
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 56940, Pages 1–11
DOI 10.1155/ASP/2006/56940

MPEG-2 Compressed-Domain Algorithms for
Video Analysis

Wolfgang Hesseler and Stefan Eickeler

Fraunhofer IMK, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Received 1 September 2004; Revised 2 June 2005; Accepted 6 June 2005

This paper presents new algorithms for extracting metadata from video sequences in the MPEG-2 compressed domain. Three
algorithms for efficient low-level metadata extraction in preprocessing stages are described. The first algorithm detects camera
motion using the motion vector field of an MPEG-2 video. The second method extends the idea of motion detection to a limited
region of interest, yielding an efficient algorithm to track objects inside video sequences. The third algorithm performs a cut
detection using macroblock types and motion vectors.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

The demand for indexing techniques capable of handling in-
creasing amounts of video at low cost can only be satisfied
using automatic methods for metadata extraction. The se-
mantics of metadata range from low level over mid-level to
high level. Low-level metadata are information that can be
extracted more or less directly from the video signal. Typical
examples of low-level metadata are the color histogram of
an image or spectrogram features of an audio waveform. In
most cases, the low-level features are used for simple query
by example applications or as a preprocessing step to gener-
ate mid- and high-level information. Mid-level metadata are
more understandable for humans and can be derived from
the images of a video sequence using pattern classification
methods. Examples are the location of human faces in video
sequences or the spoken words in the audio channel. High-
level metadata give a comprehensive semantic description of
the data. General methods to create high-level metadata are
still under development, but techniques for automatic gen-
eration of high-level metadata are highly advanced for spe-
cial cases like face recognition which gives the name of a per-
son shown in the video sequence, or the topic recognition
which gives the type of subject being discussed in the au-
dio.

Usually the level of generated metadata increases within
the processing chain, which starts with low-level preprocess-
ing and ends with high-level methods. Generally, computa-
tional complexity increases with the level of metadata. It is
essential to have efficient methods at all levels of process-
ing.

MPEG-7 is a common standard to store the metadata
information that is generated by many automatic video-
analysis systems. A video-analysis system that automatically
produces metadata conforming the MPEG-7 standard [1] is
the iFinder, developed by the Fraunhofer IMK. The algo-
rithms presented in this paper are included as a new module
into the iFinder, extend its analytic capacity with additional
metadata such as camera motion, and speed up the existing
methods.

Most digital video in high quality, such as DVD or DVB
(digital television), is encoded in the MPEG-2 compression
standard. MPEG is an ISO standardized video- and audio-
compression format. A central component of MPEG is mo-
tion compensation. With each pixel block (called a mac-
roblock), the encoder looks for a matching pixel block in a
previous or following frame and stores only its position using
a motion vector. This search is computationally very expen-
sive. Analysis software that generates metadata like camera
motion or object tracking can achieve a large speed improve-
ment by manipulating motion vectors in the compressed do-
main instead of performing a block matching in the uncom-
pressed domain.

The algorithms presented in this paper all work in the
compressed domain. Instead of transforming the compressed
domain back into the raw pixel domain, the algorithms work
in the compressed domain and extract information from the
encoded video (e.g., from the DCT coefficients and motion
vectors). In most cases, the camera motion detection algo-
rithm is usually able to detect a camera motion with pixel
precision even if the underlying motion vector field con-
tains many outliers due to moving objects or due to large



2 EURASIP Journal on Applied Signal Processing

low-textured areas in the video. In this paper, a cameramove-
ment is a generic name encompassing a pan or a track-
ing shot, where the camera changes its position. The object
tracking algorithm is based on the camera motion detection
algorithm. Objects like faces can be tracked over several min-
utes in the ideal case. Finally, we present a cut detection algo-
rithm using macroblock types and motion vectors.

2. MPEG-2 VIDEO COMPRESSION

As mentioned above, MPEG-2 compression is the standard
for digital video compression. MPEG-2 is downwardly com-
patible with MPEG-1, which means that the algorithms pre-
sented in this paper are also applicable to MPEG-1. The
MPEG-2 algorithm uses two basic methods to compress
digital video: frequency-domain compression for spatial re-
dundancy (as with JPEG picture compression) and block-
based motion compensation for the temporal redundancy.
An MPEG-2 video consists of three frame types: I-, P-, and
B-frames, which are grouped into GOPs (group of pictures).
The I-frame is encoded similarly to a JPEG image. It does
not make use of information from any other frame. P-frames
are predicted from the previous I- or P-frame. B-frames use
parts of both the previous and the following I- or P-frame. All
three frame types use the DCT to transform the picture from
the spatial domain to the frequency domain, which is better
suited to exploit redundancy. In the I-frames, the DCT data
is derived directly from the image; whereas in the P- and B-
frames, the DCT data is derived from the residual error after
prediction. Each frame is divided into 16 × 16 pixel blocks
called macroblocks. In the motion estimation process, the
encoder checks eachmacroblock of a P-frame if it can be pre-
dicted from a pixel block in the previous reference frame (I-
or P-frame) with a possible offset to compensate for motion
(the so-called motion vector) and a residual error which is
DCT transformed. If the coefficients become too big, the en-
coder decides to intracode the macroblock. The encoding of
B-frames works similarly. The difference is that B-frames can
be predicted from the preceding or the following reference
frame or from both frames.

The MPEG-2 standard only specifies the bit format and
the decoding of the MPEG-2 stream, the algorithms and
methods for the encoding, such as those needed for motion
estimation, are not defined in the standard. For this reason,
how well the motion vectors reflect the motion of the camera
or an object depends on the encoder.

