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We investigate the global existence and uniqueness of solutions for some classes of partial
hyperbolic differential equations involving the Caputo fractional derivative with finite and infinite
delays. The existence results are obtained by applying some suitable fixed point theorems.

1. Introduction

In this paper, we provide sufficient conditions for the global existence and uniqueness of
some classes of fractional order partial hyperbolic differential equations. As a first problem,
we discuss the global existence and uniqueness of solutions for an initial value problem (IVP
for short) of a system of fractional order partial differential equations given by

(cDr
0u
)(
x, y

)
= f

(
x, y, u(x,y)

)
; if

(
x, y

) ∈ J, (1.1)

u
(
x, y

)
= φ

(
x, y

)
; if

(
x, y

) ∈ J̃ , (1.2)

u(x, 0) = ϕ(x), u
(
0, y

)
= ψ

(
y
)
; x, y ∈ [0,∞), (1.3)

where J = [0,∞) × [0,∞), J̃ := [−α,∞) × [−β,∞) \ (0,∞) × (0,∞); α, β > 0, φ ∈ C(J̃ ,Rn), cDr
0

is the Caputo’s fractional derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], f : J × C → R
n, is a

given function ϕ : [0,∞) → R
n, ψ : [0,∞) → R

n are given absolutely continuous functions
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with ϕ(x) = φ(x, 0), ψ(y) = φ(0, y) for each x, y ∈ [0,∞), and C := C([−α, 0] × [−β, 0],Rn) is
the space of continuous functions on [−α, 0] × [−β, 0].

If u ∈ C([−α,∞) × [−β,∞),Rn), then for any (x, y) ∈ J define u(x,y) by

u(x,y)(s, t) = u
(
x + s, y + t

)
, for (s, t) ∈ [−α, 0] × [−β, 0]. (1.4)

Next we consider the following initial value problem for partial neutral functional differential
equations with finite delay of the form

cDr
0

(
u
(
x, y

) − g
(
x, y, u(x,y)

))
= f

(
x, y, u(x,y)

)
; if

(
x, y

) ∈ J, (1.5)

u
(
x, y

)
= φ

(
x, y

)
; if

(
x, y

) ∈ J̃ , (1.6)

u(x, 0) = ϕ(x), u
(
0, y

)
= ψ

(
y
)
; x, y ∈ [0,∞), (1.7)

where f , φ, ϕ, ψ are as in problem (1.1)–(1.3), and g : J × C → R
n is a given function.

The third result deals with the existence of solutions to fractional order partial
hyperbolic functional differential equations with infinite delay of the form

(cDr
0u
)(
x, y

)
= f

(
x, y, u(x,y)

)
; if

(
x, y

) ∈ J, (1.8)

u
(
x, y

)
= φ

(
x, y

)
; if

(
x, y

) ∈ J̃ ′, (1.9)

u(x, 0) = ϕ(x), u
(
0, y

)
= ψ

(
y
)
; x, y ∈ [0,∞), (1.10)

where ϕ, ψ are as in problem (1.1)–(1.3) and J̃ ′ = R
2 \ (0,∞) × (0,∞), f : J × B → R

n,
φ ∈ C(J̃ ′,Rn), and B is called a phase space that will be specified in Section 4.

We denote by u(x,y) the element of B defined by

u(x,y)(s, t) = u
(
x + s, y + t

)
; (s, t) ∈ (−∞, 0] × (−∞, 0]. (1.11)

Finally we consider the following initial value problem for partial neutral functional
differential equations with infinite delay

cDr
0

(
u
(
x, y

) − g
(
x, y, u(x,y)

))
= f

(
x, y, u(x,y)

)
; if

(
x, y

) ∈ J, (1.12)

u
(
x, y

)
= φ

(
x, y

)
; if

(
x, y

) ∈ J̃ ′, (1.13)

u(x, 0) = ϕ(x), u
(
0, y

)
= ψ

(
y
)
; x, y ∈ [0,∞), (1.14)

where f , φ, ϕ, ψ are as in problem (1.8)–(1.10) and g : J × B → R
n is a given continuous

function.
In this paper, we present global existence and uniqueness results for the above-cited

problems. We make use of the nonlinear alternative of Leray-Schauder type for contraction
maps on Fréchet spaces.

The problem of existence of solutions of Cauchy-type problems for ordinary
differential equations of fractional order without delay in spaces of integrable functions was
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studied in numerous works (see [1, 2]), a similar problem in spaces of continuous functions
was studied in [3]. We can find numerous applications of differential equations of fractional
order in viscoelasticity, electrochemistry, control, porous media, electromagnetic, theory of
neolithic transition, and so forth, (see [4–11]). There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the monographs of
Kilbas et al. [12], Lakshmikantham et al. [13], Miller and Ross [14], Samko et al. [15], the
papers of Abbas and Benchohra [16–18], Agarwal et al. [19, 20], Ahmad and Nieto [21–23],
Belarbi et al. [24], Benchohra et al. [25–27], Chang and Nieto [28], Diethelm et al. [4, 29],
Heinsalu et al. [30], Jumarie [31], Kilbas and Marzan [32], Luchko et al. [33], Magdziarz et
al. [34], Mainardi [9], Rossikhin and Shitikova [35], Vityuk and Golushkov [36], Yu and Gao
[37], and Zhang [38] and the references therein.

For integer order derivative, various classes of hyperbolic differential equations were
considered on bounded domain; see, for instance, the book by Kamont [39], the papers
by Człapiński [40], Dawidowski and Kubiaczyk [41], Kamont, and Kropielnicka [42],
Lakshmikantham and Pandit [43], and Pandit [44].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let p ∈ N and J0 := [0, p] × [0, p]. Let C(J0,Rn) be the Banach space of
all continuous functions from J0 into R

n with the norm

‖z‖∞ = sup
(x,y)∈J0

∥∥z
(
x, y

)∥∥, (2.1)

where ‖ · ‖ denotes a suitable complete norm on R
n. As usual, by AC(J0,Rn) we denote

the space of absolutely continuous functions from J0 into R
n and L1(J0,Rn) is the space of

Lebegue-integrable functions w : J0 → R
n with the norm

‖w‖1 =
∫p

0

∫p

0

∥∥w
(
x, y

)∥∥dy dx. (2.2)

Let r1, r2 > 0 and r = (r1, r2). For z ∈ L1(J0,Rn), the expression

(
Ir0z

)(
x, y

)
=

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1z(s, t)dt ds, (2.3)

where Γ(·) is the Euler gamma function, is called the left-sided mixed Riemann-Liouville
integral of order r.

