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Determining the number of sources in a received wave field is a well-known and a well-investigated problem. In this problem, the
number of sources impinging on an array of sensors is to be estimated. The common approach for solving this problem is to use
an information theoretic criterion like the minimum description length (MDL) or the Akaike information criterion. Under the
assumption that the transmitted signals are Gaussian, the MDL estimator takes both a simple and an intuitive form. Therefore this
estimator is commonly used even when the signals are known to be non-Gaussian communication signals. However, its ability to
resolve signals (resolution capacity) is limited by the number of sensors minus one. In this paper, we study the MDL estimator that
is based on the correct, non-Gaussian signal distribution of digital signals. We show that this approach leads to both improved
performance and improved resolution capacity, that is, the number of signals that can be detected by the resulting MDL processor
is larger than the number of array sensors. In addition, a novel asymptotic performance analysis, which can be used to predict the
performance of the MDL estimator analytically, is presented. Simulation results support the theoretical conclusions.
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1. INTRODUCTION

One of the fundamental problems in the field of array pro-
cessing is to determine the number of signals that impinge on
a passive sensors array. The problem arises in several fields
of array processing such as radar, and seismology (see, e.g.,
[1, 2, 3, 4, 5, 6]). This question received considerable interest
not only because of its nature, but also because most algo-
rithms for direction-of-arrival (DOA) estimation assume a
prior knowledge of the number of signals. Moreover, with
the advent of new communication systems and the grow-
ing lack of frequency spectrum, efficient techniques of com-
munication are being developed. One of these approaches
is to use an antenna array to generate a narrow beam fo-
cused at the receiver. This, in turn, enables us to reuse the
frequency spectrum for communication with other receivers.
The method is being developed for cellular communica-
tion where the users move and the cells should sense the

advent of new users. New users are detected by monitoring
the change in the number of users that the cell senses. The
ability to detect the number of transmitters and their lo-
cation is also required in spectrum monitoring and control
applications.

The most common approach for estimating this number
is to apply information theoretic criteria like the minimum
description length (MDL) or the Akaike information crite-
rion (AIC) [7]. Since 1985 [3], when a Gaussian version of
the MDL was first suggested for estimating the number of
narrowband sources impinging on an array of sensors, this
MDL-based estimator became a standard tool for accom-
plishing this task.

1.1. Problem formulation

Assume an array of p sensors and denote by x(t) the received
p-dimensional signal vector at instance t. Denote by q the
number of signals impinging on the array. A commonmodel
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for the received signal vector is

x(t) = As(t) + n(t), (1)

where A = [a1, a2, . . . , aq] is a p× qmatrix composed of q p-
dimensional vectors, a1, . . . , aq.A is referred to as the steering
matrix. s(t) = [s1(t) · · · sq(t)]T is a q×1 signals vector and
n(t) is a p × 1 vector of the additive noise.

Many problemsmay be formulated using this simple, lin-
ear model (see [8, 9] and references therein). These problems
differ in the structure of themixingmatrix,A, in the assumed
knowledge about the unknown parameters, or in the statis-
tical modeling of both the signal and the noise. For example,
n and/or s can be assumed to be Gaussian or non-Gaussian;
the additive noise correlation matrix can be assumed to be
white or not; or the mixing matrix A can be assumed to be of
full rank or not.

In this paper we are concerned with the problem of es-
timating q when the sources are digital signals. Denote by
D = [d1, . . . ,d|D|] an arbitrary signal constellation, where
di ∈ C, and |D| is the size of the constellation. In the sequel,
we make the following assumptions.

(1) The additive noise is zero mean, both spatially and
temporal white, complex Gaussian random process,
with correlation matrix σ2nI.

(2) The signal vector is uniformly distributed overDq, in-
dependent from snapshot to snapshot.

(3) The additive noise and the signal vector are indepen-
dent.

Based on these assumptions, the probability distribution
function (pdf) of the received signal is

f
(
x1, . . . , xN |A, σ2n

) = N∏
i=1

1
|D|q

∑
s∈Dq

CN
(
xi − As, σ2nI

)
, (2)

where CN (x,R) = (1/π|R|)e−xHR−1x, and H denotes the
complex transpose. We note that, opposed to the common
problem formulation [3], we do not assume that A is a full-
rank matrix. As will be shown in the sequel, the full-rank re-
quirement is not necessary for identifiability when the signals
are digital signals.

