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Let R = (−∞,∞), and let Q ∈ C2 : R → [0,∞) be an even function. In this paper, we consider
the exponential-type weights wρ(x) = |x|ρ exp(−Q(x)), ρ > −1/2, x ∈ R, and the orthonormal
polynomials pn(w2

ρ;x) of degree n with respect to wρ(x). So, we obtain a certain differential
equation of higher order with respect to pn(w2

ρ;x) and we estimate the higher-order derivatives
of pn(w2

ρ;x) and the coefficients of the higher-order Hermite-Fejér interpolation polynomial based
at the zeros of pn(w2

ρ;x).

1. Introduction

Let R = (−∞,∞) and R
+ = [0,∞). Let Q ∈ C2 : R → R

+ be an even function and let
w(x) = exp(−Q(x)) be such that

∫∞
0 x

nw2(x)dx < ∞ for all n = 0, 1, 2, . . . . For ρ > −1/2, we set

wρ(x) := |x|ρw(x), x ∈ R. (1.1)

Then we can construct the orthonormal polynomials pn,ρ(x) = pn(w2
ρ;x) of degree n with

respect to w2
ρ(x). That is,

∫∞

−∞
pn,ρ(x)pm,ρ(x)w2

ρ(x)dx = δmn

(
Kronecker′s delta

)
,

pn,ρ(x) = γnx
n + · · · , γn = γn,ρ > 0.

(1.2)
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We denote the zeros of pn,ρ(x) by

−∞ < xn,n,ρ < xn−1,n,ρ < · · · < x2,n,ρ < x1,n,ρ < ∞. (1.3)

A function f : R+ → R
+ is said to be quasi-increasing if there exists C > 0 such that

f(x) ≤ Cf(y) for 0 < x < y. For any two sequences {bn}∞n=1 and {cn}∞n=1 of nonzero real
numbers (or functions), we write bn � cn if there exists a constant C > 0 independent of n (or
x) such that bn ≤ Ccn for n being large enough. We write bn ∼ cn if bn � cn and cn � bn. We
denote the class of polynomials of degree at most n by Pn.

Throughout C,C1, C2, . . . denote positive constants independent of n, x, t, and
polynomials of degree at most n. The same symbol does not necessarily denote the same
constant in different occurrences.

We shall be interested in the following subclass of weights from [1].

Definition 1.1. Let Q : R → R
+ be even and satisfy the following properties.

(a) Q′(x) is continuous in R, with Q(0) = 0.

(b) Q′′(x) exists and is positive in R \ {0}.
(c) One has

lim
x→∞

Q(x) = ∞. (1.4)

(d) The function

T(x) :=
xQ′(x)
Q(x)

, x /= 0 (1.5)

is quasi-increasing in (0,∞)with

T(x) ≥ Λ > 1, x ∈ R
+ \ {0}. (1.6)

(e) There exists C1 > 0 such that

Q′′(x)
|Q′(x)| ≤ C1

|Q′(x)|
Q(x)

, a.e. x ∈ R \ {0}. (1.7)

Then we write w ∈ F(C2). If there also exist a compact subinterval J(	 0) of R and
C2 > 0 such that

Q′′(x)
|Q′(x)| ≥ C2

|Q′(x)|
Q(x)

, a.e. x ∈ R \ J, (1.8)

then we write w ∈ F(C2+).
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In the following we introduce useful notations.

(a) Mhaskar-Rahmanov-Saff (MRS) numbers ax is defined as the positive roots of the
following equations:

x =
2
π

∫1

0

axuQ
′(axu)

(1 − u2)1/2
du, x > 0. (1.9)

(b) Let

ηx = (xT(ax))
−2/3, x > 0. (1.10)

(c) The function ϕu(x) is defined as the following:

ϕu(x) =

⎧
⎪⎪⎨

⎪⎪⎩

a2
2u − x2

u
[(
au + x + auηu

)(
au − x + auηu

)]1/2 , |x| ≤ au,

ϕu(au), au < |x|.
(1.11)

In [2, 3] we estimated the orthonormal polynomials pn,ρ(x) = pn(w2
ρ;x) associated

with the weight w2
ρ = |x|2ρ exp(−2Q(x)), ρ > −1/2 and obtained some results with respect to

the derivatives of orthonormal polynomials pn,ρ(x). In this paper, we will obtain the higher
derivatives of pn,ρ(x). To estimate of the higher derivatives of the orthonormal polynomials
sequence, we need further assumptions for Q(x) as follows.