Denote by D2
xy := ∂2/∂x∂y, the mixed second-order partial derivative.

Definition 2.1 (see [36]). For z ∈ L1(J0,Rn), the Caputo fractional-order derivative of order
r ∈ (0, 1] × (0, 1] of z is defined by the expression ( cDr

0z)(x, y) = (I1−r0 D2
xyz)(x, y).

In the definition above by 1 − r we mean (1 − r1, 1 − r2) ∈ (0, 1] × (0, 1].
If z is an absolutely continuous function, then its Caputo fractional derivative

(cDr
0z)(x, y) exists for each (x, y) ∈ J0.
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Let X be a Fréchet space with a family of seminorms {‖ · ‖n}n∈N. We assume that the
family of seminorms {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ · · · for every x ∈ X. (2.4)

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

∥
∥y

∥
∥
n ≤ Mn, ∀y ∈ Y. (2.5)

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows. For every n ∈ N, we
consider the equivalence relation ∼n defined by: x∼ny if and only if ‖x − y‖n = 0 for x, y ∈ X.
We denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with respect to ‖ · ‖n. To
every Y ⊂ X, we associate a sequence {Yn} of subsets Yn ⊂ Xn as follows. For every x ∈ X,
we denote [x]n the equivalence class of x of subset Xn and we defined Yn = {[x]n : x ∈ Y}.
We denote Yn, intn(Yn) and ∂nY

n, respectively, the closure, the interior and the boundary of
Yn with respect to ‖ · ‖n in Xn. For more information about this subject see [45].

Definition 2.2. Let X be a Fréchet space. A function N : X → X is said to be a contraction if
for each n ∈ N there exists kn ∈ (0, 1) such that

‖N(u) −N(v)‖n ≤ kn‖u − v‖n, ∀u, v ∈ X. (2.6)

Theorem 2.3 (see [45]). Let X be a Fréchet space and Y ⊂ X a closed subset in X. Let N : Y → X
be a contraction such that N(Y ) is bounded. Then one of the following statements holds:

(a) the operator N has a unique fixed point;

(b) there exists λ ∈ [0, 1), n ∈ N and u ∈ ∂nY
n such that ‖u − λN(u)‖n = 0.

In the sequel we will make use of the following generalization of Gronwall’s lemma
for two independent variables and singular kernel.

Lemma 2.4 (see [46]). Let υ : J0 → [0,∞) be a real function and ω(·, ·) be a nonnegative, locally
integrable function on J . If there are constants c > 0 and 0 < l1, l2 < 1 such that

υ
(
x, y

) ≤ ω
(
x, y

)
+ c

∫x

0

∫y

0

υ(s, t)

(x − s)l1
(
y − t

)l2 dt ds, (2.7)

then there exists a constant k = k(l1, l2) such that

υ
(
x, y

) ≤ ω
(
x, y

)
+ kc

∫x

0

∫y

0

ω(s, t)

(x − s)l1
(
y − t

)l2 dt ds, (2.8)

for every (x, y) ∈ J0.
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3. Global Result for Finite Delay

Let us start by defining what we mean by a global solution of the problem (1.1)–(1.3).

Definition 3.1. A function u ∈ C0 := C([−α,∞) × [−β,∞),Rn) such that its mixed derivative
D2

xy exists and is integrable on J is said to be a global solution of (1.1)–(1.3) if u satisfies (1.1)

and (1.3) on J and the condition (1.2) on J̃ .

Let h ∈ L1(J0,Rn) and consider the following problem

( cDr
0u
)(
x, y

)
= h

(
x, y

)
;

(
x, y

) ∈ J0,

u(x, 0) = ϕ(x), u
(
0, y

)
= ψ

(
y
)
; x, y ∈ [

0, p
]
,

ϕ(0) = ψ(0).

(3.1)

For the existence of global solutions for the problem (1.1)–(1.3), we need the following known
lemma.

Lemma 3.2 (see [16, 17]). A function u ∈ AC(J0,Rn) is a global solution of problem (3.1) if and
only if u(x, y) satisfies

u
(
x, y

)
= μ

(
x, y

)
+
(
Ir0h

)(
x, y

)
,

(
x, y

) ∈ J0, (3.2)

where

μ
(
x, y

)
= ϕ(x) + ψ

(
y
) − ϕ(0). (3.3)

As a consequence of Lemma 3.2, we have the following result.

Lemma 3.3. A function u ∈ AC(J0,Rn) is a global solution of problem (1.1)–(1.3) if and only if
u(x, y) = φ(x, y), (x, y) ∈ J̃ and u(x, y) satisfies

u
(
x, y

)
= μ

(
x, y

)
+
(
Ir0f

)(
x, y

)
,

(
x, y

) ∈ J0, (3.4)

where

μ
(
x, y

)
= ϕ(x) + ψ

(
y
) − ϕ(0). (3.5)

For each p ∈ N, we consider following set:

Cp = C
([−α, p] × [−β, p],Rn), (3.6)

and we define in C0 the seminorms by

‖u‖p = sup
{∥∥u

(
x, y

)∥∥ : −α ≤ x ≤ p, −β ≤ y ≤ p
}
. (3.7)

Then C0 is a Fréchet space with the family of seminorms {‖u‖p}.
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Further, we present conditions for the existence and uniqueness of a global solution of
problem (1.1)–(1.3).

