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We establish a generalized Ulam-Hyers stability theorem in a Šerstnev probabilistic normed
space (briefly, Šerstnev PN-space) endowed with ΠM. In particular, we introduce the notion of
approximate Jensen mapping in PN-spaces and prove that if an approximate Jensen mapping
in a Šerstnev PN-space is continuous at a point then we can approximate it by an everywhere
continuous Jensen mapping. As a version of a theorem of Schwaiger, we also show that if every
approximate Jensen type mapping from the natural numbers into a Šerstnev PN-space can be
approximated by an additive mapping, then the norm of Šerstnev PN-space is complete.

1. Introduction and Preliminaries

Menger proposed transferring the probabilistic notions of quantum mechanic from physics
to the underlying geometry. The theory of probabilistic normed spaces (briefly, PN-spaces)
is important as a generalization of deterministic result of linear normed spaces and also
in the study of random operator equations. The notion of a probabilistic normed space
was introduced by Šerstnev [1]. Alsina, Schweizer, and Skalar gave a general definition of
probabilistic normed space based on the definition of Meneger for probabilistic metric spaces
in [2, 3].

Ulam propounded the first stability problem in 1940 [4]. Hyers gave a partial
affirmative answer to the question of Ulam in the next year [5].

Theorem 1.1 (see [6]). Let X,Y be Banach spaces and let f : X → Y be a mapping satisfying

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε (1.1)
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for all x, y ∈ X. Then the limit

a(x) = lim
n→∞

f(2nx)
2n

(1.2)

exists for all x ∈ X and a : X → Y is the unique additive mapping satisfying

∥
∥f(x) − a(x)

∥
∥ ≤ ε (1.3)

for all x ∈ X.

Hyers’ theorem was generalized by Aoki [7] for additive mappings and by Th. M.
Rassias [8] for linear mappings by considering an unbounded Cauchy difference. For some
historical remarks see [9].

Theorem 1.2 (see [10]). Let X and Y be two Banach spaces. Let θ ∈ [0,∞) and let p ∈ [0, 1). If a
function f : X → Y satisfies the inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ θ

(‖x‖p + ∥
∥y

∥
∥
p) (1.4)

for all x, y ∈ X, then there exists a unique linear mapping T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ 2θ

2 − 2p
‖x‖p (1.5)

for all x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then the function T is linear.

Theorem 1.2 was later extended for all p /= 1. The stability phenomenon that was
presented by Rassias is called the generalized Ulam-Hyers stability. In 1982, Rassias [11]
gave a further generalization of the result of Hyers and proved the following theorem using
weaker conditions controlled by a product of powers of norms.

Theorem 1.3. Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′

subject to the inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε‖x‖p∥∥y∥∥p (1.6)

for all x, y ∈ E , where ε and p are constants with ε > 0 and 0 ≤ p < 1/2. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.7)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)

∥
∥ ≤ ε

2 − 22p
‖x‖2p (1.8)

for all x ∈ E.
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The above mentioned stability involving a product of powers of norms is called Ulam-
Gavruta-Rassias stability by various authors (see [12–21]). In the last two decades, several
forms of mixed type functional equations and their Ulam-Hyers stability are dealt with
in various spaces like fuzzy normed spaces, random normed spaces, quasi-Banach spaces,
quasi-normed linear spaces, and Banach algebras by various authors like in [6, 9, 14, 22–38].

Let f : X → Y be a mapping between linear spaces. The Jensen functional equation is

2f
(
x + y

2

)

= f(x) + f
(

y
)

. (1.9)

It is easy to see that f with f(0) = 0 satisfies the Jensen equation if and only if it is additive;
compare for [39, Theorem 6]. Stability of Jensen equation has been studied at first by Kominek
[36] and then by several other mathematicians example, (see [10, 33, 40–42] and references
therein).