Note that our model, (1), is also used to represent the
reception of any multiple access system, for example, code-
division-multiple-access (CDMA) systems transmitting over
flat fading channels [10]. Our problem is to estimate the
number of sources, q, given N independent snapshots of the
array output, x(t1), . . . , x(tN ), described by the pdf of (2).

1.2. TheMDL approach

The information theoretic criteria approach is a general one
for choosing amodel that fits the datamostly from a family of
possible models [7, 11]. That is, given a parameterized family
of probability densities, fX(X|θ(q)), θ(q) ∈ Θq, for various q,

select q̂ such that

q̂ = argmin
q

{− L
(
θ̂
(q))

+ P(q)
}
, (3)

where L(θ(q)) = log fX(X|θ(q)) is the log likelihood of the
measurements, denoted byX = [x1, . . . , xN ], P(q) is a general

penalty function associated with the qth family, and θ̂
(q) =

argmaxθ(q)∈Θq
{ fX(X|θ(q))}. θ̂(q) is the maximum likelihood

estimate of the unknown parameters, given the qth family of
distributions.

The MDL estimator is a special case of (3) with a certain
penalty function. It is given by minimizing the MDL metric
[7], that is,

q̂MDL = argmin
q

MDL(q)

= argmin
q

{
− log

(
fX
(
X|θ̂(q))) + 0.5

∣∣Θq

∣∣ log(N)
}
,

(4)

where MDL(q) = {− log( f (X|θ̂(q))) + 0.5|Θq| log(N)}, and
|Θq| is the minimum number of free parameters in Θq. It is
well known that asymptotically, under certain regularity con-
ditions, the MDL estimator minimizes the description length
(measured in bits) of both the measurements, X, and the

model, θ̂
(q)

[7].
Although in many problems associated with array pro-

cessing, for example, direction-of-arrival (DOA) estimation,
one has some prior knowledge on the signals’ statistical prop-
erties or on the array geometry, when the number of sources
is estimated, this prior knowledge is usually ignored. The rea-
son for this is that by assuming Gaussian sources and regard-
less of the array geometry, the resulting MDL estimator (4),
termed the Gaussian minimum description length (GMDL)
estimator, has a simple closed-form expression given by

q̂|GMDL = arg min
q=0,...,p−1

{
−N log

∏p
i=q+1 li((

1/(p − q)
)∑p

i=q+1 li
)p−q

+
1
2

(
q(2p − q) + 1

)
logN

}
,

(5)

where l1 ≥ l2 ≥ · · · ≥ lp are the eigenvalues of the empirical
received signal’s correlation matrix, R̂ = (1/N)

∑
xixHi . It is

well known that the GMDL estimator is a consistent estima-
tor of the number of sources [12].

In our problem the unknown parameters are the matrix
A and the noise level. Since we do not restrict our attention
to full-rank mixing matrices, when the number of sources
is assumed to be q, the number of unknown parameters is
2pq + 1. We denote by Âq and σ2nq the MLEs of the unknown
parameters assuming q sources. The MDL estimator (4) for
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our problem (2) becomes

q̂|MDL = arg min
q=0,1,...

− log f
(
x1, . . . , xN |Âq, σ̂2nq

)
+ 0.5(2pq + 1) logN

= arg min
q=0,1,...

{
−

N∑
i=1

log
1

|D|q
∑

s∈Dq

CN
(
xi − Âqs, σ̂2nq I

)

+ 0.5(2pq + 1) logN

}
.

(6)

The reader can already spot an important difference be-
tween the commonly used GMDL (5) and the exact MDL so-
lution (6). While the GMDL can detect up to p − 1 sources,
the MDL estimator can detect any number of sources. This
property of theMDL estimator will be discussed in Section 2.
One should note that in practice, although the MDL can de-
tect any number of sources, this number will be limited by
the overall system resources, for example, the number of dis-
tinct receivers.

1.3. Paper organization

The paper is organized as follows. Section 2 discusses the res-
olution capacity of this problem and the asymptotic charac-
teristics of the MDL estimator. Section 3 is devoted to nu-
merical study of the performance of the MDL estimator;
whereas Section 4 is devoted to analytical study of the perfor-
mance of the MDL estimator. Section 5 provides a summary
and some concluding remarks.