Theorem 3.4. Assume that

(H1) the function f : J × C → R
n is continuous,

(H2) for each p ∈ N, there exists lp ∈ C(J0,Rn) such that for each (x, y) ∈ J0

∥
∥f

(
x, y, u

) − f
(
x, y, v

)∥∥ ≤ lp
(
x, y

)‖u − v‖C, for each u, v ∈ C. (3.8)

If

l∗pp
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (3.9)

where

l∗p = sup
(x,y)∈J0

lp
(
x, y

)
, (3.10)

then, there exists a unique solution for IVP (1.1)–(1.3) on [−α,∞) × [−β,∞).

Proof. Transform the problem (1.1)–(1.3) into a fixed point problem. Consider the operator
N : C0 → C0 defined by,

N(u)
(
x, y

)
=

⎧
⎪⎨

⎪⎩

φ
(
x, y

)
,

(
x, y

) ∈ J̃ ,

μ
(
x, y

)
+

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dt ds,

(
x, y

) ∈ J.

(3.11)

Clearly, from Lemma 3.3, the fixed points ofN are solutions of (1.1)–(1.3). Let u be a possible
solution of the problem u = λN(u) for some 0 < λ < 1. This implies that for each (x, y) ∈ J0,
we have

u
(
x, y

)
= λμ

(
x, y

)
+

λ

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dt ds. (3.12)

Introducing f(s, t, 0) − f(s, t, 0), it follows by (H2) that

∥∥u
(
x, y

)∥∥ ≤ ∥∥μ
(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1lp(s, t)
∥∥u(s,t)

∥∥
Cdt ds,

(3.13)
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where

f∗ = sup
(x,y)∈J0

∥
∥f

(
x, y, 0

)∥∥. (3.14)

We consider the function τ defined by

τ
(
x, y

)
= sup

{‖u(s, t)‖ : −α ≤ s ≤ x, −β ≤ t ≤ y; x, y ∈ [
0, p

]}
. (3.15)

Let (x∗, y∗) ∈ [−α, x] × [−β, y] be such that τ(x, y) = ‖u(x∗, y∗)‖. If (x∗, y∗) ∈ J0, then by the
previous inequality, we have for (x, y) ∈ J0,

∥
∥u

(
x, y

)∥∥ ≤ ∥
∥μ

(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1lp(s, t)τ(s, t)dt ds.

(3.16)

If (x∗, y∗) ∈ J̃ , then τ(x, y) = ‖φ‖C and the previous inequality holds.
By (3.16) we obtain that

τ
(
x, y

) ≤ ∥∥μ
(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1lp(s, t)τ(s, t)dt ds

≤ ∥∥μ
(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
l∗p

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1τ(s, t)dt ds,

(3.17)

and Lemma 2.4 implies that there exists a constant k = k(r1, r2) such that

τ
(
x, y

) ≤
(∥∥μ

∥∥
p +

f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

)(

1 +
kl∗p

Γ(r1 + 1)Γ(r2 + 1)

)

:= Mp. (3.18)

Then from (3.16), we have

‖u‖p ≤ ∥∥μ
∥∥
p +

f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
+

Mpl
∗
p

Γ(r1 + 1)Γ(r2 + 1)
:= M∗

p. (3.19)

Since for every (x, y) ∈ J0, ‖u(x,y)‖C ≤ τ(x, y), we have

‖u‖p ≤ max
(∥∥φ

∥∥
C,M

∗
p

)
:= Rp. (3.20)



8 Advances in Difference Equations

Set

U =
{
u ∈ C0 : ‖u‖p ≤ Rp + 1 ∀p ∈ N

}
. (3.21)

We will show that N : U → Cp is a contraction map. Indeed, consider v,w ∈ U. Then for
each x, y ∈ [0, p], we have

∥
∥N(v)

(
x, y

) −N(w)
(
x, y

)∥∥

≤ 1
Γ(r1)Γ(r2)

∫x

0

∫y

0

∣
∣
∣(x − s)r1−1

∣
∣
∣
∣
∣
∣
(
y − t

)r2−1
∣
∣
∣
∥
∥f

(
s, t, v(s,t)

) − f
(
s, t,w(s,t)

)∥∥dt ds

≤ 1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1l(p,q)(s, t)
∥∥v(s,t) −w(s,t)

∥∥
Cdt ds

≤
l∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖v −w‖p.

(3.22)

Thus,

‖N(v) −N(w)‖p ≤
l∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖v −w‖p. (3.23)

Hence by (3.9), N : U → Cp is a contraction. By our choice of U, there is no u ∈ ∂nU
n such

that u = λN(u), for λ ∈ (0, 1). As a consequence of Theorem 2.3, we deduce that N has a
unique fixed point u inU which is a solution to problem (1.1)–(1.3).

Now we present a global existence and uniqueness result for the problem (1.5)–(1.7).

Definition 3.5. A function u ∈ C0 such that the mixed derivative D2
xy(u(x, y) − g(x, y, u(x,y)))

exists and is integrable on J is said to be a global solution of (1.5)–(1.7) if u satisfies equations
(1.5) and (1.7) on J and the condition (1.6) on J̃ .

Let f ∈ L1(J0,Rn), g ∈ AC(J0,Rn) and consider the following linear problem

cDr
0

(
u
(
x, y

) − g
(
x, y

))
= f

(
x, y

)
;

(
x, y

) ∈ J0,

u(x, 0) = ϕ(x), u
(
0, y

)
= ψ

(
y
)
; x, y ∈ [

0, p
]
,

(3.24)

with ϕ(0) = ψ(0).
For the existence of solutions for the problem (1.5)–(1.7), we need the following

lemma.