2.1. RelatedWork

Detecting camera motion in the compressed domain was
investigated by Wang and Huang [2]. They use a recursive
outlier-rejecting least-square algorithm. Smolic et al. [3] use
the M-estimator method to underweight outlier motion vec-
tors. Neither of these algorithms take into account motion
vectors of low-textured macroblocks that do not reflect mo-
tion. Kuhn [4] uses the DCT coefficients to determine a list
of macroblocks with high-texture information and performs
an IDCT for them in order to calculate their motion. All

these algorithms are not well suited for video sequences with
large moving objects. Kobla et al. [5] distinguish eight mo-
tion directions and assume a camera motion if the direc-
tion receiving the highest number of vectors receives more
than twice as many vectors as the second highest direc-
tion.

The object tracking algorithms that are commonly used
in the uncompressed domain are the mean shift algorithm
[6] and the Kalman filter [7]. Also, block-matching algo-
rithms [8] are used where the object is divided into small
blocks of constant size that are searched for in the next frame.
In the compressed domain, Kobla et al. [9] present a method
for determining the flow of a pixel block using motion vec-
tors and frame types. However, this method is too imprecise
to use for object tracking. In [10], Khan et al. present experi-
ments with object tracking using compressed-domainMPEG
data with P-frames only.

Cut detection algorithms can be divided into compressed
and uncompressed algorithms. Uncompressed-domain algo-
rithms use pixelwise difference [11], histograms [12], edge
tracking [13], and so forth. Such algorithms are, how-
ever, computationally expensive. Some compressed-domain
methods use the increasing bit rate as an indicator [14] or ap-
proximated DC coefficients [15]. Kobla et al. [5], Calic and
Izquierdo [16] use an approach similar to ours by checking
the ratios of forward- and backward-predicted macroblocks.
However, experiments show many erroneous detections in
sections with no or little motion only.

3. DETECTING CAMERAMOTION

The encoder has already done the computationally most
complex part of detecting camera motion by calculating a
motion vector field. However, the vectors do not always cor-
respond to true motion since the encoder optimizes the
MPEG encoding for picture quality and not to reflect the ex-
act motion of the objects covered by the macroblocks. For
this reason, numerous outliers are to be expected. Moreover,
moving objects will result in motion vectors that do not re-
flect the camera motion.

3.1. Algorithm

We only use P-frames for the analysis of camera movements
since the distances between B-frames and reference frames
vary. This means that the camera motion can only be deter-
mined for every second or third frame. However this restric-
tion represents only a minor drawback, since every camera
movement that does not last longer than several frames can
rather be regarded as camera wobble.

A two-dimensional histogram of motion vectors is used
and the peak is interpreted as reflecting camera motion.
However, the motion vectors spread widely, especially with
a fast movement of either camera or objects. For this reason,
the histogram of the motion vectors will usually not result in
a steep peak, but rather in a peak region. We solve this prob-
lem by using a pyramid filter that includes 2 pixels in each
direction to detect the maximum. This filter is represented as



W. Hesseler and S. Eickeler 3

a weight matrixW with elements wi, j :

W = 1
3
·

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠
. (1)

hx,y are the accumulated weights of the motion vectors (x, y).
For each vector (x, y), the weighted frequency of the peak
region called Hx,y is calculated as follows:

Hx,y =
2∑

i=−2

2∑

j=−2
wi+3, j+3 · hx+i,y+ j . (2)

The peak region around the vectors (x, y) is then given by
the maximum max(Hx,y). The Hx,y values can be calculated
quickly using the integral image algorithm [17].

Motion vectors are stored with half-pixel accuracy. Thus,
the vector of the peak region has to be divided by two in or-
der to obtain pixel accuracy. We chose a computationally less
complex method and divided all motion vectors by two and
built the histogram with these values. When interlaced mo-
tion estimation was used, the two motion vectors for each
macroblock were averaged.

3.1.1. Low-textured areas

Large areas in the video that are low textured, that is, that
do not have any edges, result in long chaotic motion vectors
that do not reflect the camera motion. Since the macroblocks
in such areas are similar to each other, the encoder is free to
use an arbitrary pixel block as reference, whichminimizes the
error, but does not reflect the true motion. Figure 1 shows an
example.

A motion vector can be regarded as usable for the de-
tection of camera motion if its macroblock is textured, that
is, if its brightness varies. This is reflected by the 63 AC co-
efficients of the four DCT blocks of which the macroblock
consists. The DC coefficient only gives information on the
average brightness of the DCT block, but does not indicate
the texture.

Increased AC coefficients in the upper left area reflect
variations in brightness of the 8 × 8 pixel block. Most of the
other coefficients are zero or near zero. Experiments showed
that it is sufficient to evaluate the nine AC coefficients in the
top left triangle of the DCT block.

In order to be independent of the scanning pattern used,
we select the nine AC coefficients after scanning the coeffi-
cients in the zigzag or alternate scan order. The absolute val-
ues of the nine AC coefficients of all four DCT blocks com-
prising the macroblock are added. The sum of these 36 coef-
ficients for the macroblock at the macroblock position (x, y)
reflects its texture and is denoted as Sx,y . This value is used for
the weight function s(Sx,y). Its value range is between 0 and 1.

Texture analysis is only performed on the luminance compo-
nent since the encoder usually also uses only the luminance
for motion estimation. When the motion vector histogram is
built, the count for each element is not increased by one, but
rather by the corresponding weight s(Sx,y) of themacroblock.
In this way, the low-texturedmacroblocks are underweighted
or excluded from the analysis.

Experiments have shown that a simple approach that
classifies all macroblocks as either sufficiently or nonsuffi-
ciently textured yields adequate performance. So we get

s(Sx,y) =
⎧⎨
⎩
1 for Sx,y ≥ SThreshold,

0 for Sx,y < SThreshold.
(3)

These weights insure that only the motion vectors of mac-
roblocks that are sufficiently textured are used in the analysis.