2. IDENTIFIABILITY AND CONSISTENCY

2.1. Identifiability

Consider a parameterized family of probability density
functions fX(x|θ), θ ∈ Θ. This family of densities is
said to be identifiable if, for every θ �= θ′, the diver-
gence between fX(x|θ) and fX(x|θ′) is greater than zero,
that is, D( fX(x|θ)‖ fX(x|θ′)) > 0, where D( f (x)‖g(x)) =∫
f log( f /g)dx is the Kullback-Leibler divergence between

f (x) and g(x). This condition ensures that there is a one-to-
one relationship between the parameter space and the statis-
tical properties of the measurements.

The model order selection problem [13] discussed in
Section 1.1 is unidentifiable if it is possible to find, for some
k �= l, two points in the parameter space, θk ∈ Θk and
θl ∈ Θl, such that f (·|θk) = f (·|θl). If this is the case, one
cannot distinguish between k sources and l sources because
the statistical distribution of the receivedmeasurements is in-
sensitive to whether θk or θl was transmitted. The following
theorem establishes the identifiability of our problem.

Theorem 1. Let A and Ã be two arbitrary p × m and p × n
matrices, respectively. In addition, let σ2n > 0 and σ̃2n > 0. The
two pdfs f (x|A, σ2n) and f (x|Ã, σ̃2n) are equal if and only ifm =
n, σ2n = σ̃2n , and A = Ã up to a permutation of the rows.

See Appendix A for the proof.

Theorem 1 points to very important difference between
the problem of detecting Gaussian sources and detecting dig-
ital sources. For Gaussian sources, the problem is identifiable
only when the number of sources is smaller than the number
of sensors and the mixing matrix is of full rank. For the case
of digital sources, on the other hand, the problem is identifi-
able for every number of sources and for every mixingmatrix
A, whether full rank or not. This fact has a significant impor-
tance in communication systems since we can estimate the
number of users utilizing a given channel (say using CDMA
scheme) with only one antenna. It should be noted that the
identifibility was proved under the assumption that all the
transmitters use the same constellation. This result can be
extended to the case of unequal signal constellations, as long
as any linear combination of the received signal is not equal
to any other received signal.

2.2. Consistency of theMDL estimator

In the previous subsection it was proven that the estimation
problem defined in Section 1.1 is identifiable. Once the es-
timation problem has been shown to be identifiable, it is
possible to infer the number of sources from the measure-
ments. However for a specific estimator, the issue of consis-
tency must be considered. In model order selection prob-
lems, the common performance measure is the probability
of error, that is, Pe = P{q̂ �= q} = 1− Pc. In what follows the
MDL estimator is proven to be a consistent estimator, that is
limN→∞ Pe = 0.

Theorem 2. TheMDL estimator is a consistent estimator of the
number of sources.

See Appendix B for the proof.
Both the proof of Theorem 2 and its practical implica-

tions deserve special attention. The proof of Theorem 2 is
divided into two parts. In the first part it is argued that
asymptotically the probability of underestimation, that is,
P{q̂ < q}, approaches zero as N → ∞; whereas in the
second part it is argued that, asymptotically, the probabil-
ity of overestimation, that is, P{q̂ > q}, approaches zero as
N → ∞. The first part is easily proven based on a more gen-
eral theorem which appears in [12]. The second part, how-
ever, is proven using Wilks’ theorem. The reader might re-
call that the first published consistency proof of the GMDL
was based on Wilks’ theorem [3]. Later, it was demonstrated
that Wilks’ theorem cannot be used in this problem [14],
and an alternate proof, which is based on Taylor’s expan-
sion, was proposed in [11]. Since then, Taylor’s expansion
is the only tool used for this type of proofs. In what follows,
we briefly explain why Wilks’ theorem can be used in our
proof.

Wilks’ theorem asserts that under certain regularity con-
ditions, the log likelihood ratio is distributed as a chi-square
random variable with a certain number of degrees of free-
dom. Themain regularity condition inWilks’ theorem is that
the unknown parameters under the null hypothesis are not
on the border of the parameter space of the unknown param-
eters under the alternative hypothesis. Simple example will



Determining the Number of Discrete Alphabet Sources 7

clarify this point. Consider a random variable x. Assume that
under the null hypothesis x ∼ N (0, 1), and under the alter-
nate hypothesis x ∼ N (θ, 1), θ ∈ Θ. Now, if Θ = (−∞,∞),
the null hypothesis is, with some abuse of notation, “inside”
the parameter space of the alternate hypothesis. However, if
Θ = (0,∞), the null hypothesis is, with some abuse of nota-
tion, “on the boarder” of the parameter space of the alternate
hypothesis (the alternate hypothesis does not “wrap” the null
hypothesis as required).