Lemma 3.6. A function u ∈ AC(J0,Rn) is a global solution of problem (3.24) if and only if u(x, y)
satisfies

u
(
x, y

)
= μ

(
x, y

)
+ g

(
x, y

) − g(x, 0) − g
(
0, y

)
+ g(0, 0) + Ir0

(
f
)(
x, y

)
;

(
x, y

) ∈ J0. (3.25)
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Proof. Let u(x, y) be a solution of problem (3.24). Then, taking into account the definition of
the fractional Caputo derivative, we have

I1−r0 D2
xy

(
u
(
x, y

) − g
(
x, y

))
= f

(
x, y

)
. (3.26)

Hence, we obtain

Ir0I
1−r
0 D2

xy

(
u
(
x, y

) − g
(
x, y

))
=
(
Ir0f

)(
x, y

)
, (3.27)

then,

I10D
2
xy

(
u
(
x, y

) − g
(
x, y

))
=
(
Ir0f

)(
x, y

)
. (3.28)

Since

I10D
2
xy

(
u
(
x, y

) − g
(
x, y

))
=
(
u
(
x, y

) − g
(
x, y

)) − (u(x, 0) − g(x, 0)
)

− (u(0, y) − g
(
0, y

))
+
(
u(0, 0) − g(0, 0)

)
,

(3.29)

we have

u
(
x, y

)
= μ

(
x, y

)
+ g

(
x, y

) − g(x, 0) − g
(
0, y

)
+ g(0, 0) + Ir0

(
f
)(
x, y

)
. (3.30)

Now, let u(x, y) satisfy (3.25). It is clear that u(x, y) satisfies (3.24).

As a consequence of Lemma 3.6 we have the following result.

Lemma 3.7. The function u ∈ AC(J0,Rn) is a global solution of problem (1.5)–(1.7) if and only if u
satisfies the equation

u
(
x, y

)
=

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dsdt

+ μ
(
x, y

)
+ g

(
x, y, u(x,y)

) − g
(
x, 0, u(x,0)

)

− g
(
0, y, u(0,y)

)
+ g

(
0, 0, u(0,0)

)
,

(3.31)

for all (x, y) ∈ J0 and the condition (1.6) on J̃ .

Theorem 3.8. Assume that (H1), (H2), and the following condition holds

(H3) For each p = 1, 2, . . ., there exists a constant cp with 0 < cp < 1/4 such that for each
(x, y) ∈ J0, one has

∥∥g
(
x, y, u

) − g
(
x, y, v

)∥∥ ≤ cp‖u − v‖C, for each u, v ∈ C. (3.32)
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If

4cp +
l∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (3.33)

then there exists a unique solution for IVP (1.5)–(1.7) on [−α,∞) × [−β,∞).

Proof. Transform the problem (1.5)–(1.7) into a fixed point problem. Consider the operator
N1 : C0 → C0 defined by,

N1(u)
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
x, y

)
,

(
x, y

) ∈ J̃ ,

μ
(
x, y

)
+ g

(
x, y, u(x,y)

) − g
(
x, 0, u(x,0)

)

−g(0, y, u(0,y)
)
+ g

(
0, 0, u(0,0)

)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dt ds,

(
x, y

) ∈ J.

(3.34)

From Lemma 3.7, the fixed points of N1 are solutions to problem (1.5)–(1.7). In order to use
the nonlinear alternative, we will obtain a priori estimates for the solutions of the integral
equation

u
(
x, y

)
= λ

(
μ
(
x, y

)
+ g

(
x, y, u(x,y)

) − g
(
x, 0, u(x,0)

) − g
(
0, y, u(0,y)

)
+ g

(
0, 0, u(0,0)

))

+
λ

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dt ds,

(3.35)

for some λ ∈ (0, 1). Then, using (H1)–(H3) and (3.16) we get for each (x, y) ∈ J0,

∥∥u
(
x, y

)∥∥ ≤ ∥∥μ
(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
∥∥g

(
x, y, u(x,y)

)∥∥ +
∥∥g

(
x, 0, u(x,0)

)∥∥ +
∥∥g

(
0, y, u(0,y)

)∥∥ +
∥∥g

(
0, 0, u(0,0)

)∥∥

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1lp(s, t)τ(s, t)dt ds,

(3.36)

then, we obtain

∥∥u
(
x, y

)∥∥ ≤ ∥∥μ
(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)

+ 4cpτ
(
x, y

)
+
∥∥g

(
x, y, 0

)∥∥ +
∥∥g(x, 0, 0)

∥∥ +
∥∥g

(
0, y, 0

)∥∥ +
∥∥g(0, 0, 0)

∥∥

+
l∗p

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1τ(s, t)dt ds.

(3.37)
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Replacing (3.37) in the definition of τ(x, y) we get

τ
(
x, y

) ≤ 1
1 − 4cp

[∥
∥μ

(
x, y

)∥∥ +
f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
+ 4g∗

]

+
l̃∗p

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1τ(s, t)dt ds,

(3.38)

where l̃∗p = l∗p/(1 − 4cp) and g∗
p = sup(x,y)∈J0‖g(x, y, 0)‖.

By Lemma 2.4, there exists a constant δ = δ(r1, r2) such that

‖τ‖p ≤ 1
1 − 4cp

[∥
∥μ

∥
∥
p +

f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
+ 4g∗

p

]

×
⎡

⎣1 +
δl̃∗p

Γ(r1 + 1)Γ(r2 + 1)

⎤

⎦ := Dp.

(3.39)

Then, from (3.37) and (3.39), we get

‖u‖p ≤ ∥∥μ
∥∥
p +

f∗pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
+ 4g∗

p

+ 4cpDp +
Dpl

∗
p

Γ(r1 + 1)Γ(r2 + 1)
:= D∗

p.

(3.40)

Since for every (x, y) ∈ J0, ‖u(x,y)‖C ≤ τ(x, y), we have

‖u‖p ≤ max
(
‖φ‖C, D∗

p

)
:= R∗

p. (3.41)

Set

U1 =
{
u ∈ C0 : ‖u‖p ≤ R∗

p + 1 ∀p = 1, 2, . . .
}
. (3.42)

Clearly, U1 is a closed subset of C0. As in Theorem 3.4, we can show that N1 : U1 → C0 is a
contraction operator. Indeed

‖N1(v) −N1(w)‖p ≤
(

4cp +
l∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

)

‖v −w‖p (3.43)

for each v,w ∈ U1 and (x, y) ∈ J0. From the choice of U1, there is no u ∈ ∂nU
n
1 such that

u = λN1(u), for some λ ∈ (0, 1). As a consequence of Theorem 2.3, we deduce that N1 has a
unique fixed point u inU1 which is a solution to problem (1.5)–(1.7).
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4. The Phase Space B

The notation of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a seminormed
space satisfying suitable axioms, which was introduced by Hale and Kato (see [47]). For
further applications see, for instance, the books [48–50] and their references.

