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The author studies the boundary value problems with p-Laplacian functional difference
equation �φp(�x(t)) + r(t) f (xt) = 0, t ∈ [0,N], x0 = ψ ∈ C+, x(0)− B0(�x(0)) = 0,
�x(N +1)= 0. By using a fixed point theorem in cones, sufficient conditions are estab-
lished for the existence of twin positive solutions.
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1. Introduction

For notation, given a < b in Z, we employ intervals to denote discrete sets such as [a,b]=
{a,a+1, . . . ,b}, [a,b)= {a,a+1, . . . ,b− 1}, [a,∞)= {a,a+1, . . .}, and so forth. Let τ,N ∈
Z and let 0≤ τ ≤N . In this paper, we are concerned with the p-Laplacian functional dif-
ference equation

�φp
(�x(t)

)
+ r(t) f

(
xt
)= 0, t ∈ [0,N],

x0 = ψ ∈ C+, x(0)−B0
(�x(0)

)= 0, �x(N +1)= 0,
(1.1)

where φp(u) is the p-Laplacian operator, that is, φp(u) = |u|p−2u, p > 1, (φp)−1(u) =
φq(u), 1/p + 1/q = 1. For all t ∈ Z, let xt = xt(k) = x(t + k), k ∈ [−τ,−1]; then xt ∈ C,
where C = C([−τ,−1],R) is a Banach space with the norm ‖ϕ‖C =maxk∈[−τ,−1] |ϕ|. Let
C+ = {ϕ ∈ C : ϕ(k) ≥ 0, k ∈ [−τ,−1]} and let d =maxk∈[−τ,−1]ψ(k), ψ ∈ C+. As usual,
� denotes the forward difference operator defined by�x(t)= x(t+1)− x(t).

We will assume that
(H1) f (ϕ) is a nonnegative continuous functional defined on C+;
(H2) r(t) is a nonnegative function defined on [0,N];
(H3) B0 : R→ R is continuous and satisfies that there are β ≥ α ≥ 0 such that αs ≤

B0(s)≤ βs for s∈R+, where R+ denotes the set of nonnegative real numbers.
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2 Positive solutions of difference equations

Recently, the existence of positive solutions of finite difference equations with different
boundary value conditions is investigated in [1–5] and references therein. In this paper,
we consider the functional difference equation (1.1) and apply the twin fixed point theo-
rem to obtain at least two positive solutions of the boundary value problem (BVP) (1.1)
when growth conditions are imposed on f . Finally, we present two corollaries that show
that under the assumptions that f is superlinear or sublinear, BVP (1.1) has at least two
positive solutions. An example to illustrate our results in this paper is included.

We note that x(t) is a solution of (1.1) if and only if

x(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B0

(

φq

( N∑

n=0
r(n) f

(
xn
)
))

+
t−1∑

m=0
φq

( N∑

n=m
r(n) f

(
xn
)
)

, t ∈ [0,N +2],

ψ, t ∈ [−τ,−1].
(1.2)

We assume that x(t) is the solution of BVP (1.1) with f ≡ 0. Clearly, it can be expressed
as

x(t)=
⎧
⎪⎨

⎪⎩

0, t ∈ [0,N +2],

ψ, t ∈ [−τ,−1].
(1.3)

It is obvious that xn ≡ 0 for n∈ [τ,N].
Let x(t) be a solution of BVP (1.1) and y(t)= x(t)− x(t). Noting that y(t)= x(t) for

t ∈ [0,N +2], then we have from (1.2) that

y(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B0

(

φq

( N∑

n=0
r(n) f

(
yn+xn

)
))

+
t−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn+xn

)
)

, t ∈ [0,N+2],

0, t ∈ [−τ,−1].
(1.4)

Let E = {y : [−τ,N +2]→ R} with norm ‖y‖ =maxt∈[−τ,N+2] |y(t)|, then (E,‖ · ‖) is
a Banach space.

