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This paper studies the problem of direction finding and polarization estimation of coherent sources using a uniform
linear electromagnetic vector-sensor (EmVS) array. A novel preprocessing algorithm based on EmVS subarray averaging
(EVSA) is firstly proposed to decorrelate sources’ coherency. Then, the proposed EVSA algorithm is combined with the
propagator method (PM) to estimate the EmVS steering vector, and thus estimate the direction-of-arrival (DOA) and the
polarization parameters by a vector cross-product operation. Compared with the existing estimate methods, the proposed
EVSA-PM enables decorrelation of more coherent signals, joint estimation of the DOA and polarization of coherent
sources with a lower computational complexity, and requires no limitation of the intervector sensor spacing within a
half-wavelength to guarantee unique and unambiguous angle estimates. Also, the EVSA-PM can estimate these parameters
by parameter-space searching techniques. Monte-Carlo simulations are presented to verify the efficacy of the proposed
algorithm.

1. Introduction

A typical electromagnetic vector-sensor (EmVS) consists
of six component sensors configured by two orthogonal
triads of dipole and loop antennas with the same phase
center. Therefore, an EmVS can simultaneously measure
the three components of the electric field and the three
components of the magnetic field. Since its introduction into
signal processing community [1, 2], a significant number
of research has been done on EmVS array processing
[3–19]. For application considerations, different types of
EmVS containing part of the six sensors are devised and
manufactured [3, 20, 21].

In the study of direction finding applications, conven-
tional eigenstructure-based source localization techniques
have been extended to the case of the EmVS array. ESPRIT/
MUSIC algorithms using EmVS arrays obtain thorough

investigations [10–12, 16–19]. The signal subspace and
noise subspace are usually constructed by decomposing
the column space of the data correlation matrix with
the eigen-decomposition (or singular value decomposition)
techniques [22, 23]. Because the decomposing process is
computationally intensive and time consuming, the eigen-
structure-based techniques may be unsuitable for many
practical situations, especially when the number of vector
sensors is large and/or the directions of impinging sources
should be tracked in an online manner.

Furthermore, the eigenstructure-based direction finding
techniques using the EmVS arrays usually assume incoherent
signals, that is, that the signal covariance matrix has full rank.
This assumption is often violated in scenarios where multi-
path exists. Coherent signals could reduce the rank of signal
covariance matrix below the number of incident signals,
and hence, degrade critically the algorithmic performance.
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To deal with the coherent signals using the EmVS array, a
polarization smoothing algorithm (PSA) has been proposed
to restore the rank of signal subspace [19]. The PSA does not
reduce the effective array aperture length and has no limit to
array geometries. However, the PSA-based method has non-
negligible drawbacks. (1) It assumes the intervector sensor
spacing within a half-wavelength to guarantee unique and
unambiguous angle estimates; (2) it is not able to estimate
the polarization of impinging electromagnetic waves; (3)
the EmVS type limits the maximum number of resolvable
coherent signals.

In this paper, we employ a uniform linear EmVS
array to perform parameter estimation of coherent sources.
Firstly, to decorrelate the coherent sources, an EmVS sub-
array averaging-based pre-processing (EVSA) algorithm is
developed. Then the EVSA algorithm is coupled with the
propagator method (PM) [24, 25] to estimate parameters
of the coherent sources without eigen-decomposition or
singular value decomposition unlike the ESPRIT/MUSIC-
based methods. By using the vector cross-product of the
electric field vector estimate and the magnetic field vector
estimate, the proposed EVSA-PM can estimate both the
DOA and polarization parameters, hence, can overcome the
drawbacks of the PSA-based algorithms to some extent. The
vector cross-product estimator is valid to a six-component
EmVS array. For the array comprising any types of EmVSs,
the EVSA-PM with parameter-space searching techniques
is developed to estimate the parameters. The EVSA-PM
can be regarded as an extension of the subspace-based
method without eigendecomposition (SUMWE) [26] to the
case of the EmVS arrays. The SUMWE is also a PM-based
method, which estimates the DOA of coherent sources using
unpolarized scalar sensors by an iterative angle searching.
However, the proposed methods make use of more available
electromagnetic information, and hence, should outperform
the SUMWE algorithm in accuracy and resolution of DOA
estimation.

The rest of this paper is organized as follows. Section 2
formulates the mathematical data model of EmVS array.
Section 3 develops the proposed EmVS-PM. Section 4
presents the simulation results to verify the efficacy of the
EmVS-PM. Section 5 concludes the paper.