PN spaces were first defined by Šerstnev in1963 (see [1]). Their definition was
generalized in [2]. We recall and apply the definition of probabilistic space briefly as given
in [43], together with the notation that will be needed (see [43]). A distance distribution
function (briefly, a d.d.f.) is a nondecreasing function F from R

+
into [0, 1] that satisfies

F(0) = 0 and F(+∞) = 1, and is left-continuous on (0,+∞); here as usual, R
+
:= [0,+∞]. The

space of d.d.f.’s will be denoted by Δ+, and the set of all F in Δ+ for which limt→+∞−F(t) = 1
byD+. The space Δ+ is partially ordered by the usual pointwise ordering of functions, that is,
F ≤ G if and only if F(x) ≤ G(x) for all x in R

+
. For any a ≥ 0, εa is the d.d.f. given by

εa(t) =

⎧

⎨

⎩

0, if t ≤ a,

1, if t > a.
(1.10)

The space Δ+ can be metrized in several ways [43], but we shall here adopt the Sibley metric
dS. If F,G are d.f.’s and h is in ]0, 1[, let (F,G;h) denote the condition

G(x) ≤ F(x + h) + h ∀x ∈
]

0,
1
h

[

. (1.11)

Then the Sibley metric dS is defined by

dS(F,G) := inf{h ∈]0, 1[: both (F,G;h) and (G,F;h) hold}. (1.12)

In particular, under the usual pointwise ordering of functions, ε0 is the maximal element of
Δ+. A triangle function is a binary operation onΔ+, namely, a function τ : Δ+ ×Δ+ → Δ+ that
is associative, commutative, nondecreasing in each place, and has ε0 as identity, that is, for all
F,G and H in Δ+:

(TF1) τ(τ(F,G),H) = τ(F, τ(G,H)),

(TF2) τ(F,G) = τ(G,F),
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(TF3) F ≤ G ⇒ τ(F,H) ≤ τ(G,H),

(TF4) τ(F, ε0) = τ(ε0, F) = F.

Moreover, a triangle function is continuous if it is continuous in the metric space (Δ+, dS).
Typical continuous triangle functions are ΠT (F,G)(x) = sups+t=xT(F(s), G(t)), and

ΠT∗(F,G)(x) = infs+t=xT ∗(F(s), G(t)). Here T is a continuous t-norm, that is, a continuous
binary operation on [0, 1] that is commutative, associative, nondecreasing in each variable,
and has 1 as identity; T ∗ is a continuous t-conorm, namely, a continuous binary operation on
[0, 1] which is related to the continuous t-norm T through T ∗(x, y) = 1 − T(1 − x, 1 − y). For
example, T(x, y) = min(x, y) = M(x, y) and T ∗(x, y) = max(x, y) or T(x, y) = π(x, y) = xy
and T ∗(x, y) = π∗(x, y) = x + y − xy.

Note that
∏

M(F,G)(x) = min{F(x), G(x)} for F,G ∈ Δ+ and x ∈ R
+.

Definition 1.4. A Probabilistic Normed space (briefly, PN space) is a quadruple (X, ν, τ, τ∗),
where X is a real vector space, τ and τ∗ are continuous triangle functions with τ ≤ τ∗ and ν is
a mapping (the probabilistic norm) from X into Δ+ such that for every choice of p and q in X
the following hold:

(N1) νp = ε0 if and only if p = θ (θ is the null vector in X),

(N2) ν−p = νp,

(N3) νp+q ≥ τ(νp, νq),

(N4) νp ≤ τ∗(νλp, ν(1−λ)p) for every λ ∈ [0, 1].

A PN space is called a Šerstnev space if it satisfies (N1), (N3) and the following
condition:

ναp(x) = νp

(
x

|α|
)

(1.13)

holds for every α/= 0 ∈ R and x > 0. When here is a continuous t-norm T such that τ = ΠT

and τ∗ = ΠT∗ , the PN space (X, ν, τ, τ∗) is called Meneger PN space (briefly, MPN space), and
is denoted by (X, ν, τ).