Inspired by [47], Człapiński [40] introduced the following construction of the phase
space. For any (x, y) ∈ J0 denote E(x,y) := [0, x]×{0}∪{0}×[0, y], furthermore in case x = y = p
we write simply E. Consider the space (B, ‖(·, ·)‖B) is a seminormed linear space of functions
mapping (−∞, 0] × (−∞, 0] into R

n, and satisfying the following fundamental axioms which
were adapted from those introduced by Hale and Kato for ordinary differential functional
equations.

(A1) If z : (−∞, p] × (−∞, p] → R
n continuous on J0 and z(x,y) ∈ B, for all (x, y) ∈ E,

then there are constants H,K,M > 0 such that for any (x, y) ∈ J0 the following
conditions hold:

(i) z(x,y) is in B;
(ii) ‖z(x, y)‖ ≤ H‖z(x,y)‖B, and
(iii) ‖z(x,y)‖B ≤ K sup(s,t)∈[0,x]×[0,y]‖z(s, t)‖ +M sup(s,t)∈E(x,y)

‖z(s,t)‖B.

(A2) For the function z(·, ·) in (A1), z(x,y) is a B-valued continuous function on J0.

(A3) The space B is complete.

Now, we present some examples of phase spaces (see [40]).

Example 4.1. Let B be the set of all functions φ : (−∞, 0]×(−∞, 0] → R
n which are continuous

on [−α, 0] × [−β, 0], α, β ≥ 0, with the seminorm

∥∥φ
∥∥
B = sup

(s,t)∈[−α,0]×[−β,0]

∥∥φ(s, t)
∥∥. (4.1)

Then, we have H = K = M = 1. The quotient space B̂ = B/‖ · ‖B is isometric to the space
C([−α, 0] × [−β, 0],Rn) of all continuous functions from [−α, 0] × [−β, 0] into R

n with the
supremum norm, this means that partial differential functional equations with finite delay
are included in our axiomatic model.

Example 4.2. Let Cγ be the set of all continuous functions φ : (−∞, 0] × (−∞, 0] → R
n for

which a limit lim‖(s,t)‖→∞eγ(s+t)φ(s, t) exists, with the norm

∥∥φ
∥∥
Cγ

= sup
(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)
∥∥φ(s, t)

∥∥. (4.2)

Then we have H = K = M = 1.

Example 4.3. Let α, β, γ ≥ 0 and let

∥∥φ
∥∥
CLγ

= sup
(s,t)∈[−α,0]×[−β,0]

∥∥φ(s, t)
∥∥ +

∫∫0

−∞
eγ(s+t)

∥∥φ(s, t)
∥∥dt ds (4.3)
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be the seminorm for the space CLγ of all functions φ : (−∞, 0] × (−∞, 0] → R
n which are

continuous on [−α, 0] × [−β, 0] measurable on (−∞,−α] × (−∞, 0] ∪ (−∞, 0] × (−∞,−β], and
such that ‖φ‖CLγ < ∞. Then,

H = 1, K =
∫0

−α

∫0

−β
eγ(s+t)dt ds, M = 2. (4.4)

5. Global Result for Infinite Delay

In this section we present a global existence and uniqueness result for the problems (1.8)–
(1.10) and (1.12)–(1.14). Let us define the space

Ω :=
{
u : R2 −→ R

n : u(x,y) ∈ B for
(
x, y

) ∈ E0, u|J ∈ C(J,Rn)
}
, (5.1)

where E0 := [0,∞) × {0} ∪ {0} × [0,∞).

Definition 5.1. A function u ∈ Ω such that its mixed derivativeD2
xy exists and is integrable on

J is said to be a global solutionis of (1.8)–(1.10) if u satisfies equations (1.8) and (1.10) on J

and the condition (1.9) on J̃ ′.

For each p ∈ N, we consider following set,

C′
p =

{
u :

(−∞, p
] × (−∞, p

] −→ R
n : u ∈ B ∩ C(J0,Rn), u(x,y) = 0 for

(
x, y

) ∈ E
}
, (5.2)

and we define in

C′
0 :=

{
u : R2 −→ R

n : u ∈ B ∩ C([0,∞) × [0,∞),Rn), u(x,y) = 0 for
(
x, y

) ∈ E0

}
(5.3)

the seminorms by

‖u‖p′ = sup
(x,y)∈E

∥∥u(x,y)
∥∥
B
+ sup

(x,y)∈J0

∥∥u
(
x, y

)∥∥

= sup
(x,y)∈J0

∥∥u
(
x, y

)∥∥, u ∈ C′
p.

(5.4)

Then, C′
0 is a Fréchet space with the family of seminorms {‖u‖p′ }.

Theorem 5.2. Assume that

(H ′1) the function f : J × B → R
n is continuous and

(H ′2) for each p ∈ N, there exists l′p ∈ C(J0,Rn) such that for and (x, y) ∈ J0

∥∥f
(
x, y, u

) − f
(
x, y, v

)∥∥ ≤ l′p
(
x, y

)‖u − v‖B, for each u, v ∈ B. (5.5)
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If

Kl′∗p p
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (5.6)

where

l′∗p = sup
(x,y)∈J0

l′p
(
x, y

)
, (5.7)

then, there exists a unique solution for IVP (1.8)–(1.10) on R
2.

Proof. Transform the problem (1.8)–(1.10) into a fixed point problem. Consider the operator
N ′ : Ω → Ω defined by

N ′(u)
(
x, y

)
=

⎧
⎪⎨

⎪⎩

φ
(
x, y

)
,

(
x, y

) ∈ J̃ ′,

μ
(
x, y

)
+

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dt ds;

(
x, y

) ∈ J.