2. Mathematical Data Model

Assume that K narrowband completely polarized coherent
signals impinge upon a uniform linear EmVS array with M
vector sensors (M > 2K), and the array is neither mutual
coupling nor cross-polarization effects. The K is known
in advance and the kth incident source is parameterized
{θk,ϕk, γk ,ηk}, where 0 ≤ θk ≤ π/2 denotes the kth source’s
elevation angle measured from the vertical z-axis, 0 ≤ ϕk ≤
2π represents the kth source’s azimuth angle, 0 ≤ γk ≤ π/2
refers to the kth source’s auxiliary polarization angle, and
−π ≤ ηk ≤ π symbolizes the kth source’s polarization phase
difference. For a six-component EmVS, the steering vector of

the kth unit-power electromagnetic source signal produces
the following 6× 1 vector:
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where ek
def= [ex,k , ey,k , ez,k]

T and hk
def= [hx,k ,hy,k ,hz,k]

T

denote the electric field vector and the magnetic field vector,
respectively.

The intersensor spatial phase factor for the kth inci-

dent signal and the mth vector sensor is qm(θk,ϕk)
def=

e j2π(xmuk+ymvk)/λ, where uk
def= sin θk cosϕk and vk

def=
sin θk sinϕk signify the direction cosines along the x-axis
and y-axis, respectively. (xm, ym) is the location of the mth
vector sensor, λ equals the signals’ wavelength. Denoting the
spacing between adjacent vector sensors as (Δx,Δy), we have
xm = x1 + (m − 1)Δx, ym = y1 + (m − 1)Δy . The 6 × 1
measurement vector corresponding to themth vector sensor
can be expressed as

xm(t)
def= [

xm,1(t), . . . , xm,6(t)
]T

=
K∑

k=1
qm
(
θk,ϕk

)
c
(
θk,ϕk, γk ,ηk

)
sk(t) +wm(t),

(2)

where wm(t) = [wm,1(t), . . . ,wm,6(t)]
T is the additive zero-

mean complex noise and independent to all signals. xm,n(t)
and wm,n(t) refer to the measurement and the noise corre-
sponding to the mth vector sensor’s nth component, respec-
tively; sk(t) represents the kth source’s complex envelope.
Without loss of generality, we consider the signals {sk(t)} are
all coherent so that they are all some complex multiples of a
common signal s1(t). Then, under the flat-fading multipath
propagation, they can be expressed as sk(t) = βks1(t) [26, 27],
where βk is the multipath coefficient that represents the
complex attenuation of the kth signal with respect to the first
one (β1 = 1 and βk /=0).
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For the entire vector-sensor array, the array manifold,
a(θk,ϕk, γk ,ηk) ∈ C6M×1, is given by

a
(
θk,ϕk, γk ,ηk

) def= q
(
θk,ϕk

)⊗ c
(
θk,ϕk, γk ,ηk

)
, (3)

where ⊗ symbolizes the Kronecker product operator,

q(θk,ϕk)
def= [q1(θk,ϕk), . . . , qM(θk,ϕk)]

T . With a total of K
signals, the entire 6M × 1 output vector measured by the
EmVS array at time t has the complex envelope represented
as

z(t) =
[
xT1 (t), . . . ,x

T
M(t)

]T

=
K∑

k=1
a
(
θk,ϕk, γk ,ηk

)
sk(t) + n(t)

= As(t) + n(t),

(4)

where A ∈ C6M×K , s(t) ∈ CK×1, n(t) ∈ C6M×1, and A =
[a(θ1,ϕ1, γ1,η1), . . . , a(θK ,ϕK , γK ,ηK )]; s(t) = [s1(t), . . . ,

sK(t)]
T , n(t) = [wT

1 (t), . . . ,w
T
M(t)]

T .

3. AlgorithmDevelopment

This section is devoted to the algorithm development.
Section 3.1 develops the EVSA algorithm, Section 3.2
describes EVSA-PM algorithm for estimating both DOA and
polarization parameters from the available EmVS steering
vector estimates and Section 3.3 is for parameters estimation
by parameter-space searching techniques.

3.1. EVSA Algorithm. Let us consider the subarray averaging
scheme with a linear EmVS array, which is divided into
L overlapping subarrays with K vector sensors and the lth
subarray comprises the lth to (l + K − 1)th vector sensor,
where L = M − K + 1. We use the first vector sensor as
a reference (x1 = 0, y1 = 0), and then the corresponding
6K × 1 signal vector is given as

zl(t)
def=
[
xTl (t), . . . ,x

T
l+K−1(t)

]T = A0Dl−1s(t) + nl(t), (5)

where D ∈ CK×K , and D
def= diag(e j2π(Δxu1+Δy v1)/λ, . . . ,

e j2π(ΔxuK+Δy vK )/λ);A0 ∈ C6K×K contains the first 6K rows ofA;

nl(t)
def= [wT

l (t), . . . ,w
T
l+K−1(t)]

T . We can calculate the cross-
correlation vector ϕl,n ∈ C6K×1 between zl(t) and xM,n(t)

ϕl,n
def= E

{
zl(t)x∗M,n(t)