Recall that for Gaussian signals it is required that the ma-
trix ARSAH be a rank-q matrix. Therefore, assuming that
we have q sources, the unknown parameters are [λ1, . . . ,
λq, v1, . . . , vq, σ2n], where σ

2
n is the unknown noise level, λ1 >

0, . . . , λq > 0 are the eigenvalues of the matrix ARSAH , and
v1, . . . , vq are the eigenvectors corresponding to these eigen-
values. It is easily proven that the parameter space that cor-
responds to q sources lies on the border of the parameter
space that corresponds to q + 1 sources, and not inside it.
The intuition for this is very simple. The same way the point
0 is on the boarder of the parameter space (0,T), the points
[λ1, . . . , λq, 0, v1, . . . , vq+1, σ2n], which compose the parameter
space corresponding to q sources, are on the border of the
points [λ1, . . . , λq, λq+1, v1, . . . , vq+1, σ2n], which compose the
parameter space corresponding to q + 1 sources. The regu-
larity conditions in Wilks’ theorem require that the param-
eter space corresponding to q sources be inside the param-
eter space corresponding to q + 1 sources and not on its
boarder. Since in the Gaussian case this condition does not
hold, Wilks’ theorem cannot be used.

Consider the case of digital signals. From Theorem 1
it is clear that assuming q sources, the parameter space is
[a11, . . . , ap1, a21, . . . , apq, σ2n > 0], where ai j ∈ C for ev-
ery 1 ≤ i ≤ p, 1 ≤ j ≤ q. Now, the same way the
point 0 is inside the parameter space [−T ,T], the points
[a11, . . . , apq, 0, . . . , 0, σ2n > 0], which compose the parame-
ter space corresponding to q sources, are inside the points
[a11, . . . , ap(q+1), σ2n > 0], which compose the parameter space
corresponding to q + 1 sources. Therefore, Wilks’ theorem
can be used in our problem for proving the consistency of
the MDL estimator.

Theorem 1 demonstrates that one can estimate the num-
ber of digital sources even when the number of receivers is
one. The importance of Theorem 2 lies in demonstrating that
indeed one can estimate the number of sources (transmit-
ters) with diminishing probability of error even with one re-
ceiving antenna. This is of special importance in CDMA sys-
tems that use blind multiuser detection. In these systems it
is assumed that the number of users is smaller than the pro-
cessing gain. However, the MDL estimator proposed in this
paper can be used to estimate any number of users and hence
can be used to increase the range of operation of blind mul-
tiuser detectors.

3. SIMULATION STUDY

In what follows we compare the performance of the GMDL
estimator (5) and the MDL estimator (6), which exploits the
special structure of the transmitted signals. We compare the

performance of the two processors when either the number
of sensors is larger than the number of sources or the number
of sensors is smaller than the number of sources. Note that in
the latter, the GMDL cannot be used and the MDL estimator
is the only existing option. For simplicity we use BPSK sig-
nals; hence D = {±1}. In addition, in the MDL simulation,
we calculated the MDL metric for k = 0, . . . , q+2, where q is
the true number of sources in the scenario. The reason is that
the probability to overestimate the number of true sources by
more than one is negligible.

It is obvious that the GMDL estimator is muchmore sim-
ple than the MDL estimator. The complexity of the GMDL
estimator isO(p3), which is the complexity of computing the
eigenvalues. However, the complexity of the MDL estimator
grows exponentially with p. In order to have a fair compres-
sion, assume that q = p. In this case the complexity of the
MDL estimator is O(ND p). The actual complexity of the
MDL estimator is even larger because of the lack of closed
form expressions for the unknown parameters. In order to
overcome this complexity issue, in the simulations, we used
the EM algorithm for computing the MLEs of the unknown
parameters [15].

First we consider the performance of the MDL and
GMDL estimators in the presence of one source. Consider a
uniform linear array (ULA) with three sensors and one trans-
mitter located at the array boresight. In the first simulation
we study the performance of the GMDL andMDL estimators
as a function of the number of snapshots, whereas in the sec-
ond simulation we examine the performance of the GMDL
and the MDL estimators as a function of the source signal-
to-noise ratio (SNR). Figures 1 and 2 depict the probability
of correct decision as a function of the number of snapshots
and as a function of the source SNR, respectively. For the first
simulation the SNR per element was set to −6 dB, and for
the second simulation the number of snapshots was set to
60. For each point in the graph, 2000 Monte Carlo runs were
made.