3.1.2. Approximation of the DCT coefficients

The DCT coefficients of I-frames and intracoded mac-
roblocks of P-frames can be used directly from the MPEG-
2 compressed-domain data after extraction. For non-intra-
coded macroblocks, only the motion vector and the differ-
ence with the referenced pixel block are stored as DCT coef-
ficients. For this reason, the DCT coefficients for these mac-
roblocks have to be calculated. There are computationally
expensive algorithms that can do a precise calculation [18–
20]. Since we only need information concerning whether the
macroblock is sufficiently textured, an approximation is ad-
equate. A DCT block of a P-frame can be built up by using
up to four adjacent DCT blocks in a reference frame. If all
these four DCT blocks are low textured and the error DCT
coefficients are small, the composed DCT block will be low
textured, too, assuming that there is no edge between the in-
dividual blocks in the spatial domain.

To approximate the DCTmatrix of the current 8×8 pixel
block BCur, we calculate the weighted sum of the DCT matri-
ces of the pixel blocks B1 − B4 plus the error DCT as shown
below:

DCT
(
BCur

) =
4∑

i=1
wi ·DCT

(
Bi
)
+DCTErr . (4)

The weights wi are given by the fractions of the areas of the
DCT block that overlap with the reference DCT blocks. Since
we work with half-pixel accuracy, the weights are a multiple
of 1/256. Figure 2 sketches the procedure.

The approximated DCT coefficients will be used for the
calculation of the DCT coefficients of the subsequent P-
frame. Errors will therefore propagate.

When interlaced motion compensation with two motion
vectors is used, a special treatment is required. In the frame
picture modus, the pixel rows of both 16× 8 pixel blocks are
interleaved. This is emulated in the DCT domain by averag-
ing each coefficient of the upper and lower DCT blocks. In
the field picture modus, the upper and lower 16 × 8 pixel
blocks have their own motion vectors. In the DCT domain,



4 EURASIP Journal on Applied Signal Processing

Figure 1: Motion vectors spread in low-textured areas.

B3

B4

B1 B2

x

y

BRef

BCur

Figure 2: DCT approximation: BCur uses BRef as reference which is located inside B1 − B4. The motion vector is (x, y).

the upper two DCT blocks can be approximated using the
upper motion vector and the lower two DCT blocks can be
approximated using the lower motion vector.

3.2. Experiments

Comparisons of the approximated DCT with the forward
DCT of the decoded data show higher differences especially
if textured and low-textured areas are adjacent. However, an
exact calculation is not important, but only the classifica-
tion as sufficiently and nonsufficiently textured. Experiments
with newscasts video material resulted in 94% correct classi-
fication of the macroblocks compared with the classification
using the forward DCT, which is sufficient.

We used test sequences mainly from newscasts that were
captured directly from the satellite in MPEG-2 format using
a Linux system with DVB-S card. The camera motion was
then determined by hand and compared with the computed
results of our algorithm, theM-estimator approach, and with
a simple average algorithm. The histogram algorithm with
texture analysis was usually able to detect the camera mo-
tion precisely, whereas the M-estimator and the average al-
gorithms’ vectors were too small, especially with fast cam-
era movements. The algorithm proved to be highly robust
against objects moving in the foreground. An object did not
have an influence on the peak region unless its size increased
to nearly 50% of the frame size within the artificial test se-
quences. In this case, the object motion was interpreted as
camera motion. Many smaller moving objects could wrongly
lead to a detection of the 0-vector as camera motion.

3.3. Results

The approximated DCT using a simple weighted sum ap-
proach is adequate to be used to determine if the macroblock
is sufficiently textured so that its motion vector will probably
reflect the camera motion. The peak of a two-dimensional
histogram using a 5× 5 pyramid filter is suited to determine
the camera motion.

4. OBJECT TRACKING USINGMOTION VECTORS

Encouraged by the results of the camera motion detection,
we performed tests involving the use of motion vectors to
track objects. An object motion can be regarded as “camera”
motion that is restricted to the object. By using the motion
vector information, a speed increase could be achieved com-
pared to pixel domain tracking algorithms.

4.1. Differences to cameramotion detection

Compared to the detection of camera motion for the whole
frame, there are additional challenges for the object tracking
that is restricted to a subimage.

4.1.1. Problems usingMPEG-2 compressed-
domain data

One problem when using the MPEG-2 compressed-domain
data is that the motion vectors are not available continuously



W. Hesseler and S. Eickeler 5

for all frames. The number of frames between the current
frame and the reference frame varies. Moreover, there are no
motion vectors for I-frames.

Another problem is that the macroblock grid does not
match the object boundaries. An edge exact tracking is there-
fore not possible. Instead, a rectangle of constant size con-
taining the object is tracked. The macroblocks and the refer-
enced pixel blocks will partly contain background.

Object tracking using motion vectors has a few require-
ments concerning the object to be tracked:

(i) object must be textured but not periodically textured;
(ii) object must be of sufficient size;
(iii) object rectangle must contain no or small portions of

background only;
(iv) object must not change its appearance abruptly, its size

should remain constant.

If the object is not textured, the algorithm used to detect low-
textured areas, as previously described, can be used. We pri-
marily performed experiments with faces. If faces are suffi-
ciently large, they meet the requirements on the object listed
above and it is possible to track them using motion vec-
tors.