}

= A0Dl−1E
{
s(t)sH(t)

}
a∗M,n + E

{
nl(t)w∗M,n

}

= ρM,nrsA0Dl−1β, l = 1, . . . , L− 1; n = 1, . . . , 6,
(6)

where E{·} denotes the expectation, rs
def= E{s1(t)s∗1 (t)},

ρl,n
def= βHa∗l,n , al,n

def= [ql(θ1,ϕ1)cn,1, . . .,ql(θK ,ϕK )cn,K]
T ,

β
def= [β1, . . . ,βK ]

T . Similarly, the cross-correlation vector
ϕ̃l,n ∈ C6K×1 between zl(t) and x1,n(t) is as follows

ϕ̃l,n
def= E

{
zl(t)x∗1,n(t)

}

= ρ1,nrsA0Dl−1β, l = 2, . . . ,L; n = 1, . . . , 6.
(7)

Let us rewrite the vector ϕl,n as a 6× K matrix

Φl,n
def=
[
J1ϕl,n, . . . , JKϕl,n

]

= ρM,nrs
[
Ã1Dl−1β, . . . , ÃKDl−1β

]

= ρM,nrsÃl

[
β, . . . ,DK−1β

]

= ρM,nrsÃlBQT ,

(8)

where Jk
def= [06,6(k−1), I6,06,6(K−k)]; B

def= diag(β1, . . . ,βK );

Ãl is the 6 × K matrix with the column ckql(θk,ϕk),
k = 1, . . . , 6; Q is the K × K matrix with the column
[q1(θk,ϕk), . . . , qK (θk,ϕk)]

T . Similarly, the vector ϕ̃l,n can be
rewritten as

Φ̃l,n
def=
[
J1ϕ̃l,n, . . . , JK ϕ̃l,n

]
= ρ1,nrsÃlBQT . (9)

Therefore, concatenatingΦl,n for l = 1, . . ., L− 1 and Φ̃l,n for
l = 2, . . . , L, respectively, we can get two correlation matrices

Rn
def=
[
ΦT

1,n,Φ
T
2,n, . . . ,Φ

T
(L−1),n

]T = ρM,nrsÃBQT ,

R̃n
def=
[
Φ̃

T

2,n, Φ̃
T

3,n, . . . , Φ̃
T

L,n

]T
= ρ1,nrsÃBDQT ,

(10)

where Rn ∈ C6(L−1)×K , R̃n ∈ C6(L−1)×K , and Ã
def= [ÃT

1 , . . . ,

ÃT
L−1]

T includes the first 6(L − 1) rows of A. With (10), the
EmVS subarray averaging (EVSA) matrix can be formulated
as

R
def=
[
R1, . . . ,R6, R̃1, . . . , R̃6

]
= ÃΩ, (11)

where Ω
def= rsB[ρM,1QT , . . . , ρM,6QT , ρ1,1DQT , . . . , ρ1,6DQT].

Note that B and D are diagonal matrices with nonzero
diagonal elements, and Q is full rank when all sources
impinge with the distinct incident directions. Then the Rn

and R̃n are of rank K , and hence, R is of rank K and can be
used to estimate the DOA and the polarization parameters of
the coherent sources.

In realistic cases where only a finite number of snapshots
are available, the cross-correlation vector ϕl,n and ϕ̃l,n can

be estimated as ϕ̂l,n = ∑S
t=1 zl(t)x

∗
M,n(t)/S and ̂̃ϕl,n =

∑S
t=1 zl(t)x

∗
1,n(t)/S, where S denotes the number of snapshots.

With ϕ̂l,n and
̂̃ϕl,n, the matrix R is accordingly obtained using

(8)–(11).
Note that the proposed EVSA algorithm can also be used

to the case of partly coherent or incoherent signals. To see
this, we assume that the first K1(1 ≤ K1 ≤ K) incident
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signals are coherent and the others are uncorrelated with
these signals and with each other. Then after some algebraic
manipulations, we can obtain

Rn = ρ̃M,nrs1 ÃB̃Q
T + ÃR̃AH

M,nQ
T ,

R̃n = ρ̃1,nrs1 ÃB̃DQ
T + ÃDR̃AH

1,nQ
T ,

(12)

where ρ̃l,n
def= β̃

H
a∗l,n, β̃

def= [β1, . . . ,βK1 , 0, . . . , 0]
T , B̃

def=
diag(β1, . . . ,βK1 , 0, . . . , 0), rsk

def= E{sk(t)s∗k (t)}, R̃ def= diag(0,

. . . , rsK1+1 , . . . , rsK ), Al,n
def= diag(ql(θ1,ϕ1)cn,1, . . . , ql(θK ,

ϕK)cn,K). It is easy to find that the rank of Rn and R̃n still
equals K when all sources impinge with the distinct incident
directions.