(5.8)

Let v(·, ·) : R2 → R
n be a function defined by

v
(
x, y

)
=

⎧
⎨

⎩

φ
(
x, y

)
,

(
x, y

) ∈ J̃ ′,

μ
(
x, y

)
,

(
x, y

) ∈ J.
(5.9)

Then, v(x,y) = φ for all (x, y) ∈ E0. For each w ∈ C(J,Rn) with w(x, y) = 0; for all (x, y) ∈ E0,
we denote by w the function defined by

w
(
x, y

)
=

⎧
⎨

⎩

0,
(
x, y

) ∈ J̃ ′,

w
(
x, y

)
,

(
x, y

) ∈ J.
(5.10)

If u(·, ·) satisfies the integral equation,

u
(
x, y

)
= μ

(
x, y

)
+

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t, u(s,t)

)
dt ds, (5.11)

we can decompose u(·, ·) as u(x, y) = w(x, y) + v(x, y); x, y ≥ 0, which implies that u(x,y) =
w(x,y) + v(x,y), for every x, y ≥ 0, and the function w(·, ·) satisfies

w
(
x, y

)
=

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t,w(s,t) + v(s,t)

)
dt ds. (5.12)
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Let the operator P ′ : C′
0 → C′

0 be defined by

(
P ′w

)(
x, y

)
=

1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1

× f
(
s, t,w(s,t) + v(s,t)

)
dt ds;

(
x, y

) ∈ J.

(5.13)

Obviously, the operator N ′ has a fixed point is equivalent to P ′ having a fixed point, and so
we turn to prove that P ′ has a fixed point. We will use the alternative to prove that P ′ has a
fixed point. Let w be a possible solution of the problem w = P ′(w) for some 0 < λ < 1. This
implies that for each (x, y) ∈ J0, we have

w
(
x, y

)
=

λ

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t,w(s,t) + v(s,t)

)
dt ds. (5.14)

This implies by (H ′1) that

∥∥w
(
x, y

)∥∥ ≤
f∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1l′p(s, t)
∥∥w(s,t) + v(s,t))

∥∥
Bdt ds,

(5.15)

where

f∗
p = sup

{∥∥f
(
x, y, 0

)∥∥ :
(
x, y

) ∈ J0
}
. (5.16)

But

∥∥w(s,t) + v(s,t)
∥∥
B ≤ ∥∥w(s,t)

∥∥
B +

∥∥v(s,t)
∥∥
B

≤ K sup
{
u
(
s̃, t̃

)
:
(
s̃, t̃

)
∈ [0, s] × [0, t]

}

+M
∥∥φ

∥∥
B +K

∥∥φ(0, 0)
∥∥.

(5.17)

If we name z(s, t) the right-hand side of (5.17), then we have

∥∥w(s,t) + v(s,t)
∥∥
B ≤ z(s, t). (5.18)

Therefore, from (5.15) and (5.18) we get

∥∥w
(
x, y

)∥∥ ≤
f∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1l′p(s, t)z(s, t)dt ds.

(5.19)
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Replacing (5.19) in the definition of w, we have that

∥
∥z
(
x, y

)∥∥ ≤
Kf∗

pp
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
+M

∥
∥φ

∥
∥
B

+
Kl′∗p

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1z(s, t)dt ds.

(5.20)

By Lemma 2.4, there exists a constant δ = δ(r1, r2) such that

‖z‖p′ ≤
(

Kf∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
+M

∥
∥φ

∥
∥
B

)

×
(

1 +
δKl′∗p

Γ(r1 + 1)Γ(r2 + 1)

)

:= M̃.

(5.21)

Then, from (5.19), we have

‖w‖p′ ≤ M̃
l′∗p p

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
+

f∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
:= M̃∗. (5.22)

Since for every (x, y) ∈ J0, ‖w(x,y)‖B ≤ z(x, y), we have

‖w‖p′ ≤ max
(∥∥φ

∥∥
B, M̃

∗
)
:= R̃∗. (5.23)

Set

U′ =
{
w ∈ C′

0 : ‖w‖p′ ≤ R̃∗ + 1 ∀p ∈ N

}
. (5.24)

We will show that P ′ : U′ → C′
p is a contraction operator. Indeed, consider w,w∗ ∈ U′. Then

for each (x, y) ∈ J0, we have

∥∥P ′(w)
(
x, y

) − P ′(w∗)
(
x, y

)∥∥

≤ 1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1

×
∥∥∥f

(
s, t,w(s,t) + v(s,t)

) − f
(
s, t,w∗

(s,t) + v(s,t)

)∥∥∥dt ds

≤ 1
Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1l′p(s, t)
∥∥∥w(s,t) −w∗

(s,t)

∥∥∥
B
dt ds

≤ K
l′∗p p

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖w −w∗‖p′ .

(5.25)
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Thus,

∥
∥P ′(w) − P ′(w∗)

∥
∥
p′ ≤

Kl′∗p p
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖w −w∗‖p′ . (5.26)

Hence by (5.6), P ′ : U′ → C′
p is a contraction. By our choice of U′, there is no w ∈ ∂n(U′)n

such thatw = λP ′(w), for λ ∈ (0, 1). As a consequence of Theorem 2.3, we deduce thatN ′ has
a unique fixed point which is a solution to problem (1.8)–(1.10).

Now, we present an existence result for the problem (1.12)–(1.14).

Definition 5.3. A function u ∈ Ω such that the mixed derivative D2
xy(u(x, y) − g(x, y, u(x,y)))

exists and is integrable on J is said to be a global solutionis of (1.12)–(1.14) if u satisfies
equations (1.12) and (1.14) on J and the condition (1.13) on J̃ ′.

Theorem 5.4. Let f, g : J × B → R
n be continuous functions. Assume that (H ′1), (H ′2), and the

following condition hold.

(H ′3) For each p = 1, 2, . . ., there exists a constant c′p with 0 < Kc′p < 1/4 such that for any
(x, y) ∈ J0, one has

∥∥g
(
x, y, u

) − g
(
x, y, v

)∥∥ ≤ c′p‖u − v‖B, for any u, v ∈ B. (5.27)

If

4c′p +
Kl′∗p p

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, for each p ∈ N, (5.28)

then, there exists a unique solution for IVP (1.12)–(1.14) on R
2.