4.1.2. The start object rectangle

The first step to find the object rectangle that should be
tracked is best performed in the uncompressed domain. For
this purpose, the video must be decoded at least for the first
frame after a cut. The object rectangle to be tracked will ei-
ther be determined by an automated system or by a human.
After the initial determination of the rectangle, the object
tracking algorithm only uses compressed-domain data. The
algorithm is passed the coordinates of the top left corner and
the size of the object rectangle. The size of the object will re-
main constant throughout the whole tracking process. More-
over, the edges of the object rectangle will always be located
parallel to the image edges.

4.2. Algorithm

The tracking algorithm applies the histogram in a manner
similar to the camera motion detection, plus some additional
steps to increase the accuracy.

4.2.1. Histogram to determine the object’s
motion vector

Since the results of the object rectangle’s calculations are used
again with subsequent frames, a high accuracy is required. As
seen with the camera motion detection, the histogram algo-
rithm with texture analysis can usually determine the exact
number of pixels. Since we assume that the object is suffi-
ciently textured, texture analysis is not required. We rely on a
two-dimensional histogram which includes only the motion
vectors of macroblocks that are at least partly located inside
the object rectangle. A slight and slow appearance change
of the object like the mouth movement of a face does not

usually influence the peak of the histogram. The majority of
the motion vectors still reflect the object movement.

The object rectangle will in most cases not correspond
to the macroblock grid so that many macroblocks or refer-
enced pixel blocks will partly contain background. We there-
fore introduce a weight for each macroblock or referenced
pixel block, respectively. If all 16×16 pixels are located inside
the object rectangle, the weight is 1, otherwise, the weight is
proportional to the number of overlapping pixels.

The analysis is done with half-pixel accuracy. This means
that the histogram is built using half-pixel without rounding
to pixels beforehand. The object rectangle’s coordinates are
also internally calculated with half-pixel accuracy. The two
motion vectors of macroblocks using interlaced motion es-
timation are both used with half-weight when building the
histogram.

hx,y are the accumulated weights of the motion vectors
(x, y). For each vector (x, y) the weighted frequency of the
peak region calledHx,y is calculated. Because of the half-pixel
accuracy, an extended range of three half-pixels (compared
to two pixels with the detection of camera motion) is used
to determine the peak region. The weight matrix W with el-
ements wi, j is represented as

W = 1
4
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 2 2 2 2 2 1
1 2 3 3 3 2 1
1 2 3 4 3 2 1
1 2 3 3 3 2 1
1 2 2 2 2 2 1
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

and the peak region Hx,y is calculated as follows:

Hx,y =
3∑

i=−3

3∑

j=−3
wi+4, j+4 · hx+i,y+ j . (6)

The calculation of the object rectangle is dependent on the
frame type. Intracoded macroblocks are always ignored.

The motion vectors of forward-predicted macroblocks
specify the position in the frame from which the macroblock
originates, whereas motion vectors of backward-predicted
macroblocks specify to which position in the next reference
frame the macroblock will move.

4.2.2. Backward search with P-frames

P-frames can only have motion vectors of forward-predicted
macroblocks. They specify the position of the pixel block that
is referred to in the previous reference frame. The number
of pixels by which this pixel block and the object rectangle’s
overlap is calculated. The overlap specifies the weight of the
motion vector used to build the motion vector histogram.
The vector of the peak region is calculated by applying a
method similar to that used in the camera motion approach.
Adding this vector to the coordinates of the object rectan-
gle in the reference frame gives the coordinates of the object
rectangle in the current P-frame. This rectangle is used as the
reference rectangle for the following frames.



6 EURASIP Journal on Applied Signal Processing

4.2.3. Backward search and prediction with B-frames

The determination of the current object rectangle for B-
frames is done in the same way that it was with P-frames,
except that the forward portions of bidirectional motion vec-
tors are included in the histogram as well. The reference rect-
angle is not updated since B-frames are never used as refer-
ence.

Nomotion vectors are available, either for I-frames or for
P-frames, in which all macroblocks that are part of the object
rectangle are intracoded. We therefore use the backward ref-
erences of B-frames to make a prediction concerning where
the object rectangle will move in the next reference frame.
This is done again by using a histogram, but this time the
histogram is built up using the motion vectors of backward-
predicted macroblocks and the backward portions of bidi-
rectional motion vectors. The sum of the peak-region vector
and the object rectangle’s coordinates of the B-frame gives
the object rectangle’s coordinates in the next reference frame.

Consequently, for a P-frame in the sequence B1 B2 P,
usually three calculations of the object rectangle are avail-
able which are identical in the ideal case: the two predictions
of the B-frames and the calculation for the P-frame. We use
the latter one because it is most reliable since it is calculated
in one step. In contrast, a prediction of a B-frame requires
two steps, the B-frame calculation and the B-frame predic-
tion. However, experiments showed that the predictions that
were calculated with the B-frames are more precise than the
P-frame calculations if the motion vectors spread, especially
in the case of fast object movements. Therefore, an additional
pseudomotion vector with weight 2 is added to the P-frames
histogram. It is determined by the difference between the co-
ordinates of the object rectangle in the reference frame and
the prediction. This pseudomotion vector does not influence
the maximum in cases in which no fast movement occurs.

4.2.4. Using predicted coordinates with I-frames

For I-frames, the prediction of the object rectangle derived
from the previous B-frame is used. This prediction is also
used for P-frames in which all macroblocks that are part of
the object rectangle are intracoded. The reference rectangle
is updated with these coordinates.