Remarks. (1) The proposed EVSA algorithm is still effective
in the case of partly coherent or incoherent sources in
which there exist two incoherent sources with the same
incident directions but with the distinct polarizations. As
shown in the appendix, the matrix R defined in (11) has full
rank. However, neither the PSA [19] nor the SUMWE [26]
algorithm can be so.

(2) The EVSA algorithm needs low computations. As
seen from (6) and (7), the EVSA only needs compute the
cross-correlations, which require 72(L− 1) cross-correlation
operations. However, most of EmVS direction finding algo-
rithms require to compute the correlations of all array data
with (6M)2 correlation operations.

(3) The EVSA-based method may estimate both DOA
and polarization parameters, while the PSA-based one can
only estimate the DOA parameters because of the polariza-
tion smoothing.

(4) From (11), the EVSA algorithm can decorrelate more
coherent sources than the PSA can do. The EVSA algorithm
can decorrelate up-to L − 2 coherent sources regardless
of EmVS’s types, while the PSA can only decorrelate 6
coherent sources for six-component EmVS array, 4 for
quadrature polarized array [19] and 2 for dual polarized
array [19]. By coupling the forward/backward (FB) averaging
technique [27], the maximum number of the coherent
signals decorrelated by the PSA is doubled, however, it is
only valid for the case of the symmetric array, for instance,
uniform linear array, to which the proposed method is
limited.

3.2. EVSA-PM Algorithm for Estimating Parameters from the
EmVS Steering Vector. The EVSA-PM algorithm performs
the estimation of the coherent sources’ DOA and polariza-
tion parameters by using the vector cross-product operation
of the estimated electric field vector and magnetic field
vector. For this purpose, we define an exchange matrix

E = [e1, e7, . . . , e6(L−2)+1, e2, e8, . . . , e6(L−2)+2, . . . ,
e6, e12, . . . , e6(L−1)

]
,

(13)

where ei is the 6(L − 1) dimensional unit vector whose ith
element is 1 and other elements are zero. In addition, we
define

Re
def= ETR = AeΩ, (14)

Ae
def= ETÃ =

[
AT
e,1, . . . ,A

T
e,6

]T
, (15)

where Ae ∈ C6(L−1)×K , Ae,n ∈ C(L−1)×K(n = 1, . . . , 6)
is a submatrix whose kth column is given as qe(θk,ϕk)cn,k

with qe(θk,ϕk)
def= [q1(θk,ϕk), . . . , qL−1(θk,ϕk)]

T . These
submatrices are related with each other by

Ae,n = Ae,1Λn, (16)

where Λn ∈ CK×K and Λn
def= diag(dn,1, . . . ,dn,K ) with dn,k

def=
cn,k/c1,k denoting the kth source’s invariant factor between
the first and the nth EmVS component.

We can divide Ae,n into

Ae,n =
⎡

⎣
A(1)
e,n

A(2)
e,n

⎤

⎦, n = 1, . . . , 6, (17)

where A(1)
e,n ∈ CK×K and A(2)

e,n ∈ C(L−1−K)×K . Therefore, Ae,n

can be rewritten as

Ae =
⎡

⎣
A(1)
e,1

U

⎤

⎦, (18)

where U
def= [(A(2)

e,1)
T , (A(1)

e,2 )
T , (A(2)

e,2)
T , . . . , (A(1)

e,6 )
T , (A(2)

e,6)
T]T .

Obviously, A(1)
e,n is a matrix with full rank. The K × (6L− 6−

K) propagator matrix P can be defined as a unique linear

operator which relates the matrices A(1)
e,1 and U through the

equation

PHA(1)
e,1 = U. (19)

We partition PH into PH = [PT
1 ,P

T
2 , . . . ,P

T
11]

T , where P1 to

P11 have the dimensions identical to A(2)
e,1 ,A

(1)
e,2 ,A

(2)
e,2 ,A

(1)
e,3 ,A

(2)
e,3 ,

A(1)
e,4 ,A

(2)
e,4 ,A

(1)
e,5 , A

(2)
e,5 , A

(1)
e,6 , and A

(2)
e,6 , respectively. Thus, we have

P1A
(1)
e,1 = A(2)

e,1 , (20)

P2n−1A
(1)
e,1 = A(2)

e,1Λn, n = 2, . . . , 6. (21)

Equations (20) and (21) together yield

P†1P2n−1 = A(1)
e,1Λn

(
A(1)
e,1

)−1
, n = 2, . . . , 6, (22)

where † denotes the Pseudo inverse.