Define a cone P by

P = {y ∈ E : y(t)= 0 for t ∈ [−τ,−1]; y(t)≥ 0 for t ∈ [0,N +2],

and�2y(t)≤ 0, �y(t)≥ 0 for t ∈ [0,N +2], �y(N +1)= 0
}
.

(1.5)

Clearly, ‖y‖=‖y‖[0,N+2]= y(N +2) for y(t)∈P, where ‖y‖[0,N+2]=maxt∈[0,N+2] |y(t)|.
Define T : P→ E by

Ty(t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B0

(

φq

( N∑

n=0
r(n) f

(
yn + xn

)
))

+
t−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn+xn

)
)

, t ∈ [0,N+2],

0, t ∈ [−τ,−1].
(1.6)
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The following lemma will play an important role in the proof of our results and can
be found in [2]. Let

P(δ,e)= {x ∈ P : δ(x) < e
}
,

∂P(δ,e)= {x ∈ P : δ(x)= e
}
,

P(δ,e)= {x ∈ P : δ(x)≤ e
}
.

(1.7)

Lemma 1.1. Let X be a real Banach space, P a cone of X , γ and α two nonnegative increasing
continuous maps, θ a nonnegative continuous map, and θ(0) = 0. There are two positive
numbers c andM such that

γ(x)≤ θ(x)≤ α(x), ‖x‖ ≤Mγ(x) for x ∈ P(γ,c). (1.8)

In addition, assume that T : P(γ,c)→ P is completely continuous. There are positive num-
bers 0 < a < b < c such that

θ(λx)≤ λθ(x) ∀λ∈ [0,1], x ∈ ∂P(θ,b), (1.9)

and
(i) γ(Tx) > c for x ∈ ∂P(γ,c);
(ii) θ(Tx) < b for x ∈ ∂P(θ,b);
(iii) α(Tx) > a and P(α,a) �= ∅ for x ∈ ∂P(α,a).

Then T has at least two fixed points x1 and x2 ∈ P(γ,c) satisfying

a < α(x1), θ
(
x1
)
< b, b < θ

(
x2
)
, γ

(
x2
)
< c. (1.10)

The following lemma is similar to Lemma 1.1; the proof is omitted.

Lemma 1.2. Let X be a real Banach space, P a cone of X , γ and α two nonnegative increasing
continuous maps, θ a nonnegative continuous map, and θ(0) = 0. There are two positive
numbers c andM such that

γ(x)≤ θ(x)≤ α(x), ‖x‖ ≤Mγ(x) for x ∈ P(γ,c). (1.11)

In addition, assume that T : P(γ,c)→ P is completely continuous. There are positive num-
bers 0 < a < b < c such that

θ(λx)≤ λθ(x) ∀λ∈ [0,1], x ∈ ∂P(θ,b), (1.12)

and
(i) γ(Tx) < c for x ∈ ∂P(γ,c);
(ii) θ(Tx) > b for x ∈ ∂P(θ,b);
(iii) α(Tx) < a and P(α,a) �= ∅ for x ∈ ∂P(α,a).

Then T has at least two fixed points x1 and x2 ∈ P(γ,c) satisfying

a < α
(
x1
)
, θ

(
x1
)
< b, b < θ

(
x2
)
, γ

(
x2
)
< c. (1.13)
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2. Main results

Choose h= [(N +2)/2], where [x] is the greatest integer not greater than x.

Lemma 2.1. Let T be defined by (1.4). If y ∈ P, then
(i) T(P)⊂ P;
(ii) T : P→ P is completely continuous;
(iii) finding positive solutions of BVP (1.1) is equivalent to finding fixed points of the op-

erator T on P;
(iv) if y ∈ P, then

y(t)≥ 1
2
‖y‖ = 1

2
y(N +2), t ∈ [h,N +2]. (2.1)

The proof is simple and is omitted.
Define the nonnegative, increasing, continuous functionals γ,θ, and α on P by

γ(y)= y(h),

θ(y)= max
t∈[0,h]

y(t)= y(h),

α(y)= max
t∈[0,h]

y(t)= y(h).