In the graphs, we see the clear advantage of theMDL over
the GMDL estimator. The GMDL requires about 2 dB addi-
tional power or about 3 times the number of snapshots in or-
der to achieve the same performance as the MDL estimator
that exploits the special signal structure. The uniform per-
formance improvement of the MDL over the GMDL should
not come as a surprise. In [16] it was demonstrated that by
using additional a priori information, one can improve the
estimator performance considerably.

In the next set of simulations we examine the case of
detecting more than one source. Figure 3 depicts the prob-
ability of correct detection of two sources as a function of
their spatial separation. For the first scenario, one source is
located at angle θ = 0◦ and the second at angle ρ where
ρ is varied between 0◦ and 30◦. We consider two scenar-
ios. In the first, the sources’ SNR was set to −3 dB and the
number of snapshots was set to 50, while in the second, the
sources’ SNR was set to 0 dB and the number of snapshots
was set to 100. Here again the MDL demonstrates uniform
performance improvement over the GMDL. More surpris-
ingly, however, is that with a sufficient SNR and or number
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Figure 1: The probability of a correct decision of the GMDL and
MDL estimators for a single source as a function of the number of
snapshots N . ULA with p = 3, θ = 0◦, and SNR = −6 dB.
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Figure 2: The probability of a correct decision of the GMDL and
MDL estimators for a single source as a function of the SNR. ULA
with p = 3, θ = 0◦, and N = 60.

of snapshots, the MDL can perfectly resolve two sources of
no spatial separation. This is in agreement with Theorems
1 and 2 where it was shown that the MDL estimator can
resolve any number of sources with only one receiver. The
MDL estimator, therefore, uses the special signal structure,
and not spatial diversity, to resolve multiple sources. Thus,
the MDL estimator can resolve multiple sources even with-
out any spatial separation between them, as Figure 3 demon-
strates.
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Figure 3: The probability of a correct decision of the GMDL and
MDL estimators for two equal-power sources as a function of the
source separation. ULA with p = 3, θ1 = 0◦,N = 50, SNR = −3 dB,
and N = 100, SNR = 0 dB.
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Figure 4: The probability of a correct decision of the MDL estima-
tors for two equal-power sources as a function of snapshots, using
one receiver only and two equal power transmitters. θ1 = 0, θ2 = 5◦,
SNR = 0 dB.

As already mentioned, one of the main advantages of the
MDL estimator is its ability to operate even in the presence
of more sources than sensors. In the next and final simula-
tions, we explore this feature. We consider one receiving an-
tenna and two equal-power sources, transmitting with 0-dB
SNR. Figure 4 depicts the probability of a correct decision
as a function of the number of snapshots for the MDL esti-
mator only (since the GMDL estimator is invalid in this sce-
nario). It is evident from the graph that the MDL estimator
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is a consistent estimator. Moreover, only a limited number
of snapshots are required for achieving reliable probability of
detection.

4. PERFORMANCE ANALYSIS
OF THEMDL ESTIMATOR

The probability of error of the MDL estimator is an im-
portant figure of merit, and usually extensive simulations
are carried out in order to study its performance. It is de-
sired to have a simple tool for predicting the performance
of the MDL estimator which can be used not only to study
it but also to design a penalty function in (3) that meets
some required performance. In what follows we provide
such simple tool for predicting the performance of the MDL
estimator.

Denote by PM the probability of miss (the probability of
underestimation), that is, PM = P(q̂ < q), and PFA the prob-
ability of false alarm (the probability of overestimation), that
is, PFA = P(q̂ > q). The probability of error, denoted by Pe,
is the sum of the probability of miss and the probability of
false alarm, that is, Pe = PM + PFA. The probability of miss
can be approximated by PM ≈ P(MDL(q − 1) < MDL(q))
while the probability of false alarm can be approximated by
PFA = P(MDL(q+1) <MDL(q)). These approximations are
due to the fact that the MDL function, MDL(q), is a convex
function with a single minimum [12].

The following two lemmas establish asymptotic approxi-
mations for PM and PFA, respectively.

Lemma 1. Asymptotically, for large N ,

PFA ≈ 1− Fχ22p(2p logN), (7)

where Fχ22p(·) is the cumulative distribution function of the chi-
square random variable with 2p degrees of freedom.

See (B.2) in the proof of Theorem 2 for the proof.