Equation (22) suggests that the matrices P†1P2n−1 (n =
2, . . . , 6) have the same set of eigenvectors and the corre-
sponding eigenvalues lead to the invariant factors of the
same sources. Hence, we can obtain the eigenvalue pairs by
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Figure 1: DOA estimates RMSE of the proposed EVSA-PM against SNRs. (a) Source 1, (b) source 2.

matching the eigenvectors of the different matrices P†1P2n−1
(n = 2, . . . , 6) [11]. With the estimated ĉ(θk,ϕk, γk ,ηk) =
[1, d̂2,k, . . . , d̂6,k]

T , the Poynting vector estimates can be
obtained by the vector cross-product operation and then the
DOA and polarization parameters are estimated from the
normalized Poynting vectors [11]. For a dipole triad array or
loop triad array, the estimates of the electric field vector ek or
the magnetic field vector hk can be done in the same way. In
this case, the DOA and polarization parameter estimates can
be obtained using the amplitude-normalized estimates of the
electric or magnetic field steering vector [3].

In order to calculate the propagator matrix P, we divide
the matrix Re into Re = [RT

e1,R
T
e2]

T , where Re1 and Re2

consist of the first K rows and the last 6L − 6 − K rows of
Re. In the noise-free case, we have PHRe1 = Re2. In the noise
case, a least squares solution can be used to estimate P

P̂ =
(
Re1RH

e1

)−1
Re1RH

e2. (23)

3.3. EVSA-PM Algorithm for Estimating Parameters by Angle
Searching. The EVSA-PM is also applied to the uniform
linear array comprising any types of identical EmVSs. In the
case, the estimates of DOA and polarization parameters can-
not be extracted from the estimates of the steering vectors.
However, they are obtainable by the use of parameter-space
searching techniques. We here use two-dimensional angle
searching to estimate the DOA.

Consider N-component EmVS array (2 ≤ N ≤ 6),
then the matrix Ae in (15) can be rewritten as Ae = [AT

e,1,

. . . ,AT
e,N]

T ∈ CN(L−1)×K , and Ae,n can also be rewritten as

Ae,n = Qe

∏

n
, n = 1, . . . ,N , (24)

where Qe
def= [qe(θ1,ϕ1), . . . ,qe(θK ,ϕK)] ∈ C(L−1)×K ,

∏
n

def=
diag(cn,1, . . . , cn,K ) ∈ CK×K .

Defining gn
def= [0L−1,(L−1)(n−1), IL−1,0L−1,(L−1)(N−n)] ∈

R(L−1)×N(L−1), we have Rg
def= ∑N

n=1 gnRe = QeΠΩ, where

Π
def= ∑N

n=1Πn. Partitioning Rg into Rg = [RT
g1R

T
g2]

T , where
Rg1 and Rg2 consist of the first K rows and the last L −
1 − K rows of Rg, we have the propagator matrix P =
(Rg1RH

g1)
−1
Rg1RH

g2. Then the source’s DOA parameters can be
estimated as

{
θk,ϕk

} = arg min
︸ ︷︷ ︸
{θ,ϕ}

qHe
(
θ,ϕ

)
ΨΨHqe

(
θ,ϕ

)
, (25)

where Ψ
def= [PT ,−IL−1−K ]T .

4. Simulations

We conduct computer simulations to evaluate the perfor-
mances of the proposed EVSA-PM. Comparison with the
PSA based [19] PM (PSA-PM) and the SUMWE algorithm
[26] is also made. For proposed EVSA-PM algorithm, the
parameter estimates shown in Figures 1–5 are extracted from
the EmVS steering vector, and those shown in Figure 6 are
obtained by angle searching. The performance metrics used
is the root mean square errors (RMSEs) of the sources’ 2-D
DOA and the polarization parameters estimates, where the
RMSE of kth source’s 2-D DOA estimate is defined as

RMSEk = 1
2

⎧
⎪⎨

⎪⎩

√
√
√
√
√
1
E

⎛

⎝
E∑

e=1

(
θ̂e,k − θk

)2
⎞

⎠

+

√
√
√
√
√
1
E

⎛

⎝
E∑

e=1

(
ϕ̂e,k − ϕk

)2
⎞

⎠

⎫
⎪⎬

⎪⎭
,

(26)
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Figure 2: Polarization state estimates RMSE of the proposed EVSA-PM against SNRs. (a) Source 1, (b) source 2.
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Figure 3: DOA estimate RMSEs of EVSA-PM, PSA-PM, and SUMWE against SNRs. (a) Source 1, (b) source 2.

and the RMSE of kth source’s polarization state estimate is
defined as

RMSEk = 1
2
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(27)

where θ̂e,k, ϕ̂e,k, γ̂e,k, and η̂e,k symbolize the eth Monte
Carlo trial’s estimates for the kth source’s directions and
polarization states and E is the total Monte Carlo trials. In
the simulations, E = 500.