Let (X, ν, τ) be an MPN space and let {xn} be a sequence in X. Then {xn} is said to be
convergent if there exists x ∈ X such that

lim
n→∞

ν(xn − x)(t) = 1 (1.14)

for all t > 0. In this case x is called the limit of {xn}.
The sequence xn in MPN Space (X, ν, τ) is called Cauchy if for each ε > 0 and δ > 0

there exist some n0 such that ν(xn − xm)(δ) > 1 − ε for all m,n ≥ n0.
Clearly, every convergent sequence in an MPN space is Cauchy. If each Cauchy

sequence is convergent in an MPN space (X, ν, τ), then (X, ν, τ) is called Meneger
Probabilistic Banach space (briefly, MPB space).
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2. Stability of Jensen Mapping in Šerstnev MPN Spaces

In this section, we provide a generalized Ulam-Hyers stability theorem in a Šerstnev MPN
space.

Theorem 2.1. Let X be a real linear space and let f be a mapping from X to a Šerstnev MPB space
(Y, ν,ΠM) such that f(0) = 0. Suppose that ϕ is a mapping from X into a Šerstnev MPN space
(Z,ω,ΠM) such that

ν

(

2f
(
x + y

2

)

− f(x) − f
(

y
)
)

(t) ≥ ΠM

{

ω
(

ϕ(x)
)

, ω
(

ϕ
(

y
))}

(t), (2.1)

for all x, y ∈ X − {0} and positive real number t. If ϕ(3x) = αϕ(x) for some real number α with
0 < |α| < 3, then there is a unique additive mapping T : X → Y such that T(x) = limn→∞3−nf(3n)
and

ν
(

T(x) − f(x)
) ≥ ψx(t), (2.2)

where

ψx(t) := ΠM

{

ΠM

{

ω
(

ϕ(x)
)

, ω
(

ϕ(−x))},ΠM

{

ω
(

ϕ(3x)
)

, ω
(

ϕ(−x))}}(3t). (2.3)

Proof. Without loss of generality we may assume that 0 < α < 3. Replacing y by −x in (2.1)
we get

ν
(−f(x) − f(−x))(t) ≥ ΠM

{

ω
(

ϕ(x)
)

, ω
(

ϕ(−x))}(t) (2.4)

and replacing x by −x and y by 3x in (2.1), we obtain

ν
(

2f(x) − f(−x) − f(3x)
)

(t) ≥ ΠM

{

ω
(

ϕ(−x)), ω(

ϕ(3x)
)}

(t). (2.5)

Thus

ν
(

3f(x) − f(3x)
)

(t) ≥ ΠM

{

ΠM

{

ω
(

ϕ(x)
)

, ω
(

ϕ(−x))},ΠM

{

ω
(

ϕ(3x)
)

, ω
(

ϕ(−x))}}(t)
(2.6)

and so

ν
(

f(x) − 3−1f(3x)
)

(t) ≥ ψx(t). (2.7)

By our assumption, we have

ψ3x(t) = ψx

(
1
α
t

)

. (2.8)
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Replacing x by 3nx in (2.7) and applying (2.8), we get

ν
(

f(3nx)3−n − f
(

3n+1x
)

3−n−1
)(αn

3n
t

)

= ν
(

f(3n) − f
(

3n+1x
)

3−1
)

(αnt)

≥ ψ3nx(αnt) = ψx(t).

(2.9)

Thus for each n > m, we have

ν
(

f(3mx)3−m − f(3nx)3−n
)
(
αm

3m
t

)

= ν

(
n−1∑

k=m

(

f
(

3kx
)

3−k − f
(

3k+1x
)

3−k−1
)
)(

αm

3m
t

)

≥ ΠM

{

ν
(

f(3mx)3−m − f
(

3m+1x
)

3−m−1
)(αm

3m
t

)

,

ν

(
n−1∑

k=m+1

f
(

3kx
)

3−k − f
(

3k+1x
)

3−k−1
)(

αm+1

3m+1
t

)}

≥ ψx(t).