Lemma 2. Asymptotically, for large N ,

PM ≈ 1−Q
(−µ

σ

)
, (8)

where Q(x) = (1/
√
2π)

∫∞
x e−α2/2dα is the error function, µ =

NE(− log f (x|A∗, σ2∗n ) + log f (x|A, σ2n) + p logN), and σ2 =
N Var(− log f (x|A∗, σ2∗n ) + log f (x|A, σ2n)).

(A∗, σ2∗n ) = argmin[A,σ2n ]∈Θq−1{D(− log f (x|A∗, σ2∗n )‖
log f (x|A, σ2n))}, where D( f ‖g) is the divergence between the
two distributions.

See [12, Theorem 1] for the proof.
These lemmas provide a simple tool to approximate the

performance of the MDL estimator. The approximation im-
proves with the number of snapshots or the SNR.
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Figure 5: The probability of a correct decision of the MDL esti-
mators for a single source as a function the SNR. Empirical versus
theoretical results for ULA with p = 3, θ = 0◦, and N = 60.

In order to validate our analysis we consider the fol-
lowing example. Assume a ULA with three sensors and one
source that transmits a BPSK signal at the array boresight.
Figure 5 depicts the probability of detection Pc = 1 − Pe,
which has been derived empirically by simulations, and the
probability of detection predicted by the two lemmas, as a
function of the SNR. The number of snapshots was set to
N = 60, and 2000 Monte Carlo runs were made. From
the figure, one sees that even under nonasymptotic condi-
tions (N = 60), our theoretical analysis predicts the prob-
ability of detection quite well, as the results of the theo-
retical analysis differ from the results of the simulation by
no more than 1 dB. This demonstrates not only the valid-
ity of our analysis, but also its applicability as a synthesis
tool.

5. SUMMARY AND CONCLUDING REMARKS

In this paper, we investigated the problem of estimating the
number of communication sources impinging an array of
sensors. We proved that the resolution capacity is not lim-
ited by the number of sensors and that one can estimate any
number of sources. This is in contrast to the usual paradigm,
which assumes that the number of resolvable sources is
smaller than the number of sensors. We also proved that the
MDL estimator is a consistent estimator of the number of
sources.

The performance of the MDL estimator is shown to
be uniformly superior over the commonly used GMDL
estimator. In two important scenarios, namely, of more
sources than sensors and of more than one source, the MDL
estimator significantly outperforms the GMDL estimator.
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When more sources than sensors are to be detected, one can-
not use the GMDL estimator and the MDL is the only esti-
mator that can solve the problem.When two or more sources
exist, the MDL estimator exploits both the signal structure
and the spatial separation between the sources, which results
in substantial performance improvement over the GMDL es-
timator.

APPENDICES

A. PROOF OF THEOREM 1

In this appendix we prove that the problem is identifiable.
In particular we prove that there is a one-to-one correspon-
dent between the measurements’ statistical distribution and
the spatial scenario. We assume, without loss of generality,
that BPSK signals are transmitted, that is, we assume that
D = ±1.

Recall that given the mixing matrix, A, and the noise
level, σ2n , the pdf of the received signal vector is

f
(
x|A, σ2n

) = 1
2q

∑
s∈{±1}q

CN
(
x − As, σ2nI

)
, (A.1)

where we used the assumption that the transmitted signals
are BPSK signals. Let A be a p × q complex matrix, and x a
p × 1 complex vector. We next define a simple operation on
the matrix A and the vector x. From Awe define Ā as a 2p×q
matrix according to

Ā =
[
�[A]1: �[A]1: · · · �[A]p: �[A]p:

]
, (A.2)

and from x we define a 2p×1 vector denoted by x̄ as follows:

x̄ = [�[x]1,�[x]1, . . . ,�[x]p,�[x]p
]T
, (A.3)

where [A]i: denotes the ith row of the matrix A, [x]i denotes
the ith element of the vector x,� is the real part of the num-
ber, and � is the imaginary part of the number.