Figures 1 and 2 plot the RMSEs of the sources’ DOA and
polarization estimates against signal-to-noise ratio (SNR)
levels using the EVSA-PM. The SNR is defined as SNR =
(1/K)

∑K
k=1 |sk|2/σ2

n , where σ
2
n is the noise power lever. Two

equal-power narrowband coherent signals impinge with
parameters θ1 = 75◦, ϕ1 = 35◦, γ1 = 45◦, η1 = −90◦, θ2 =
80◦, ϕ2 = 30◦, γ2 = 45◦, and η2 = 90◦, and the multipath
coefficient is set to β2 = exp( j ∗ 50◦). The uniform linear
array consists of 12 six-component EmVSs. The intervector

sensor spacing is set as Δ =
√
Δ2
x +Δ2

y = 0.5λ, 2λ, 4λ, and

8λ, respectively. The snapshot number is 300. It is seen from
that both DOA and polarization estimation errors decreases
as the SNR increases. Also, the increase of intervector
sensor spacing, which results in the array aperture extension,
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Figure 4: DOA estimate RMSEs of EVSA-PM, PSA-PM and SUMWE against the number of snapshots. (a) Source 1, (b) source 2.

65 66 67 68 69 70 71 72 73 74 75
0

10

20

30

40

50

60

70

Elevation angle

EVSA-PM

(a)

65 66 67 68 69 70 71 72 73 74 75
0

10

20

30

40

50

60

Elevation angle

PSA-PM

(b)

65 66 67 68 69 70 71 72 73 74 75

Elevation angle

SUMWE

0

5

10

15

20

25

30

(c)

Figure 5: The histogram of the estimated elevation using the three methods. (a) EVSA-PM; (b) PSA-PM; (c) SUMWE.
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contributes to the estimation accuracy enhancement. Since
the estimation of DOA and polarization is extracted from
the EmVS steering vector, which contains no time-delay
phase factor, we can obtain more accurate but unambiguous
estimates of coherent source using an aperture extension
array without a corresponding increase in hardware and
software costs [12].

Figures 3 and 4 make the comparison between the
proposed algorithm with PSA-PM and SUMWE under
different SNRs and number of snapshots. The impinging
signal parameters are same as in Figures 1 and 2. We use
300 snapshots in Figure 3 and set SNR = 20 dB in Figure 4.
For the proposed algorithm, a uniform linear array with 8
dipole-triads, separated by Δ = λ/2 and 4λ is considered.
For the PSA-PM, we use an L-shape geometry, with 8 dipole-
triads uniformly placed along x-axis for estimating uk and
8 dipole-triads uniformly placed along y-axis for estimating
vk. For the SUMWE, we use an L-shape geometry, with
12 unpolarized scalar sensors uniformly placed along x-
axis for estimating uk and 12 unpolarized scalar sensors
uniformly placed along y-axis for estimating vk . Hence, the
hardware costs of the SUMWE and the presented algorithm
are comparable. The intersensor displacement for the PSA-
PM and SUMWE is a half-wavelength, since these two
algorithms would suffer angle ambiguities when two sensors
are spaced over a half-wavelength. The curves in these two
figures unanimously demonstrate that the proposed EVSA-
PM with Δ = 4λ can offer performance superior to those of
the PSA-PM and SUMWE.

From the computational complexity analysis, the major
computational costs involved in the three algorithms are the
calculation of the corresponding propagator and correlation
matrix, and the numbers of multiplications required by the
EVSA-PM, the PSA-PM, and SUMWE are in the order of
O(3M1KF + 18(M1 − 1)F) ≈ 174F, O(2M1KF + 6M2

1F) ≈
416F, and O(2M2KF + 4(M2 − 1)F) ≈ 92F, respectively,
where M1 = 8, M2 = 12, and F denotes the number of
snapshots. Therefore, the proposed EVSA-PM also is more
computationally efficient than the PSA-PM.

The proposed EVSA-PM can fully exploit polarization
diversity to resolve closely spaced sources with distinct
polarizations. To verify this performance, we assume two
incident coherent sources with parameters θ1 = 70◦, θ2 =
70.5◦, ϕ1 = 90◦, ϕ2 = 90◦, γ1 = 45◦, γ2 = 45◦, η1 = −90◦,
and η2 = 90◦. Others simulation conditions are the same as
that in Figure 4, except that the SNR is set at 35 dB. Figure 5
shows the histogram of the estimated elevation using the
three methods based on 500 independent trials. From the
figure, we can observe that the proposed EVSA-PM can
resolve the closely spaced sources. However, the other two
methods fail.

Figure 6 plots the spatial spectrum to present comparison
of the maximum numbers of coherent signals, which can
be, respectively, resolved by the proposed algorithm, the
SUMWE, the PSA-PM, and the PSA-FB-PMwhich combines
the PSA with the FB averaging technique [27]. We consider
a uniform linear array comprised of 20 unpolarized scalar
sensors for the SUMWE and 20 quadrature polarized vector
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Figure 6: Spatial spectrum of EVSA-PM, PSA-PM, PSA-FB-PM,
and SUMWE for nine coherent sources.

sensors [19] (i.e., N = 4, M = 20) for all the other
three algorithms and estimate the sources’ direction by angle
searching. The intervector sensor spacing of array is a half-
wavelength. Like [19], we assume zero elevation incident
angle (θk = 90◦) and randomly chosen polarizations for all
sources, and set SNR = 15 dB.