(2.2)

We have

γ(y)= θ(y)= α(y), y ∈ P,

θ(y)= γ(y)= y(h)≥
(
1
2

)
y(N +2)=

(
1
2

)
‖y‖ for each y ∈ P.

(2.3)

Then

‖y‖ ≤ 2γ(y), for each y ∈ P,

θ(λy)= λθ(y), ∀ λ∈ [0,1], y ∈ ∂P(θ,b).
(2.4)

For the notational convenience, we denote σ and ρ by

σ = (α+1)φq

( N∑

n=h+τ
r(n)

)

;

ρ = (β+h)φq

( N∑

n=0
r(n)

)

.

(2.5)

Throughout the paper, we assume that h+ τ ≤N and
∑N

n=h+τ r(n) > 0.

Theorem 2.2. Suppose that there are positive numbers a < b < c such that

0 < a <
σ

ρ
b <

σ

2ρ
(c−d). (2.6)
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Assume that f (ϕ) satisfies the following conditions:
(A) f (ϕ) > φp(c/σ) for c ≤ ‖ϕ‖C ≤ 2c,
(B) f (ϕ) < φp(b/ρ) for 0≤ ‖ϕ‖C ≤ 2b+d,
(C) f (ϕ) > φp(a/σ) for a≤ ‖ϕ‖C ≤ 2a.

Then BVP (1.1) has at least two positive solutions x1 and x2 such that

a < max
t∈[0,h]

x1(t) < b < max
t∈[0,h]

x2(t) < c. (2.7)

Proof. Firstly, we verify that y ∈ ∂P(γ,c) implies that γ(Ty) > c.
Since γ(y)= c = y(h), one gets y(t)≥ c for t ∈ [h,N +2].
Recalling that ‖y‖ ≤ 2γ(y) = 2c, we know that c ≤ ‖yn‖C ≤ 2c for n ∈ [h + τ,N].

Then, we get

γ(Ty)= B0

(

φq

( N∑

n=0
r(n) f

(
yn + xn

)
))

+
h−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn + xn

)
)

≥ αφq

( N∑

n=0
r(n) f

(
yn + xn

)
)

+
h−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn + xn

)
)

≥ αφq

( N∑

n=h+τ
r(n) f

(
yn
)
)

+φq

( N∑

n=h+τ
r(n) f

(
yn
)
)

= (α+1)φq

( N∑

n=h+τ
r(n) f

(
yn
)
)

> (α+1)φq

( N∑

n=h+τ
r(n)φp

( c

σ

))

= c

σ
(α+1)φq

( N∑

n=h+τ
r(n)

)

= c.

(2.8)

Secondly, we prove that y ∈ ∂P(θ,b) implies that θ(Ty) < b.
Since θ(y)= b implies that y(h)= b, it follows that 0≤ y(t)≤ b for t ∈ [0,h] and

b ≤ y(t)≤ ‖y‖ ≤ 2θ(y)= 2b, for t ∈ [h+1,N], y ∈ P. (2.9)

So
∥
∥yn + xn

∥
∥
C ≤

∥
∥yn

∥
∥
C +

∥
∥xn

∥
∥
C ≤ 2b+d. (2.10)

Then, we have

θ(Ty)= B0

(

φq

( N∑

n=0
r(n) f

(
yn + xn

)
))

+
h−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn + xn

)
)

< βφq

( N∑

n=0
r(n) f

(
yn + xn

)
)

+
h−1∑

m=0
φq

( N∑

n=0
r(n) f

(
yn + xn

)
)

= b

ρ
(β+h)φq

( N∑

n=0
r(n)

)

= b.