Figure 3 shows an example sequence with three consecu-
tive frames with type P, B, and I. The object rectangle in the P-
frame (depicted with solid lines in the left picture) is known
when the B-frame is analyzed. Each macroblock in the B-
frame is checked as to whether a pixel block of the object
rectangle in the P-frame is used as reference. The macroblock
depicted with dashed lines is located completely inside the
object rectangle so that its weight is 1 whereas the weight of
the macroblock depicted with broken lines is smaller since it
is located partly inside the object rectangle. The object mo-
tion vector is calculated using the histogram. By subtracting
the motion vector from the coordinates of the object rect-
angle in the reference frame, its position in the B-frame can
be determined. To predict the object rectangle’s position in
the I-frame, a histogram of the motion vectors of backward

predicted macroblocks and backward- portions of bidirec-
tional motion vectors is built.

The algorithm does not support rotating objects. The ob-
ject rectangle’s orientation will always remain the same so
that a 90-degree rotation will have the effect that the object
rectangle contains background from that point on. This is
also the case if the object size decreases. However, a slow in-
crease of size will usually not result in problems. It is essential
that the encoder uses B-frames without preferring the previ-
ous or the following reference frame.

4.3. Experiments

We primarily performed experiments with faces. For com-
parison, the ground-truth data of the position of the rect-
angle containing the face were determined using the Rowley
face detection algorithm [21]. The rectangle position in the
first frame of the sequence together with its size was used
as start object rectangle for the tracking algorithm. Another
face detection method, which could have been used to estab-
lish ground truth, is presented in [22].

Figure 4 shows the tracking of a speaker in the German
parliament. The object rectangle in the first frame was deter-
mined using the Rowley algorithm. It is the starting point of
the tracking. The white-dotted rectangle shows the reference
tracking by the Rowley algorithm, whereas the solid rectan-
gle depicts our tracked object rectangle. The speaker’s head
moves several times quickly up and down and sidewards. The
Rowley network was only trained on frontal faces and can-
not therefore always find the face with sufficient confidence.
Our tracking algorithm can link these face detections so that
it is possible to automatically determine that it is the same
face. The differences between the positions of the Rowley al-
gorithm and ours are only a few pixels. Even if the head is
slightly tilted, the face can still be tracked. The size of the
rectangle that was determined using the Rowley algorithm
varies, whereas the size of our rectangle is constant.

Experiments with low-quality video material, such as
recordings from security cameras, gave poor results. Themo-
tion vectors do not reflect the object motion adequately. This
is also the case if the object moves too fast or changes its ap-
pearance quickly. For this reason, the quality of the tracking
is highly dependent on the quality of the motion vectors. A
high-quality video with low noise is required as well as an
encoder with a good motion estimation.

Table 1 shows the tracking results of five high-quality
video sequences.

4.4. Results

The results of the presented object tracking using MPEG-2
motion vectors are very good if the video material is of high
quality and the MPEG-2 encoders have a good motion esti-
mation as they do with newscasts and parliament transmis-
sions. Consequently, these are the fields of application of ob-
ject tracking using motion vectors. If the video material is of
low quality, especially noisy and blurry as with security cam-
eras, the motion vectors do not reflect the object motion so
that object tracking using motion vectors is not possible.



W. Hesseler and S. Eickeler 7

P B I

Figure 3: Example of object tracking: the object rectangle (with solid lines) is calculated for the B-frame shown in the middle. An object’s
motion vector is calculated relative to the object rectangle’s position in the P-frame. After this, an object’s motion vector is calculated to
predict the object rectangle’s position in the I-frame. The grid depicts the macroblock boundaries, the squares with dashed and broken
squares depict two examples: macroblocks and the referenced pixel blocks, respectively.

Figure 4: Face tracking for 53 seconds of a parliament speaker. The solid rectangle localizes the tracked object. The dotted rectangle reflects
the reference data which were determined using the Rowley algorithm. In several cases, the reference algorithm failed to detect a face with
sufficient confidence.

5. CUT DETECTION

The first step of any video sequence analysis is usually the cut
detection. A cut is defined as an abrupt scene change between
two consecutive frames.

Cut detection algorithms using the ratio of forward-
and backward-predicted macroblocks rely on the fact that
B-frames are “average” frames between two reference frames.
For this reason, the number of macroblocks using the pre-
ceding and the following reference frames should be roughly



8 EURASIP Journal on Applied Signal Processing

Table 1: Tracking test results of five video sequences. Example frames of test sequence 3 are shown in Figure 4. Rectangle’s average overlap
means the average overlap of the tracked object rectangle and the face rectangle determined by the Rowley face detector. In test sequence 5
the face is lost when the speaker tilts his head too quickly. The rectangle overlap then falls below 50% so that the object can be regarded as
lost.

Test sequence Tracked object Duration Total frames Rectangle’s average overlap

1 Anchor person 50 s 1250 97.8%

2 Anchor person 52 s 1303 94.1%

3 Parliament speaker 53 s 1335 89%

4 Parliament speaker 140 s 3492 91%

5 Parliament speaker Lost after 17 s 428 82.4%

identical. A significant change in the forward/backward ra-
tio indicates a cut. Referential dependencies across cuts tend
to lead to large motion vectors since frames on opposite sides
of cuts are typically markedly different. These motion vectors
can be expected to spread widely.

5.1. Algorithm

We use a combined evaluation of B-frame references and
motion vectors. Figure 5 shows the three possible cut types.
R1 and R2 stand for reference frames, in between are the B-
frames B1 and B2. The arrows indicate the references of the
majority of the macroblocks. The number of B-frames be-
tween the reference frames is arbitrary, but at least one. We
use two B-frames in the example, which give a GOP such as
IBBPBBPBBPBB.

(i) In the first case, most macroblocks from B1 use pixel
blocks from R2 as reference. This indicates a cut be-
tween R1 and B1.

