initial wordlength [4, 5]. The simulation
for the minimum wordlength is shown in Figure 9.

Assuming the minimum performance of BER is 5×10−3,
the minimum wordlength is {5, 4, 4, 4} from Figure 9. Start-
ing from the minimum wordlength, wordlengths are in-
creased according to the sensitivity information of differ-
ent measures in Section 5. We measure the number of iter-
ations until they find their own optimum wordlength sat-
isfying the required performance such as BER ≤ 2 × 10−3

without channel decoder. For the optimum wordlength, we
follow the hybrid procedure [16] that combines a wordlength
increase followed by a wordlength decrease. Simulation re-
sults are presented in Section 7.

6.2. IIR filter case

OFDM demodulation case requires a large number of long
simulations. This becomes especially time-consuming when
each simulation takes hours in ensemble average of BER es-
timation. For more general case, infinite impulse response
(IIR) filter that has 7 wordlengths is simulated. There are
various methods for getting error function and cost func-
tion as described in related work section. For simplifying the
simulation, mean square error (MSE) is measured for the
error function, and a linear cost function of wordlength is
assumed. Required performance of the IIR filter is assumed
MSE of 0.1. In the IIR filter case study, the wordlength vector
has 7 elements, and the hardware complexity of the arith-
metic block has less difference when compared to the OFDM
case study. Results are presented in Section 7.

7. RESULTS

The wordlength optimization problem is a discrete optimiza-
tion problem with a nonconvex constraint space [30]. This
nonconvexity makes it harder to search for a global optimum
solution [31]. Tables 5 and 6 show that there are several lo-
cal optimum wordlengths that satisfy error specification and
minimize hardware complexity in case studies. In this sec-
tion, wordlength optimization methods used in case studies
are compared in terms of number of iteration and hardware
complexity, and future work is discussed.

7.1. Number of iterations

The number of iteration to search an optimumwordlength in
OFDM demodulator design is shown in Figure 10. The ini-
tial wordlength does not satisfy the desired performance. Af-
ter a number of trials by updating wordlength as in (8), the
error at the system output decreases. The sequential search
and the CDM search reach the feasible area after 15 trials.
However, the local search takes 38 trials. After arriving at the
feasible area, an optimum wordlength is searched again. In
this case, the wordlengths, which are searched by the sequen-
tial search or the CDM search, already arrive at an optimum
wordlength. However, the local search needs more iterations
to find an optimum wordlength. The total number of trials
to find an optimum wordlength in each method for OFDM
case is shown in Table 5. The sequential search and the CDM
method can find an optimum solution in one-fourth of the
time that the local search method takes.

In IIR filter design, the number of iterations to search
an optimum wordlength is shown in Figure 11. This figure
demonstrates the number of trials in an infeasible area and
a feasible area. After the search methods reach a feasible re-
gion, whereMSE of IIR filter is under 0.1, the searchmethods
continue searching an optimum wordlength. The sequential
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Table 5: Simulation results of several search methods starting from the minimum wordlength for the demodulator arcs in Figure 8. N = 4,
wk = {5, 4, 4, 4}, and wk = {16, 16, 16, 16}. CDM is the complexity-and-distortion measure. αc is a weighting factor.

Search method αc Number of trials Wordlengths for variables Complexity estimate

Sequential search [5] 0 16 {10, 9, 4, 10} 10781

CDM 0.5 15 {7, 10, 4, 6} 7702

Local search [3] 1 69 {7, 7, 4, 6} 7699

Table 6: Simulation results in IIR filter of several search methods. N = 7, wk = {1, 1, 1, 1, 1, 1, 1}, and wk = {16, 16, 16, 16, 16, 16, 16}. CDM
is the complexity-and-distortion measure. αc is a weighting factor. (Max-1 search starts from wk . Sequential search starts from wk).

Search method αc Number of trials Wordlengths for variables Complexity estimate

Max-1 search [16] 0 94 {4, 5, 4, 5, 2, 2, 4} 378

Sequential search [5] 0 56 {4, 5, 4, 5, 2, 2, 4} 378

CDM 0.25 44 {4, 5, 4, 4, 2, 2, 5} 366

CDM 0.5 33 {6, 5, 5, 4, 1, 2, 4} 363

CDM 0.75 71 {6, 4, 4, 4, 2, 16, 13} 561

Local search [3] 1 126 {9, 5, 16, 4, 1, 16, 16} 723
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Figure 10: Number of iterations for optimumwordlength with var-
ious search algorithms in OFDM demodulator wordlength design.

search and the local search need a total of 56 and 126 itera-
tions, respectively, including iterations in feasible and infea-
sible area as shown in Table 6. The “Max-1” search starting
from the feasible area needs 96 iterations. The CDM meth-
ods with weighting factor of 0.25, 0.5, and 0.75 are used
for comparison. When αc is less than 0.5, the CDM meth-
ods have the property of the sequential search. When αc is
greater than 0.5, the CDMmethods search as the local search
does. In Figure 11, the CDM methods with weighting factor
of 0.25 and 0.75 show similar shape as the sequential search
and the local search, respectively. In the IIR filter case, the
CDM method with αc of 0.5 can find an optimum solution
in one-fourth of the time that the local search method takes.
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Figure 11: Number of iterations for optimum wordlength in IIR
filter with various search algorithms.