(2.10)

Let ε > 0 and δ > 0 be given. Since

lim
t→∞

ψx(t) = 1, (2.11)

there is some t0 > 0 such that ψx(t0) > 1 − ε. Since

lim
m→∞

(
αm

3m
t0

)

= 0, (2.12)

there is some n0 ∈ N such that (αm/3m)t0 < δ for all m ≥ n0. Thus for all n > m ≥ n0 we have

ν
(

f(3mx)3−m − f(3nx)3−n
)

(δ) ≥ ν
(

f(3mx)3−m − f(3nx)3−n
)
(
αm

3m
t0

)

≥ ψx(t0) > 1 − ε.

(2.13)

This shows that {3−nf(3nx)} is a Cauchy sequence in (Y, ν,ΠM). Since (Y, ν,ΠM) is complete,
{f(3nx)3−n} converges to some T(x) ∈ Y . Thus we can well define a mapping T : X → Y by

T(x) = lim
n→∞

3−nf(3nx). (2.14)

Moreover, if we put m = 0 in (2.10), then we obtain

ν
(

f(x) − f(3nx)3−n
)

(t) ≥ ψx(t). (2.15)
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Next we will show that T is additive. Let x, y ∈ X. Then we have

ν

(

2T
(
x + y

2

)

− T(x) − T
(

y
)
)

(t)

≥ ΠM

{

ΠM

{

ν

(

2T
(
x + y

2

)

− 2f
(
x + y

2
3n
)

3−n
)

, ν
(

f(3nx)3−n − T(x)
)
}

(t) ,

ΠM

{

ν
(

f
(

3ny
)

3−n − T
(

y
))

, ν

(

2f
(
x + y

2
3n
)

3−n − f(3nx)3−n − f
(

3ny
)

3−n
)}

(t)
}

.

(2.16)

But we have

lim
n→∞

ν

(

2T
(
x + y

2

)

− 2f
(
x + y

2
3n
)

3−n
)

(t) = 1,

lim
n→∞

ν
(

f(3nx)3−n − T(x)
)

(t) = 1,

lim
n→∞

ν
(

f
(

3ny
)

3−n − T
(

y
))

(t) = 1,

(2.17)

and by (2.1) we have

ν

(

2f
(
x + y

2
3n
)

3−n − f(3nx)3−n − f
(

3ny
)

3−n
)

(t)

= ν

(

2f
(
x + y

2
3n
)

− f(3nx) − f
(

3ny
)
)

(3nt)

≥ ΠM

{

ω
(

ϕ(3nx)
)

, ω
(

ϕ
(

3ny
))}

(3nt)

= ΠM

{

ω
(

ϕ(x)
)

, ω
(

ϕ
(

y
))}

(
3n

αn
t

)

,

(2.18)

which tends to 1 as n → ∞. Therefore

ν

(

2T
(
x + y

2

)

− T(x) − T
(

y
)
)

(t) = 1, (2.19)

for each x, y ∈ X and t > 0. Thus T satisfies the Jensen equation and so it is additive.
Next, we approximate the difference between f and T in the Šerstnev MPN space

(Y, ν,ΠM). For every x ∈ X and t > 0, by (2.15), for large enough n, we have

ν
(

T(x) − f(x)
)

(t) ≥ ΠM

{

ν
(

T(x) − f(3nx)3−n
)

, ν
(

f(3nx)3−n − f(x)
)}

(t) ≥ ψx(t). (2.20)

The uniqueness assertion can be proved by standard fashion. Let T ′ : X → Y be another
additive mapping, which satisfies the required inequality. Then for each x ∈ X and t > 0,

ν
(

T(x) − T ′(x)
)