(ii) In the second and third cases, most macroblocks from
B1 use the reference frame R1. At the moment of ana-
lyzing B1, we can conclude whether the following cut
occurs before or at R2. It is necessary to check all of the
following B-frames to determine if the macroblock-
type ratio has inverted in order to localize the cut more
exactly.

(iii) In the second case, the macroblock-type ratio has in-
verted in B2. Therefore, a cut is detected at that frame.

(iv) If the ratio has not inverted by the time we reach R2,
the cut must be at R2. This is shown in the 3rd case.

(v) If there was no significant ratio of forward/backward
types, it is assumed that no cut occurred in within that
sequence.

Note that after a cut has been detected at a B-frame, no fur-
ther cut can be detected until the next reference frame.

5.1.1. Problem: little motion activity

There are general problems with cut detection using mac-
roblock types if there is no or little motion as is the case with
video depicting static graphics. The encoder does not need
to use references to both reference frames, but uses a refer-
ence to the previous or following reference frame only; in

R1|B1 B2 R2

(a)

|R1 B1 B2 R2

(b)

R1 B1 B2|R2

(c)

Figure 5: The three cut types. R1 and R2 are reference frames, B1

and B2 are the two B-frames, | indicates the cut position. The arrows
indicate the references of the majority of the macroblocks.

which direction a reference is established depends on the en-
coder’s preferences. For this reason, the cut detectionmethod
described above will always detect a cut. We therefore discard
macroblocks whose motion vectors are 0. The idea is that af-
ter a cut, the position of the macroblock most probably dif-
fers from the position of the referenced pixel block. Bidirec-
tional macroblocks are always used because they imply that
no cut has occurred.

Experiments showed that the results improve if all mac-
roblocks with motion vectors whose absolute values are nei-
ther vertically nor horizontally greater than 1 are not used.
Such vectors are half-pixel motion vectors that are primarily
used because of coding efficiency. Effectively, we only con-
sider the forward/backward predicted ratio of macroblocks
that have moved or will move compared to the previous or
following reference frame.

B>1
For is the number of forward-predicted macroblocks

whose motion vectors are greater than 1 for at least one di-
rection, B>1

Back is the analogous value for backward-predicted
macroblocks. The number of bidirectional macroblocks is



W. Hesseler and S. Eickeler 9

denoted as BBi and the number of intracoded macroblocks
as BIntra.

The ratios AFor and ABack are defined as

AFor = B>1
For + BBi + R

B>1
For + B>1

Back + BBi + R
,

ABack = B>1
Back + BBi + R

B>1
For + B>1

Back + BBi + R
,

(7)

where R is a value that compensates the noise in the distri-
bution of macroblock types. It increases the ratio if the num-
ber of considered macroblocks is low. R depends on the total
number of macroblocks BTotal and a constant r as follows:

R = BTotal · r. (8)

A cut of type 1 (see Figure 5) is assumed if

AFor < tFor, (9)

where tFor is a constant. If the ratio is in an expanded range
AFor with

AFor < t+For, (10)

a cut hypothesis with lower probability is assumed.We there-
fore check the spread of the forward portion of motion vec-
tors of the considered macroblocks using the average devia-
tion from the mean of the motion vectors. This value is de-
noted as SForXY and is compared with the constant SDeviation.
A cut is assumed if

SFor XY > SDeviation. (11)

The idea is that in case the reference frame is located before
the cut, the forward-predicted macroblocks will change their
positions drastically without preferring one direction.

A cut of type 2 or 3 (see Figure 5) is assumed if

ABack < tBack. (12)

Again, if the ratio is in an extended range with

ABack < t+Back, (13)

we check the spread of the considered motion vectors, here
the backward-predicted portions. Similarly, if

SBackXY > SDeviation, (14)

a cut is assumed. However, in these cases we can only iden-
tify a cut up until the next reference frame. For this reason,
each following B-frame is checked to see if the number of
forward-predicted macroblocks is smaller than the number
of backward-predicted macroblocks and a cut is assumed if
this is the case. If no cut position was found by the next ref-
erence frame, this reference frame must be the cut position.

5.1.2. Cut validation using the following P-frame

To lower the number of false detections such as the ones oc-
curing frequently with static computer-generated graphics,
the P-frame after a detected cut can be used to validate the
cut. The encoder will probably not be able to take over pixel
blocks in the P-frame from the same position in the previous
reference frame. The ratio of nonmoving motion vectors is
calculated as

A0/1
For =

BTotal − B>1
For − BBi − BIntra

BTotal
(15)

and compared with a threshold constant tValid. A cut hypoth-
esis occuring since the last reference frame can be assumed to
be unlikely if

A0/1
For > tValid, (16)

and can therefore be rejected. The cuts can only be verified
if the reference frame after cut is a P-frame. In case of an I-
frame, no information can be obtained. Some encoders en-
force an I-frame after a cut. This is, however, not a problem
since only false cuts need to be identified.

5.2. Experiments

The tests were primarily done with newscast video mate-
rial. They contain a broad test spectrum including, for ex-
ample, speakers with static background, static computer-
generated graphics, camera flashes, fast camera movement,
reports with bad picture quality, and so forth. Table 2 shows
the results of five test sequences. The cut positions were de-
termined by hand.

The average percentage of detected cuts varies from
94.8% to 100.0% depending on the encoder and the video
content. The average percentage of incorrect detected cuts
(false alarms) varies from 0% to 23.0%. Up to 4.1% of the
detected cuts differed from the actual positions by one frame.
Parliament transmissions generally give better results than
newscasts, since they do not contain typical problems.

The causes for nondetected cuts are, in descending order
of importance as follows.

(i) The encoder did not use the characteristic distribution
of macroblock types.

(ii) The frames before and after the cut are too similar.
(iii) The cut occurred between two half-pictures.