In general, if error sensitivity information for searching
an optimum wordlength is used, the number of iterations
can be reduced. The sequential search and the CDMmethod
with less than αc of 1 use the error sensitivity information.
Thus, they converge quickly into an optimum wordlength
that satisfies the required error performance.

7.2. Hardware complexity

Tables 5 and 6 show the hardware complexity according to
the searched optimum wordlengths in various methods. The
results show that the sequential search method, which only
uses error sensitivity information for the update direction,
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Table 7: Simulation results in noise cancellation with Wiener filter [32] of several search methods. N = 5, wk = {1, 1, 1, 1, 1}, and wk =
{16, 16, 16, 16, 16}. CDM is the complexity-and-distortion measure. αc is a weighting factor.

Search method αc Number of trials Wordlengths for variables Complexity estimate

Sequential search [5] 0 21 {4, 5, 5, 3, 2} 1331

CDM 0.25 23 {4, 4, 5, 4, 2} 1200

CDM 0.5 24 {5, 4, 4, 5, 4} 1074

CDM 0.75 167 {4, 4, 4, 5, 4} 1073

Local search [3] 1 170 {5, 4, 4, 15, 3} 1082

finds an optimum wordlength that has higher complexity
than the CDM method and the local search in the OFDM
demodulation case study. However, an optimum wordlength
searched by the local search method, which uses hardware
complexity information, has higher complexity in the IIR
filter case study. If the design space is convex and has only
one optimum solution, then various search methods find the
optimum solution. However, wordlength optimization prob-
lem has many local optimum solutions because of noncon-
vex space. As the number of wordlength variables increases
and as the system becomes more complicated, the probabil-
ity in being stuck in a local optimum solution increases. In
the IIR filter case with 7 elements in wordlength vector, the
wordlengths searched by the local searchmethod are far from
globally optimal.

The CDM search with the weighting factor of 0.5 finds an
optimum wordlength that has the lowest hardware complex-
ity in this IIR case study. The CDM search with the weighting
factor of 0.75 tends to be the local search. The hardware com-
plexity from the CDM method of 0.75 is between the CDM
of 0.5 and the local search. Similarly, the complexity from
CDM method of 0.25 is between the sequential search and
the CDM of 0.5.

For more examples, additional optimum wordlength
search results in a noise cancellation with Wiener filter [32]
are shown in Table 7.

7.3. Discussion

The CDMmethod, which uses error and complexity sensitiv-
ity for optimum wordlength search, takes advantages from
the sequential search and the local search. This method re-
duces the number of iterations because of the error sensi-
tivity that helps to fast reach feasible boundary. At the same
time, this method finds a near-optimum wordlength that
has lower hardware complexity because of the sensitivity of
hardware complexity. The proposed method is robust for
search optimum wordlength in a nonconvex space because
this method is not easily captured by local optimum solu-
tions.

The complexity-and-distortion measure method has
flexibility to search for an optimum wordlength by setting
weighting factor. Designer can select the weighting factor,
αc, as in (23). The αc of 0.5 means that the CDM method
equally uses the sensitivity information of the error and the
complexity. The αc of 0.5 in CDM is reasonable for optimum
wordlength search algorithms.

7.4. Future work

For an extension of work, various methods can be combined
for wordlength optimization. Wordlength grouping [4] can
be used to reduce a wordlength vector. Error model or error
monitoring instead of error measuring can be used to reduce
the simulation time. Actual cost model [12] can be used to
get accurate result. For the searchingmethod, different search
methods such as binary search can be combined. Preplanned
search, which is the fastest error sensitivity search method as
compared in [16], can employ CDMmethods to reach more
quickly a near-optimum wordlength.

8. CONCLUSION

This paper generalized wordlength optimization methods
that use sensitivity measures. The proposed complexity-and-
distortion measure equation can express the local search
or sequential search by changing the weighting factor. The
weighting factor can reduce the number of iterations and
the hardware complexity compared to the local search and
the sequential search, respectively. In our case studies, the
complexity-and-distortion method is simulated and com-
pared. The proposed method can find the optimum solu-
tion in one-fourth of the time that the local search takes.
In addition, the optimum wordlength searched by the pro-
posed method has 30% lower hardware implementation
costs than sequential search in wireless demodulators. Case
studies demonstrate that the proposed method is robust for
searching optimum wordlength in a nonconvex space. Fu-
ture extensions of this work include combination with ana-
lytic wordlength optimization and preplanned search.
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