(t) ≥ ΠM

{

ν
(

T(x) − f(x)
)

, ν
(

T ′(x) − f(x)
)}

(t) ≥ ψx(t). (2.21)
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Therefore by the additivity of T and T ′,

ν
(

T(x) − T ′(x)
)

(t) = ν
(

T(3nx) − T ′(3nx)
)

(3nt) ≥ ψx

(
3n

αn
t

)

, (2.22)

for all x ∈ X, t > 0, and n ∈ N. Since 0 < α < 3,

lim
n→∞

(
3n

αn

)

= ∞. (2.23)

Hence the right-hand side of the above inequality tends to 1 as n → ∞. It follows that T(x) =
T ′(x) for all x ∈ X.

Remark 2.2. One can prove a similar result for the case that |α| > 3. In this case, the additive
mapping T is defined by T(x) := limn→∞3−nf(3−nx).

Now we examine some conditions under which the additive mapping found in
Theorem 2.1 is to be continuous. We use a known strategy of Hyers [5] (see also [44]).

Theorem 2.3. Let X be a linear space. Let (Y, ν,ΠM) be a Šerstnev MPN space and let f : X → Y
be a mapping with f(0) = 0. Suppose that δ > 0 is a positive real number and z0 is a fixed vector in a
Šerstnev MPN space (Z,ω,ΠM) such that

ν

(

2f
(
x + y

2

)

− f(x) − f
(

y
)
)

(t) ≥ ω(δz0)(t), (2.24)

for all x, y ∈ X−{0} and positive real number t. Then there is a unique additive mapping T : X → Y
such that

ν
(

T(x) − f(x)
)

(t) ≥ ω(δz0)(3t). (2.25)

Moreover, if (X, ν′,ΠM) is a ŠerstnevMPN space and f is continuous at a point, then T is continuous
on X.

Proof. Using Theorem 2.1 with ϕ(x) = δz0, we deduce the existence of the required additive
mapping T . Let us put β = 3/δ. Suppose that f is continuous at a point x0. If T were not
continuous at a point, then there would be a sequence xn in X such that

lim
n→∞

ν′(xn)(t) = 1, lim
n→∞

ν(T(xn))(t)/= 1. (2.26)

By passing to a subsequence if necessary, we may assume that

lim
n→∞

ν′(xn)(t) = 1, (2.27)
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and there are t0 > 0 and ε > 0 such that

ν(T(xn))(t0) < 1 − ε ∀n. (2.28)

Since limt→∞ω(z0)(βt) = 1, there is t1 such that ω(z0)(βt1) ≥ 1 − ε. There is a positive integer
k such that t1/k < t0. We have

ν(T(kxn + x0) − T(x0))(t1) = ν(T(xn))
(
t1
k

)

≤ ν(T(xn))(t0) < 1 − ε. (2.29)

On the other hand

ν(T(kxn + x0) − T(x0))(t1) ≥ ΠM

{

ΠM

{

ν
(

T(kxn + x0) − f(kxn + x0)
)

,

ν
(

f(kxn + x0) − f(x0)
)}

, ν
(

f(x0) − T(x0)
)}

(t1).
(2.30)

By (2.25) we have

ν
(

T(kxn + x0) − f(kxn + x0)
)

(t1) ≥ ω(z0)
(

βt1
)

,

ν
(

f(x0) − T(x0)
)

(t1) ≥ ω(z0)
(

βt1
)

,
(2.31)

and we have

lim
n→∞

ν
(

f(kxn + x0) − f(x0)
)

(t1) = 1. (2.32)

Therefore for sufficiently large n,

ν(T(kxn + x0) − T(x0))(t1) ≥ ω(z0)
(

βt1
) ≥ 1 − ε, (2.33)

which contradicts (2.29).