Nine equal power, coherent sources with the azimuth
incident angles 35◦, 50◦, 65◦, 80◦, 90◦, 100◦, 110◦, 125◦,
and 140◦ are considered, and the corresponding multipath
coefficients βk = exp( j ∗ 10◦(k − 1)), k = 1, . . . , 9. This
figure shows that the proposed EVSA-PM and the SUMWE
successfully resolve the nine coherent signals, while the PSA-
PM, and the PSA-FB-PM fail to do so. This is due to the
factor that the PSA-PM and the PSA-FB-PM, respectively,
only can resolve min(N ,M−1) = 4 and min(2N ,M−1) = 8
coherent sources at most, while the proposed EVSA-PM can
resolve L − 2 coherent sources (L = M − K + 1), and the
maximum number of coherent signals resolved using the
SUMWE is equal to that using the EVSA-PM.

5. Conclusions

This paper employs a linear electromagnetic vector-sensor
array to propose a novel pre-processing algorithm for
decorrelating the coherent signals by electromagnetic vector-
sensor subarray averaging, and combine it with the propaga-
tor method to estimate the DOA and polarization of coher-
ent sources without eigen-decomposition into signal/noise
subspaces. Compared with the existing estimate algorithms,
the proposed algorithm makes use of more available electro-
magnetic information, hence, has an improved estimation
performance. It does not necessarily require the intervector
sensor spacing of a half-wavelength, enable decorrelation of
more coherent signals, and joint estimation of DOA and
polarization of coherent sources.
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Appendix

From (12), we can obtain

[R1, . . . ,R6]
def= ÃFG, (A.1)

where F
def= diag (rs1β1, . . . , rs1βK1 , rsK1+1qM(θK1+1,ϕK1+1), . . . ,

rsKqM(θK,ϕK))
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.

,

(A.2)

The matrix Ã is of full column rank due to the distinct
polarizations (although there are two sources from the same
direction). The diagonal matrix F has full rank. If the two
sources have the same incident directions but with the
distinct polarizations, and are uncorrelated with each other
(i.e., the two sources are not all included in the set consisting
of the first K1 coherent sources), theK×6K matrixG is of full
row rank. Therefore, in this scenario, the matrix [R1, . . . ,R6]
is of rank K . Similarly, the matrix [R̃1, . . . , R̃6] also is of rank
K . Thus, the matrix R defined in (11) still has full rank.

References

[1] A. Nehorai and E. Paldi, “Vector-sensor array processing for
electromagnetic source localization,” IEEE Transactions on
Signal Processing, vol. 42, no. 2, pp. 376–398, 1994.

[2] J. Li, “Direction and polarization estimation using arrays with
small loops and short dipoles,” IEEE Transactions on Antennas
and Propagation, vol. 41, no. 3, pp. 379–386, 1993.

[3] K. T. Wong, “Direction finding/polarization estimation—
dipole and/or loop triad(s),” IEEE Transactions on Aerospace
and Electronic Systems, vol. 37, no. 2, pp. 679–684, 2001.

[4] B. Hochwald and A. Nehorai, “Polarimetric modeling and
parameter estimation with applications to remote sensing,”
IEEE Transactions on Signal Processing, vol. 43, no. 8, pp. 1923–
1935, 1995.

[5] X. Gong, Z. Liu, Y. Xu, and M. Ishtiaq Ahmad, “Direction-
of-arrival estimation via twofold mode-projection,” Signal
Processing, vol. 89, no. 5, pp. 831–842, 2009.

[6] J. Tabrikian, R. Shavit, and D. Rahamim, “An efficient vector
sensor configuration for source localization,” IEEE Signal
Processing Letters, vol. 11, no. 8, pp. 690–693, 2004.

[7] S. Miron, N. Le Bihan, and J. I. Mars, “Quaternion-MUSIC for
vector-sensor array processing,” IEEE Transactions on Signal
Processing, vol. 54, no. 4, pp. 1218–1229, 2006.

[8] C. C. Ko, J. Zhang, and A. Nehorai, “Separation and tracking
of multiple broadband sources with one electromagnetic
vector sensor,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, no. 3, pp. 1109–1116, 2002.

[9] C. Paulus and J. I. Mars, “Vector-sensor array processing
for polarization parameters and DOA estimation,” EURASIP
Journal on Advances in Signal Processing, vol. 2010, Article ID
850265, 3 pages, 2010.