(2.11)



6 Positive solutions of difference equations

Finally, we show that

P(α,a) �= ∅, α(Ty) > a ∀y ∈ ∂P(α,a). (2.12)

It is obvious that P(α,a) �= ∅. On the other hand, α(y)= y(h)= a implies that

a≤ ‖y‖ ≤ 2a for t ∈ [h,N],

a≤ ∥∥yn
∥
∥
C ≤ 2a for n∈ [h+ τ,N].

(2.13)

Thus,

α(Ty)= B0

(

φq

( N∑

n=0
r(n) f

(
yn + xn

)
))

+
h−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn + xn

)
)

≥ αφq

( N∑

n=0
r(n) f

(
yn + xn

)
)

+
h−1∑

m=0
φq

( N∑

n=m
r(n) f

(
yn + xn

)
)

≥ αφq

( N∑

n=h+τ
r(n) f

(
yn
)
)

+φq

( N∑

n=h+τ
r(n) f

(
yn
)
)

= (α+1)φq

( N∑

n=h+τ
r(n) f

(
yn
)
)

> (α+1)φq

( N∑

n=h+τ
r(n)φp

( a

σ

)
)

= a

σ
(α+1)φq

( N∑

n=h+τ
r(n)

)

= a.

(2.14)

Hence by Lemma 1.1, T has at least two different fixed points y1 and y2. Let xi = yi + x
(i= 1,2), which are twin positive solutions of BVP (1.1) such that (2.7) holds. The proof
is complete. �

Theorem 2.3. Suppose that there are positive numbers 0 < a < b < c such that

0 < 2a+d < b <
σ

ρ
c. (2.15)

Assume that f (ϕ) satisfies the following conditions:
(A′) f (ϕ) < φp(c/ρ) for 0≤ ‖ϕ‖C ≤ 2c+d,
(B′) f (ϕ) > φp(b/σ) for b ≤ ‖ϕ‖C ≤ 2b,
(C′) f (ϕ) < φp(a/ρ) for 0≤ ‖ϕ‖C ≤ 2a+d.

Then BVP (1.1) has at least two positive solutions x1 and x2 such that

a < max
t∈[0,h]

x1(t) < b < max
t∈[0,h]

x2(t) < c. (2.16)

The proof is omitted since it is similar to that of Theorem 2.2.
Now, we give theorems which may be considered as the corollaries of Theorems 2.2

and 2.3.
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Let

f0 = lim
‖ϕ‖C→0

f (ϕ)

‖ϕ‖p−1C

; f∞ = lim
‖ϕ‖C→∞

f (ϕ)

‖ϕ‖p−1C

, (2.17)

and choose k1, k2, k3 such that

kiσ > 1, i= 1,2, 0 < k3ρ < 1. (2.18)

Theorem 2.4. Let the following conditions be satisfied:
(D) f0 > k1

p−1, f∞ > k2
p−1;

(E) there exists a p1 > 0 such that for 0≤ ‖ϕ‖C ≤ 2p1 +d, one has f (ϕ) < (p1/ρ)p−1.
Then BVP (1.1) has at least two positive solutions.

Proof. Firstly, choose b= p1, then

f (ϕ) <
(
2p1
ρ

)p−1
= φp

(
b

ρ

)
for 0≤ ‖ϕ‖C ≤ 2b+d. (2.19)

Secondly, since f0 > k
p−1
1 , there is R1 > 0 sufficiently small such that

f (ϕ) >
(
k1‖ϕ‖C

)p−1
for 0≤ ‖ϕ‖C ≤ R1. (2.20)

Without loss of generality, suppose that

R1 ≤ 2σ
ρ
b. (2.21)

Choose a > 0 so that a < (1/2)R1. For a≤ ‖ϕ‖C ≤ 2a, we have ‖ϕ‖C ≤ R1 and a < (σ/ρ)b.
Thus,

f (ϕ) >
(
k1‖ϕ‖C

)p−1 ≥ (k1a
)p−1

> φp

( a

σ

)
for a≤ ‖ϕ‖C ≤ 2a. (2.22)