Proof. Consider the operator N ′
1 : Ω → Ω defined by

N ′
1(u)

(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
x, y

)
,

(
x, y

) ∈ J̃ ′,

μ
(
x, y

)
+ g

(
x, y, u(x,y)

) − g
(
x, 0, u(x,0)

)

−g(0, y, u(0,y)
)
+ g

(
0, 0, u(0,0)

)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1

×f(s, t, u(s,t)
)
dt ds,

(
x, y

) ∈ J.

(5.29)
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In analogy to Theorem 5.2, we consider the operator P ′
1 : C

′
0 → C′

0 defined by

P ′
1(w)

(
x, y

)
= g

(
x, y,w(x,y) + v(x,y)

) − g
(
x, 0, w(x,0) + v(x,0)

)

− g
(
0, y,w(0,y) + v(0,y)

)
+ g

(
0, 0, w(0,0) + v(0,0)

)

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1

× f
(
s, t,w(s,t) + v(s,t)

)
dt ds,

(
x, y

) ∈ J.

(5.30)

In order to use the nonlinear alternative, we will obtain a priori estimates for the solutions of
the integral equation

w
(
x, y

)
= λ

(
g
(
x, y,w(x,y) + v(x,y)

) − g
(
x, 0, w(x,0) + v(x,0)

)

−g(0, y,w(0,y) + v(0,y)
)
+ g

(
0, 0, w(0,0) + v(0,0)

))

+
λ

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1f
(
s, t,w(s,t) + v(s,t)

)
dt ds,

(5.31)

for some λ ∈ (0, 1). Then from (H ′
1)–(H

′
3), (5.15), and (5.18)we get for each (x, y) ∈ J0,

∥∥w
(
x, y

)∥∥ ≤
f∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
+ 4c′pz

(
x, y

)

+
∥∥g

(
x, y, 0

)∥∥ +
∥∥g(x, 0, 0)

∥∥ +
∥∥g

(
0, y, 0

)∥∥ +
∥∥g(0, 0, 0)

∥∥

+
1

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1l′p(s, t)z(s, t)dt ds.

(5.32)

Replacing (5.32) in the definition of z(x, y), we get

z
(
x, y

) ≤ 1
1 − 4Kc′p

[

M
∥∥φ

∥∥
B + 4K

∥∥φ(0, 0)
∥∥ + 4K

∥∥g
(
0, 0, φ(0, 0)

)∥∥

+4Kg∗
p +

Kf∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

]

+
l̃′∗p

Γ(r1)Γ(r2)

∫x

0

∫y

0
(x − s)r1−1

(
y − t

)r2−1z(s, t)dt ds,

(5.33)

where l̃′∗p (x, y) = l′∗p /(1 − 4Kc′p) and g∗
p = sup{‖g(x, y, 0)‖ : (x, y) ∈ J0}.
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By (5.32) and Lemma 2.4, there exists a constant δ = δ(r1, r2) such that

z
(
x, y

) ≤ 1
1 − 4Kc′p

[

M
∥
∥φ

∥
∥
B + 4K

∥
∥φ(0, 0)

∥
∥ + 4K

∥
∥g

(
0, 0, φ(0, 0)

)∥∥

+4Kg∗
p +

Kf∗
pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

]

×
⎡

⎣1 +
δl̃′∗p

Γ(r1 + 1)Γ(r2 + 1)

⎤

⎦ := D′.

(5.34)

Then, from (5.32) and (5.34), we get

‖w‖p′ ≤

(
D′l′∗p + f∗

p

)
pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
+ 4c′pD

′ + 4g∗
p := D′∗. (5.35)

Since for every (x, y) ∈ J0, ‖w(x,y)‖B ≤ z(x, y), we have

‖w‖p ≤ max
(∥∥φ

∥∥
B,D

′∗) := R′∗. (5.36)

Set

U′
1 =

{
w ∈ C′

0 : ‖w‖p′ ≤ R′∗ + 1
}
. (5.37)

Clearly, U′
1 is a closed subset of C′

0. As in Theorem 5.2, we can show that P ′
1 : U′

1 → C′
0 is a

contraction operator. Indeed

‖N1(v) −N1(w)‖p′ ≤
(

4c′p +
Kl′∗p p

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

)

‖v −w‖p′ , (5.38)

for each v,w ∈ U′
1, and(x, y) ∈ J0. From the choice of U′

1, there is no w ∈ ∂n(U′
1)

n such that
w = λP ′

1(w), for some λ ∈ (0, 1). As a consequence of Theorem 2.3, we deduce that N ′
1 has a

unique fixed point which is a solution to problem (1.12)–(1.14).
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6. Examples

Example 6.1. As an application of our results we consider the following partial hyperbolic
functional differential equations with finite delay of the form

cDr
0u
(
x, y

)
=

cp

ex+y+2
(
1 +

∣
∣u
(
x − 1, y − 2

)∣∣) ; if
(
x, y

) ∈ [0,∞) × [0,∞),

u(x, 0) = x, u
(
0, y

)
= y2; x, y ∈ [0,∞),

u
(
x, y

)
= x + y2;

(
x, y

) ∈ [−1,∞) × [−2,∞) \ (0,∞) × (0,∞),

(6.1)

where

cp =
Γ(r1 + 1)Γ(r2 + 1)

pr1+r2
; p ∈ N

∗. (6.2)

Set

f
(
x, y, u(x,y)

)
=

cp

ex+y+2
(
1 +

∣∣u
(
x − 1, y − 2

)∣∣) ;
(
x, y

) ∈ [0,∞) × [0,∞). (6.3)

For each p ∈ N
∗ and (x, y) ∈ [0, p] × [0, p], we have

∣∣f
(
x, y, u(x,y)

) − f
(
x, y, u(x,y)

)∣∣ ≤ cp

e2
‖u − u‖C. (6.4)

Hence conditions (H1) and (H2) are satisfied with l∗p = cp/e
2. We will show that condition

(3.9) holds for all p ∈ N
∗. Indeed

l∗pp
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
=

1
e2

< 1, (6.5)

which is satisfied for each (r1, r2) ∈ (0, 1] × (0, 1]. Consequently Theorem 3.4 implies that
problem (6.1) has a unique global solution defined on [−1,∞) × [−2,∞).