3. Completeness of Šerstnev MPN Spaces

This section contains two results concerning the completeness of a Šerstnev MPN space.
Those are versions of a theorem of Schwaiger [45] stating that a normed space E is complete
if, for each f : N → E whose Cauchy difference f(x + y) − f(x) − f(y) is bounded for all
x, y ∈ N, there exists an additive mapping T : N → E such that f(x)− T(x) is bounded for all
x ∈ N.

Definition 3.1. Let (X, ν, τ) be an MPN space and let α ∈ (0, 1). A mapping fα : N → X is said
to be α-approximately Jensen-type if

ν
(

2fα
(

x + y
) − fα(2x) − fα

(

2y
))(

β
) ≥ α, (3.1)

for some β > 0 and all x, y ∈ N.
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In order to prove our next results, we need to put the following conditions on an MPN
space.

Definition 3.2. An MPN space (X, ν, τ) is called definite if

ν(x)(t) > ∀t > 0 implies that x = 0 (3.2)

holds. It is called pseudodefinite if for each α ∈ (0, 1) the following condition holds:

ν(x)(t) > α ∀t > 0 implies that x = 0. (3.3)

Clearly a definite MPN space is pseudodefinite.

Theorem 3.3. Let (X, ν,ΠM) be a pseudodefinite Šerstnev MPN space. Suppose that for each α ∈
(0, 1) and each α-approximately Jensen-type fα : N → X there exist numbers δα > 0, nα ∈ N, and an
additive mapping Tα : N → X such that

ν
(

Tα(n) − fα(n)
)

(δα) > α, (3.4)

for all n ≥ nα. Then (X, ν,ΠM) is a Šerstnev MPB-space.

Proof. Let {xn} be a Cauchy sequence in (X, ν,ΠM). Temporarily fix α ∈ (0, 1). There is an
increasing sequence nk of positive integers such that nk ≥ k and

ν(xn − xm)
(

1
2k

)

≥ α for n,m ≥ nk. (3.5)

Put yk = xnk and define fα : N → X by fα(k) = kyk(k ∈ N). Then by (3.5)we have

ν
(

2fα
(

j + k
) − fα

(

2j
) − fα(2k)

)

(1)

= ν
(

2
(

j + k
)

yj+k − 2jy2j − 2ky2k
)

(1)

≥ ΠM

{

ν
(

2j
(

yj+k − y2j
))

, ν
(

2k
(

yj+k − y2k
))}

(1) ≥ α,

(3.6)

for each j, k ∈ N. Thus fα is α-approximately Jensen-type. By our assumption, there exist
numbers δα > 0, nα ∈ N, and an additive mapping Tα : N → X such that

ν
(

Tα(n) − fα(n)
)

(δα) > α, (3.7)
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for all n ≥ nα. Since Tα is additive, Tα(n) = nTα(1). Hence

ν
(

Tα(1) − yn

)
(
δα
n

)

> α, for n ∈ N. (3.8)

Let ε > 0. Then there is some n0 ≥ nα such that

ν(xn − xm)(ε) ≥ α, (3.9)

for all m,n ≥ n0. Take some k0 ∈ N such that k0 ≥ n0 and δα/k0 < ε/2. It follows that
nk0 ≥ k0 ≥ n0 ≥ nα. Let α/= β, then, for large enough n,

ν(Tα(1) − xn)(ε) ≥ ΠM

{

ν
(

xn − xnk0

)

, ν
(

yk0 − Tα(1)
)}

(ε) ≥ min
{

α, β
}

, (3.10)

for each ε > 0. By (3.3), Tα(1) = Tβ(1). Put x = Tα(1). Then for each α ∈ (0, 1) and ε > 0,

ν(x − xn)(ε) ≥ α, (3.11)

for sufficiently large n. This means that

lim
n→∞

ν(xn − x)(t) = 1. (3.12)

Definition 3.4. Let (X, ν,ΠM) be a Šerstnev MPN space and let f : N → X be a mapping.
Assume that, for each α ∈ (0, 1), there are numbers nα ∈ N and δ > 0 such that

ν
(

2f(n +m) − f(2n) − f(2m)
)

(δ) ≥ α, (3.13)

for each n,m ≥ nα. Then f is said to be an approximately Jensen-type mapping.