It is easy to verify that

f
(
x|A, σ2n

) = 1
2q

∑
s∈{±1}q

CN
(
x − As, σ2nI

)

= 1
2q

∑
s∈{±1}q

N
(
x̄ − Ās, σ2nI

)

= 1
2q

∑
s∈{±1}q

2p∏
i=1

N
(
[x̄]i − [Ā]i:s, σ2n

)

� f
(
x̄|Ā, σ2n

)
,

(A.4)

where N (x, σ2) = (1/
√
2πσ2)e−x2/2σ2 . Furthermore, f (x̄|Ā,

σ2n) can be written as follows:

f
(
x̄|Ā, σ2n

)

= 1
2q

∑
s∈{±1}q

2p∏
i=1

N
(
[x̄]i − [Ā]i:s, σ2n

)

=
2p∏
i=1

N
(
[x̄]i, σ2n

)

∗ 1
2


 2p∏

i=1
δ
(
[x̄]i−[Ā]i,1

)
+

2p∏
i=1

δ
(
[x̄]i+[Ā]i,1

)

∗ 1
2


 2p∏

i=1
δ
(
[x̄]i−[Ā]i,2

)
+

2p∏
i=1

δ
(
[x̄]i+[Ā]i,2

)

∗ · · · ∗ 1
2


 2p∏

i=1
δ
(
[x̄]i−[Ā]i,q

)
+

2p∏
i=1

δ
(
[x̄]i+[Ā]i,q

),
(A.5)

where δ is the Dirac delta function, and ∗ denotes the con-
volution operator. Now, the moment-generating function of
x, given A and σ2n , or, equivalently, of x̄, given Ā and σ2n , is

φx̄(ω|Ā, σ2n) = E
{
e− jωT x̄}

= 1
2q

2p∏
i=1

eσ
2
n‖ω‖2

q∏
i=1

[
e− jωT [Ā]:i + e− jωT [Ā]:i

]
,

(A.6)

where [Ā]:i denotes the ith column of the matrix Ā. Note that
the first product is the Fourier transform of the normal dis-
tribution, while the second product is the Fourier transform
of the convolutions of the various delta functions.

We now turn to prove the theorem. It is easily seen that
if m = n, σ2n = σ̃2n , and A=Ã up to column permutation,
f (x|A, σ) = f (x|Ã, σ̃2n). This proves the sufficiency.

We now turn to prove the necessity. That is, if
f (x|A, σ) = f (x|Ã, σ̃2n), then σ2n = σ̃2n and A = Ã. We first
prove that σ2n = σ̃2n , that is, there are no two different scenar-
ios that result in the same distribution at the output of the
array.

Lemma 3. Let A and Ã be two arbitrary p × m and p × n
matrices, respectively. In addition, let σ2n > 0 and σ̃2n > 0. If
f (x|A, σ2n) = f (x|Ã, σ̃2n), then σ2n = σ̃2n .

Proof. Assume that f (x|A, σ2n) = f (x|Ã, σ̃2n). Consequently,

φx̄
(
ω|Ā, σ2n

) = 1
2m

2p∏
i=1

eσ
2
n‖ω‖2

m∏
i=1

[
e− jω[Ā]:i + e− jω[Ā]:i

]

= 1
2n

2p∏
i=1

eσ̃
2
n‖ω‖2

n∏
i=1

[
e− jω[ ¯̃A]:i + e− jω[ ¯̃A]:i

]

= φx̄
(
ω| ¯̃A, σ̃2n

)
,

(A.7)

where ¯̃A is the result of (A.2) applied to Ã.
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Assume that σ2n �= σ̃2n , and assume, without loss of
generality, that σ2n > σ̃2n . Dividing both sides of (A.7) by∏2p

i=1 eσ̃
2
n‖ω‖2 results in the following equality:

1
2m

2p∏
i=1

e(σ
2
n−σ̃2n )‖ω‖2

m∏
i=1

[
e− jω[Ā]:i + e− jω[Ā]:i

]

= 1
2n

n∏
i=1

[
e− jω[ ¯̃A]:i + e− jω[ ¯̃A]:i

]
.

(A.8)

Taking the inverse Fourier transform, the left- and right-
hand sides of (A.8) result in

2p∏
i=1

N
(
[x̄]i, σ2n − σ̃2n

)

∗ 1
2


 2p∏

i=1
δ
(
[x̄]i − [Ā]i,1

)
+

2p∏
i=1

δ
(
[x̄]i + [Ā]i,1

)

∗ 1
2


 2p∏

i=1
δ
(
[x̄]i − [Ā]i,2

)
+

2p∏
i=1

δ
(
[x̄]i + [Ā]i,2

)

∗ · · · ∗ 1
2


 2p∏

i=1
δ
(
[x̄]i − [Ā]i,m

)
+

2p∏
i=1

δ
(
[x̄]i + [Ā]i,m

))

= 1
2


 2p∏

i=1
δ
(
[x̄]i − [ ¯̃A]i,1

)
+

2p∏
i=1

δ
(
[x̄]i + [ ¯̃A]i,1

)

∗ 1
2


 2p∏

i=1
δ
(
[x̄]i − [ ¯̃A]i,2

)
+

2p∏
i=1

δ
(
[x̄]i + [ ¯̃A]i,2

)

∗ · · · ∗ 1
2


 2p∏

i=1
δ
(
[x̄]i − [ ¯̃A]i,n

)
+

2p∏
i=1

δ
(
[x̄]i + [ ¯̃A]i,n

).
(A.9)

It is now obvious that σ2n = σ̃2n is a necessary condition for
the equivalence between the two sides of (A.9).