Example 6.2. We consider now the following partial hyperbolic functional differential
equations with infinite delay of the form

(
cDr

0u
)(
x, y

)
=

4ex+y

cpπ2(ex+y + e−x−y)

×
∫−x

−∞

∫−y

−∞

eγ(θ+η)u
(
x + θ, y + η

)
dηdθ

(
1 + (x + θ)2

)(
1 +

(
y + η

)2) ; if
(
x, y

) ∈ [0,∞) × [0,∞),

u
(
x, y

)
= x + y2;

(
x, y

) ∈ R
2 \ (0,∞) × (0,∞),

u(x, 0) = x, u
(
0, y

)
= y2; x, y ∈ [0,∞),

(6.6)

where cp = 3pr1+r2/Γ(r1 + 1)Γ(r2 + 1), p ∈ N
∗ and γ a positive real constant.
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Let

Bγ =
{
u ∈ C((−∞, 0] × (−∞, 0],R) : lim

‖(θ,η)‖→∞
eγ(θ+η)

∣
∣u
(
θ, η

)∣∣ exists in R

}
. (6.7)

The norm of Bγ is given by

‖u‖γ = sup
−∞<θ, η≤0

eγ(θ+η)
∣
∣u
(
θ, η

)∣∣. (6.8)

Let u : R2 → R such that u(x,y) ∈ Bγ , (x, y) ∈ E := [0, p] × {0} ∪ {0} × [0, p], then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(x,y)
(
θ, η

)
= lim

‖(θ,η)‖→∞
eγ(θ−x+η−y)u

(
θ, η

)

= e−γ(x+y) lim
‖(θ,η)‖→∞

eγ(θ+η)u
(
θ, η

)
< ∞.

(6.9)

Hence, u(x,y) ∈ Bγ . Finally we prove that

∥∥u(x,y)
∥∥
γ
= K sup

(s,t)∈[0,x]×[0,y]
|u(s, t)| +M sup

(s,t)∈E(x,y)

∥∥u(s,t)
∥∥
γ , (6.10)

where K = M = 1 and H = 1.
If x + θ ≤ 0, y + η ≤ 0 we get

∥∥u(x,y)
∥∥
γ
= sup{|u(s, t)| : (s, t) ∈ (−∞, 0] × (−∞, 0]}, (6.11)

and if x + θ ≥ 0, y + η ≥ 0 then we have

∥∥u(x,y)
∥∥
γ
= sup

{|u(s, t)| : (s, t) ∈ [0, x] × [0, y]}. (6.12)

Thus, for all x + θ, y + η ∈ [0, p], we get

∥∥u(x,y)
∥∥
γ
= sup

(s,t)∈(−∞,0]×(−∞,0]
|u(s, t)| + sup

(s,t)∈[0,x]×[0,y]
|u(s, t)|. (6.13)

Then,

∥∥u(x,y)
∥∥
γ
= sup

(s,t)∈E

∥∥u(s,t)
∥∥
γ + sup

(s,t)∈[0,x]×[0,y]
|u(s, t)|. (6.14)

(Bγ , ‖ · ‖γ) is a Banach space. We conclude that Bγ is a phase space.
Let

f
(
x, y, u

)
=

4ex+y

cpπ2(ex+y + e−x−y)

∫−x

−∞

∫−y

−∞

eγ(θ+η)u
(
x + θ, y + η

)

(
1 + (x + θ)2

)(
1 +

(
y + η

)2)dη dθ; (6.15)
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for each (x, y, u) ∈ J × Bγ . Then for each p ∈ N
∗, (x, y) ∈ [0, p] × [0, p] and u, v ∈ Bγ , we have

∣∣f
(
x, y, u

) − f
(
x, y, v

)∣∣

=

∣
∣
∣
∣∣
∣
∣

4ex+y

cpπ2(ex+y + e−x−y)

∫−x

−∞

∫−y

−∞

eγ(θ+η)u
(
x + θ, y + η

)

(
1 + (x + θ)2

)(
1 +

(
y + η

)2)dη dθ

− 4ex+y

cpπ2(ex+y + e−x−y)

∫−x

−∞

∫−y

−∞

eγ(θ+η)v
(
x + θ, y + η

)

(
1 + (x + θ)2

)(
1 +

(
y + η

)2)dη dθ

∣
∣
∣
∣
∣∣
∣

≤ 4ex+y

cpπ2(ex+y + e−x−y)

∫−x

−∞

∫−y

−∞

eγ(θ+η)
∣
∣u
(
x + θ, y + η

) − v
(
x + θ, y + η

)∣∣
(
1 + (x + θ)2

)(
1 +

(
y + η

)2) dη dθ

≤ 4ex+y

cpπ2(ex+y + e−x−y)

∫∫0

−∞

eγ(θ+η)
∣∣u
(
θ, η

) − v
(
θ, η

)∣∣

(1 + θ2)
(
1 + η2

) dη dθ

≤ 4ex+y

cpπ2(ex+y + e−x−y)

∫∫∞

0

1
(1 + θ2)

(
1 + η2

)dη dθ‖u − v‖γ

≤ ex+y

cp(ex+y + e−x−y)
‖u − v‖γ .

(6.16)

Hence, condition (H ′2) is satisfied with l′p(x, y) = ex+y/cp(ex+y + e−x−y). Since

l′∗p = sup

{
ex+y

cp(ex+y + e−x−y)
:
(
x, y

) ∈ [0,∞) × [0,∞)

}

≤ 1
cp

(6.17)

and K = 1, we have

Kl′∗p p
r1+r2

Γ(r1 + 1)Γ(r2 + 1)
=

1
3
< 1. (6.18)

Hence, condition (5.6) holds for each (r1, r2) ∈ (0, 1] × (0, 1] and all p ∈ N
∗. Consequently

Theorem 5.2 implies that problem (6.6) has a unique global solution defined on R
2.
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