The causes for cuts detected where no cut actually occurred
are in descending order of importance as follows:

(i) the consecutive frames are too similar, there are (al-
most) no changes so that it was sufficient for the en-
coder to use references to one reference frame only;

(ii) camera flashes;
(iii) the encoder did not use the characteristic distribution

of macroblock types;
(iv) very quick camera motion.

No or little motion only is still a problem. This especially
applies to computer-generated graphics since they do not



10 EURASIP Journal on Applied Signal Processing

Table 2: Results of cut detection test for five videos. # reference cuts is the number of cuts in the ground truth. B-frames is the num-
ber of B-frames between two reference frames. Deletion = number of missed cuts/divided by number of reference cuts, insertion = num-
ber of falsely detected cuts/divided by number of detected cuts, and inaccuracy=∑displacement of cut/divided by number of detected cuts.

Video type Duration Total frames # Ref. cuts B-frames Deletion Insertion Inaccuracy

Newscast 15min 22500 132 1 1.5% 2.9% 0.0 frames

Newscast 15min 22500 167 1 1.2% 2.3% 0.0 frames

Newscast 15min 22500 96 2 5.2% 11.1% 0.009 frames

Newscast 15min 22500 97 2 4.1% 23% 0.032 frames

Parliament 54.7min 82054 81 2 0% 0% 0.0 frames

contain the noise that leads to small differences between the
frames. In order to avoid the repeated detection of a cut, only
the macroblocks with motion vectors of at least two half-
pixels are considered. However, imposing this limitation can
lead to a situation in which the number of remaining mac-
roblocks is small, causing the result to be unreliable. In this
case, both a nondetected cut and a erroneously detected cut
are possible. Camera flashes lead to increased brightness in
a single frame or a half-frame only. If a flash occurs in a ref-
erence frame that frame, will likely have less referential de-
pendencies, which may lead to an erroneously detected cut.
Cuts between two half-pictures can occur if the video ma-
terial was produced with analog equipment. The first half-
picture of a frame belongs to a scene and the second half-
picture belongs to the next scene. Very quick camera motion
can also lead to false detection of a cut since the motion vec-
tors spread.

Generally, the number of nondetected cuts can be re-
duced by adjusting the parameters so that more cuts are de-
tected, also resulting in more false alarms. All cut hypotheses
could be checked using the DC coefficients of the approx-
imated DCT as was shown with the camera motion detec-
tion. Such checking does not compromise speed improve-
ment over uncompressed-domain techniques.

The performance of the algorithm presented here de-
pends on the encoder. The parameters have to be adjusted
to accommodate the particular encoder. It is necessary that
the encoder uses B-frames and does not always prefer one
reference frame like the next I-frame.

5.3. Results

The cut detection algorithm using compressed-domain data
only can detect 94.8%–100% of all cuts in a video. The per-
formance is dependent on the encoder and the video mate-
rial. Only sequences with no or little motion remain prob-
lematic despite special treatment and in such cases, the de-
tection is not reliable. Also, encoders do not always encode
the video as presumed by the proposed algorithms but are
rather programmed with the coding efficiency in mind.

A typical application of the cut detection method would
be integration in distributed online television monitoring
systems. The basic units for processing of video sequences are
the shots. These shots are distributed to the different nodes
of a computer cluster for a fast processing. The detection of
the shots must occur before the distribution and is as such

the bottleneck. For this reason, an algorithm which can de-
tect shots faster than real time is highly desirable.

6. CONCLUSIONS

In this paper, three different algorithms for low-level meta-
data extraction were presented. All three algorithms work in
the MPEG-2 compressed domain, and are therefore efficient,
saving time for the further processing steps that create meta-
data on a higher semantic level. The algorithms operate in
realtime on a computer with an 866MHz Pentium III pro-
cessor under Linux.

Detection of cuts and camera motion can be performed
immediately after parsing a frame in bitstream order with-
out having to wait for the data of the following frames. This
procedure allows on-the-fly cut and camera motion detec-
tion, for example, with live videos from a satellite. The object
tracking algorithm requires the frames to be in display or-
der, which gives a delay of up to three frames (less than 100
milliseconds).

Considering that the encoder’s task is to encode the best
picture quality with a given bit rate and not with the cam-
era or object motion in mind, the results of the compressed-
domain algorithms are convincing. The results show that it
is not necessary to expend computing power on decoding in
order to perform low-level metadata extraction in the pixel
domain.

The algorithms presented in this paper are not funda-
mentally limited to MPEG-2. They can be extended to all
video compression methods that use motion compensation
and bidirectional frames, for example, MPEG-4 simple and
advanced profile (also known as DivX).

REFERENCES

[1] B. S. Manjunath, P. Salembier, and T. Sikora, Introduction to
MPEG-7: Multimedia Content Description Interface, John Wi-
ley & Sons, New York, NY, USA, 2002.

[2] R. Wang and T. Huang, “Fast camera motion analysis in
MPEG domain,” in Proceedings of IEEE International Confer-
ence on Image Processing (ICIP ’99), vol. 3, pp. 691–694, Kobe,
Japan, October 1999.

[3] A. Smolic, M. Hoeynck, and J.-R. Ohm, “Low-complexity
global motion estimation from P-frame motion vectors for
MPEG-7 applications,” in Proceedings of IEEE International
Conference on Image Processing (ICIP ’00), vol. 2, pp. 271–274,
Vancouver, BC, Canada, September 2000.



W. Hesseler and S. Eickeler 11

[4] P. M. Kuhn, “Camera motion estimation using feature points
in MPEG compressed domain,” in Proceedings of IEEE Inter-
national Conference on Image Processing (ICIP ’00), vol. 3, pp.
596–599, Vancouver, BC, Canada, September 2000.