Thirdly, since f∞ > k2
p−1, there is R2 > 0 sufficiently large such that

f (ϕ) >
(
k2‖ϕ‖C

)p−1
for ‖ϕ‖C ≥ R2. (2.23)

Without loss of generality, suppose that R2 > 2b. Choose c ≥ R2 +d. Then,

f (ϕ) >
(
k2‖ϕ‖C

)p−1 ≥ (k2c
)p−1

> φp

( c

σ

)
for c ≤ ‖ϕ‖C ≤ 2c. (2.24)

We then have 0 < a < (σ/ρ)b < (σ/2ρ)(c−d), and now the conditions in Theorem 2.2 are
all satisfied. By Theorem 2.2, BVP (1.1) has at least two positive solutions. The proof is
complete. �
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Theorem 2.5. Let the following conditions be satisfied:
(F) f0 < k3

p−1;
(G) there exists a p2 > 0 such that for 0≤ ‖ϕ‖C ≤ 2p2, one has f (ϕ) > (p2/σ)p−1.

Then BVP (1.1) has at least two positive solutions.

The following corollaries are obvious.

Corollary 2.6. Let the following conditions be satisfied:
(D′) f0 =∞, f∞ =∞;
(E) there exists a p1 > 0 such that for 0≤ ‖ϕ‖C ≤ 2p1 +d, one has f (ϕ) < (p1/ρ)p−1.

Then BVP (1.1) has at least two positive solutions.

Corollary 2.7. Let the following conditions be satisfied:
(F′) f0 = 0;
(G) there exists a p2 > 0 such that for 0≤ ‖ϕ‖C ≤ 2p2, one has f (ϕ) > (p2/σ)p−1.

Then BVP (1.1) has at least two positive solutions.

3. Example

Example 3.1. Consider BVP

�φp
(�x(t)

)
+ r
[
x1/9(t− 1)+ x1/3(t− 1)

]= 0, t ∈ [0,4],

x(t)= ψ(t), t =−1, x(0)= 0, x(5)= x(6)= 1,
(3.1)

where τ=1, k=−1, N =4, h=3, α=β=0, r > 0 is a constant satisfying
∑N

n=h+τ r > 0,
ψ(t)≥0, d = ‖ψ‖C =maxk=−1 |ψ(k)| > 0, p = 7/6, q=7, and f (ϕ)= ϕ1/9(−1)+ϕ1/3(−1).

Suppose that ϕ∈ C+, then ‖ϕ‖C = ϕ(−1).
As ‖ϕ‖C → 0 or ‖ϕ‖C → +∞, we get

f (ϕ)

‖ϕ‖p−1C

= ϕ1/9(−1)+ϕ1/3(−1)
‖ϕ‖p−1C

= ‖ϕ‖(10−9p)/9C +‖ϕ‖(4−3p)/3C −→ +∞.

(3.2)

We deduce that

ρ= (β+h)φq

( N∑

n=0
r(n)

)

= 3

[ 4∑

n=0
r

]6

= 46875r, (3.3)

thus, for allm> 0 and 0≤ ‖ϕ‖C ≤m+d, one has

0≤ f (ϕ)≤ (m+d)1/9 + (m+d)1/3 = (m+d)1/9
(
m1−p +

(m+d)2/9

mp−1

)
mp−1. (3.4)

Define H(m)= (m+d)1/9(m1−p + (m+d)2/9/mp−1).
Suppose that r and d satisfy

(2d)1/9
(
d−1/6 + 22/9d1/18

)
<

(
1
2ρ

)p−1
; (3.5)
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then H(d)= (2d)1/9(d−1/6 + 22/9d1/18) < (1/2ρ)p−1 holds. So, we can find a p1 = d/2 such
that f (ϕ) ≤ H(2p1)(2p1)p−1 < (p1/ρ)p−1 for 0 ≤ ‖ϕ‖C ≤ 2p1 + d. By Corollary 2.6, we
know that BVP (3.1) has at least two positive solutions.
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