We now proceed to prove that m = n is also a necessary
condition for f (x|A, σ2n) = f (x|Ã, σ̃2n). Since σ2n = σ̃2n , (A.9)
becomes

1
2m

∑
s∈{±1}m

δ
(
x̄ − Ās

) = 1
2n

∑
s∈{±1}n

δ
(
x̄ − ¯̃As

)
. (A.10)

Consider the left-hand side of (A.10) and assume, with-
out loss of generality, that the first row of Ā does not con-
tain any zeros. In this case the maximum value of [x̄]1 is∑q

j=1 |[Ā]1 j| � α. Consequently, the coefficient of product
that includes δ([x̄]1 − α) is 1/2m. Using the same reasoning,
we can demonstrate that there at least the coefficient of one
product on the right-hand side of (A.10) is 1/2n. Therefore,
it is necessary that n = m for the equality to hold. If every row
of Ā contains at least one zero, a somewhatmore complicated
approach has to be taken in order to prove thatm = n [15].

The uniqueness of Ā is now easily proven from (A.10) by
noting that the delta functions having the coefficients have to
be on the same point in R2p.

B. PROOF OF THEOREM 2

In this appendix the consistency of the MDL estimator is
proven. Specifically it is shown that the probability of error of
the MDL estimator converges to zero as the number of snap-
shots increases to infinity. An error event will occur if and
only if there exists k �= q such that MDL(q) −MDL(k) > 0.
Thus in order to prove the lemma, it suffice to prove that, for
every k �= q, P(MDL(q)−MDL(k) > 0)→ 0.

Assume that k < q. It was previously shown that under
very weak conditions, the probability of miss of every MDL
estimator converges to zero as N → ∞ [12]. In particular the
probability of miss of the MDL estimator considered in this
paper, which satisfies the condition stated in [12], converges
to zero as N →∞.

Now, assume that k > q. MDL(q)−MDL(k) can be writ-
ten as follows:

MDL(q)−MDL(k)

= − log
(
fX
(
X|θ̂(q))) + 0.5(2pq + 1) logN

+ log
(
fX
(
X|θ̂(k)))− 0.5(2pk + 1) logN

= − log
(
fX
(
X|θ̂(q))) + log

(
fX
(
X|θ̂(k)))

+ 0.5
(
2p(q − k)

)
logN.

(B.1)

In what follows we are going to use Wilks’ theorem to com-
pute the asymptotic distribution of MDL(q)−MDL(k).

Consider the difference between the log likelihoods,

given q and k > q sources, that is, −2 log( fX(X|θ̂(q))) +
2 log( fX(X|θ̂(k))). According to Wilks’ theorem, under some

regularity conditions, asymptotically − log( fX(X|θ̂(q))) +

log( fX(X|θ̂(k))) is distributed as a chi-square random vari-
able with 2p(k − q) degrees of freedom. The regularity con-
ditions are the ones that insure that the MLE is unique, ef-
ficient, and asymptotically normal. In [17], it is shown that
these regularity conditions hold in our problem.

Using the asymptotic distribution of − log( fX(X|θ̂(q))) +
log( fX(X|θ̂(k))), we can compute the asymptotic probability
of the event {MDL(q)−MDL(k) > 0}:

P
(
MDL(q)−MDL(k) > 0

)

= P
(− log

(
fX
(
X|θ̂(q)))

+ log
(
fX
(
X|θ̂(k))) > 0.5

(
2p(q − k)

)
logN

)
N→∞−−−→P

(
χ22p(k−q) >

(
2p(q − k)

)
logN

) N→∞−−−→ 0.

(B.2)

We have proven that for k �= q, the probability of the

event P(MDL(q) − MDL(k) > 0)
N→∞−−−→ 0. Therefore, the

probability of error approaches zero as well.
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