[5] V. Kobla, D. Doermann, and A. Rosenfeld, “Compressed do-
main video segmentation,” Tech. Rep. CAR-TR-839 (CS-TR-
3688), University of Maryland, College Park, Md, USA, 1996.

[6] D. Comaniciu and P. Meer, “Mean shift analysis and applica-
tions,” in Proceedings of 7th IEEE International Conference on
Computer Vision (ICCV ’99), vol. 2, pp. 1197–1203, Kerkyra,
Greece, September 1999.

[7] B. Danette Allen and G. Bishop, “Tracking: Beyond 15 Min-
utes of Thought,” in SIGGRAPGH 2001 Course 11 Booklet, Los
Angeles, Calif, USA, August 2001.

[8] A. Gyaourova, C. Kamath, and S.-C. Cheung, “Blockmatching
for object tracking,” Tech. Rep. UCRL-TR-200271, Lawrence
Livermore National Laboratory, Livermore, Calif, USA, 2003.

[9] V. Kobla, D. Doermann, K.-I. Lin, and C. Faloutsos, “Fea-
ture normalization for video indexing and retrieval,” Tech.
Rep. CAR-TR-847 (CS-TR-3732), University of Maryland,
College Park, Md, USA, 1996.

[10] J. I. Khan, Z. Guo, and W. Oh, “Motion based object tracking
in MPEG-2 stream for perceptual region discriminating rate
transcoding,” in Proceedings of 9th ACM International Confer-
ence on Multimedia (ACM Multimedia ’01), pp. 572–576, Ot-
tawa, Ontario, Canada, September–October 2001.

[11] H. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic
partitioning of full-motion video,” ACM Multimedia Systems,
vol. 1, no. 1, pp. 10–28, 1993.

[12] A. Nagasaka and Y. Tanaka, “Automatic video indexing and
full-video search for object appearances,” in Proceedings of
IFIP 2nd Working Conference on Visual Database Systems, pp.
113–127, North-Holland, September–October 1991.

[13] R. Zabih, J. Miller, and K. Mai, “A feature-based algorithm for
detecting and classifying scene breaks,” in Proceedings of 3rd
ACM International Conference on Multimedia (ACMMultime-
dia ’95), pp. 189–200, San Francisco, Calif, USA, November
1995.

[14] G. Bozdagi and H. T. Sencar, “Preprocessing tool for com-
pressed video editing,” in Proceedings of IEEE 3rd Workshop on
Multimedia Signal Processing, pp. 283–288, Copenhagen, Den-
mark, September 1999.

[15] A. Bovik, Ed., Handbook of Image and Video Processing, Aca-
demic Press, New York, NY, USA, 2000.

[16] J. Calic and E. Izquierdo, “Towards real-time shot detection in
the MPEG-compressed domain,” in Proceedings of Workshop
on Image Analysis for Multimedia Interactive Services (WIAMIS
’01), pp. 95–100, Tampere, Finland, May 2001.

[17] P. Viola and M. J. Jones, “Robust real-time object detection,”
Tech. Rep. CRL 2001/01, Cambridge Research Laboratory,
Cambridge, Mass, USA, 2001.

[18] S.-F. Chang and D. G. Messerschmitt, “Manipulation and
compositing of MC-DCT compressed video,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 1, pp. 1–11,
1995.

[19] K. Shen and E. J. Delp, “A fast algorithm for video parsing us-
ing MPEG compressed sequences,” in Proceedings of IEEE In-
ternational Conference on Image Processing (ICIP ’95), vol. 2,
pp. 252–255, Washington, DC, USA, October 1995.

[20] B.-L. Yeo and B. Liu, “On the extraction of DC sequence from
MPEG compressed video,” in Proceedings of IEEE International
Conference on Image Processing (ICIP ’95), vol. 2, pp. 260–263,
Washington, DC, USA, October 1995.

[21] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-
based face detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 1, pp. 23–38, 1998.

[22] H. Wang and S.-F. Chang, “A highly efficient system for auto-
matic face region detection inMPEG video,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 7, no. 4, pp.
615–628, 1997.

Wolfgang Hesseler received his Diploma
in computer science from the University
of Bonn, Germany. The algorithms pre-
sented in this paper were developed dur-
ing his work at the Fraunhofer IMK in
Birlinghoven, Germany, where he wrote
his Diploma thesis about using MPEG-2
compressed-domain data for computer vi-
sion. His areas of interest are video indexing
and video analysis.

Stefan Eickeler received his Dipl.-Ing. de-
gree and Dr.-Ing. degree in electrical engi-
neering from the University of Duisburg,
Germany, in 1996 and 2001, respectively. He
joined the Fraunhofer Institute for Media
Communication (Fraunhofer IMK) in the
year 2001. Since 2003 he has taught as a
lecturer at the Bonn-Aachen International
Centre for Information Technology. His re-
search interests are statistical pattern recog-
nition and signal processing with the applications face and gesture
recognition and automatic media and document analysis.


	Introduction
	MPEG-2 video compression
	Related Work

	Detecting camera motion
	Algorithm
	Low-textured areas
	Approximation of the DCT coefficients

	Experiments
	Results

	Object tracking using motion vectors
	Differences to camera motion detection
	Problems using MPEG-2 compressed- domain data
	The start object rectangle

	Algorithm
	Histogram to determine the object's motion vector
	Backward search with P-frames
	Backward search and prediction with B-frames
	Using predicted coordinates with I-frames

	Experiments
	Results

	Cut detection
	Algorithm
	Problem: little motion activity
	Cut validation using the following P-frame

	Experiments
	Results

	Conclusions
	REFERENCES