[10] Y. Xu, Z. Liu, K. T. Wong, and J. Cao, “Virtual-manifold ambi-
guity in HOS-based direction-finding with electromagnetic
vector-sensors,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 44, no. 4, pp. 1291–1308, 2008.

[11] K. T. Wong and M. D. Zoltowski, “Closed-form direction
finding and polarization estimation with arbitrarily spaced
electromagnetic vector-sensors at unknown locations,” IEEE
Transactions on Antennas and Propagation, vol. 48, no. 5,
pp. 671–681, 2000.

[12] M. D. Zoltowski and K. T. Wong, “ESPRIT-based 2-D direc-
tion finding with a sparse uniform array of electromagnetic
vector sensors,” IEEE Transactions on Signal Processing, vol. 48,
no. 8, pp. 2195–2204, 2000.

[13] K. T. Wong, “Blind beamforming geolocation for wideband-
FFHs with unknown hop-sequences,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 37, no. 1, pp. 65–76,
2001.

[14] H. Jiacai, S. Yaowu, and T. Jianwu, “Joint estimation of DOA,
frequency, and polarization based on cumulants and UCA,”
Journal of Systems Engineering and Electronics, vol. 18, no. 4,
pp. 704–709, 2007.

[15] K. C. Ho, K. C. Tan, and A. Nehorai, “Estimating direc-
tions of arrival of completely and incompletely polarized
signals with electromagnetic vector sensors,” IEEE Transac-
tions on Signal Processing, vol. 47, no. 10, pp. 2845–2852,
1999.

[16] K. T. Wong and M. D. Zoltowski, “Uni-vector-sensor ESPRIT
for multisource azimuth, elevation, and polarization estima-
tion,” IEEE Transactions on Antennas and Propagation, vol. 45,
no. 10, pp. 1467–1474, 1997.

[17] K. T. Wong and M. D. Zoltowski, “Self-initiating MUSIC-
based direction finding and polarization estimation in spatio-
polarizational beamspace,” IEEE Transactions on Antennas and
Propagation, vol. 48, no. 8, pp. 1235–1245, 2000.

[18] M. D. Zoltowski and K. T. Wong, “Closed-form eigenstruc-
ture-based direction finding using arbitrary but identical
subarrays on a sparse uniform Cartesian array grid,” IEEE
Transactions on Signal Processing, vol. 48, no. 8, pp. 2205–2210,
2000.

[19] D. Rahamim, J. Tabrikian, and R. Shavit, “Source localization
using vector sensor array in a multipath environment,” IEEE
Transactions on Signal Processing, vol. 52, no. 11, pp. 3096–
3103, 2004.

[20] Y. Wu, H. C. So, C. Hou, and J. Li, “Passive localization of
near-field sources with a polarization sensitive array,” IEEE
Transactions on Antennas and Propagation, vol. 55, no. 8,
pp. 2402–2408, 2007.

[21] M. Kanda and D. A. Hill, “A three-loop method for deter-
mining the radiation characteristics of an electrically small
source,” IEEE Transactions on Electromagnetic Compatibility,
vol. 34, no. 1, pp. 1–3, 1992.

[22] R. O. Schmidt, “Multiple emitter location and signal param-
eter estimation,” IEEE Transactions on Antennas and Propaga-
tion, vol. 34, no. 3, pp. 276–280, 1986.

[23] R. Roy and T. Kailath, “ESPRIT—estimation of signal parame-
ters via rotational invariance techniques,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–
995, 1989.



10 EURASIP Journal on Advances in Signal Processing

[24] N. Tayem and H. M. Kwon, “L-shape 2-dimensional arrival
angle estimation with propagator method,” IEEE Transactions
on Antennas and Propagation, vol. 53, no. 5, pp. 1622–1630,
2005.

[25] C. Gu, J. He, X. Zhu, and Z. Liu, “Efficient 2DDOA estimation
of coherent signals in spatially correlated noise using electro-
magnetic vector sensors,”Multidimensional Systems and Signal
Processing, vol. 21, no. 3, pp. 239–254, 2010.

[26] J. Xin and A. Sano, “Computationally efficient subspace-
based method for direction-of-arrival estimation without
eigendecomposition,” IEEE Transactions on Signal Processing,
vol. 52, no. 4, pp. 876–893, 2004.

[27] S. U. Pillai and B. H. Kwon, “Forward/backward spatial
smoothing techniques for coherent signal identification,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 37,
no. 1, pp. 8–15, 1989.


	1. Introduction
	2. Mathematical Data Model
	3. Algorithm Development
	3.1. EVSA Algorithm.
	3.2. EVSA-PM Algorithm for Estimating Parameters from the EmVS Steering Vector.
	3.3. EVSA-PM Algorithm for Estimating Parameters by Angle Searching.

	4. Simulations
	5. Conclusions
	Appendix
	References