Theorem 3.5. Let (X, ν,ΠM) be a Šerstnev MPN space such that for every approximately Jensen-
type mapping f : N → X there is an additive mapping T : N → X such that

lim
n→∞

ν
(

T(n) − f(n)
)

(t) = 1 (3.14)

for each t > 0. Then (X, ν,ΠM) is a Šerstnev MPB-space.



12 Journal of Inequalities and Applications

Proof. Let {xn} be a Cauchy sequence in (X, ν,ΠM). Take a sequence {αn} in interval (0, 1)
such that {αn} increasingly tends to 1. For each k ∈ N one can find some nk ∈ N such that

ν(xm − xn)(1/2k) ≥ αk (3.15)

for each n,m ≥ nk. Let yk = xnk for each k ≥ 1. Define f : N → X by f(k) := kyk, for k ∈ N. If
α ∈ (0, 1), take some m0 ∈ N such that αm0 > α and let nα = m0. Then for each n ≥ m ≥ nα, we
have

ν
(

2f(n +m) − f(2n) − f(2m)
)

(1)

= ν
(

2(n +m)yn+m − 2ny2n − 2my2m
)

(1)

≥ ΠM

{

ν
(

2n
(

yn+m − y2n
))

, ν
(

2m
(

yn+m − y2m
))}

(1)

≥ min
{

ν
(

yn+m − y2n
)
(

1
2n

)

, ν
(

yn+m − y2m
)
(

1
2m

)}

≥ min{αn, αm} ≥ α.

(3.16)

Therefore f is an approximately Jensen-type mapping. By our assumption, there is an
additive mapping T : N → X such that

lim
n→∞

ν
(

T(n) − f(n)
)

(t) = 1. (3.17)

This means that

lim
n→∞

ν
(

T(1) − yn

)
(

t

n

)

= 1. (3.18)

Hence the subsequence {yn} of the Cauchy sequence {xn} converges to x = T(1). Hence {xn}
also converges to x.

4. Conclusions

In this work, we have analyzed a generalized Ulam-Hyers theorem in Šerstnev PN spaces
endowed with ΠM. We have proved that if an approximate Jensen mapping in a Šerstnev
PN space is continuous at a point then we can approximate it by an anywhere continuous
Jensen mapping. Also, as a version of Schwaiger, we have showed that if every approximate
Jensen-type mapping from natural numbers into a Šerstnev PN-space can be approximate by
an additive mapping then the norm of Šerstnev PN-space is complete.
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[40] D. Miheţ, “The fixed point method for fuzzy stability of the Jensen functional equation,” Fuzzy Sets
and Systems, vol. 160, no. 11, pp. 1663–1667, 2009.

[41] A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, “Fuzzy stability of the Jensen functional
equation,” Fuzzy Sets and Systems, vol. 159, no. 6, pp. 730–738, 2008.

[42] J. Tabor and J. Tabor, “Stability of the Cauchy functional equation in metric groupoids,” Aequationes
Mathematicae, vol. 76, no. 1-2, pp. 92–104, 2008.

[43] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Dover, Mineola, NY, USA, 2005.
[44] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae

Mathematicae, vol. 62, no. 1, pp. 23–130, 2000.
[45] J. Schwaiger, “Remark 12, in: Report the 25th Internat. Symp. on Functional Equations,” Aequationes

Mathematicae, vol. 35, pp. 120–121, 1988.


	Introduction and Preliminaries
	Stability of Jensen Mapping in Šerstnev MPN Spaces
	Completeness of Šerstnev MPN Spaces
	Conclusions
	Acknowledgments
	References