Definition 1.2. Let w(x) = exp(−Q(x)) ∈ F(C2+) and let ν be a positive integer. Assume that
Q(x) is ν-times continuously differentiable on R and satisfies the followings.

(a) Q(ν+1)(x) exists and Q(i)(x), 0 ≤ i ≤ ν + 1 are positive for x > 0.

(b) There exist positive constants Ci > 0 such that for x ∈ R \ {0}
∣∣∣Q(i+1)(x)

∣∣∣ ≤ Ci

∣∣∣Q(i)(x)
∣∣∣
|Q′(x)|
Q(x)

, i = 1, . . . , ν. (1.12)

(c) There exist constants 0 ≤ δ < 1 and c1 > 0 such that on (0, c1]

Q(ν+1)(x) ≤ C

(
1
x

)δ

. (1.13)

Then we write w(x) ∈ Fν(C2+). Furthermore, w(x) ∈ Fν(C2+) and Q(x) satisfies one of the
following.

(a) Q′(x)/Q(x) is quasi-increasing on a certain positive interval [c2,∞).

(b) Q(ν+1)(x) is nondecreasing on a certain positive interval [c2,∞).

(c) There exists a constant 0 ≤ δ < 1 such that Q(ν+1)(x) ≤ C(1/x)δ on [c2,∞).

Then we write w(x) ∈ F̃ν(C2+).
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Now, consider some typical examples of F(C2+). Define for α > 1 and l ≥ 1,

Ql,α(x) := expl

(|x|α) − expl(0). (1.14)

More precisely, define for α +m > 1, m ≥ 0, l ≥ 1 and α ≥ 0,

Ql,α,m(x) := |x|m(expl

(|x|α) − α∗expl(0)
)

(1.15)

where α∗ = 0 if α = 0, otherwise α∗ = 1, and define

Qα(x) := (1 + |x|)|x|α − 1, α > 1. (1.16)

In the following, we consider the exponential weights with the exponents Ql,α,m(x).
Then we have the following examples (see [4]).

Example 1.3. Let ν be a positive integer. Let m + α − ν > 0. Then one has the following.

(a) w(x) = exp(−Ql,α,m(x)) belongs to Fν(C2+).

(b) If l ≥ 2 and α > 0, then there exists a constant c1 > 0 such that Q′
l,α,m

(x)/Ql,α,m(x) is
quasi-increasing on (c1,∞).

(c) When l = 1, if α ≥ 1, then there exists a constant c2 > 0 such that Q′
l,α,m

(x)/Ql,α,m(x)
is quasi-increasing on (c2,∞), and if 0 < α < 1, then Q′

l,α,m
(x)/Ql,α,m(x) is

quasidecreasing on (c2,∞).

(d) When l = 1 and 0 < α < 1, Q(ν+1)
l,α,m (x) is nondecreasing on a certain positive interval

(c2,∞).

In this paper, we will consider the orthonormal polynomials pn,ρ(x) with respect to
the weight class F̃ν(C2+). Our main themes in this paper are to obtain a certain differential
equation for pn,ρ(x) of higher-order and to estimate the higher-order derivatives of pn,ρ(x)
at the zeros of pn,ρ(x) and the coefficients of the higher-order Hermite-Fejér interpolation
polynomials based at the zeros of pn,ρ(x). More precisely, we will estimate the higher-order
derivatives of pn,ρ(x) at the zeros of pn,ρ(x) for two cases of an odd order and of an even order.
These estimations will play an important role in investigating convergence or divergence of
higher-order Hermite-Fejér interpolation polynomials (see [5–16]).

This paper is organized as follows. In Section 2, we will obtain the differential
equations for pn,ρ(x) of higher-order. In Section 3, we will give estimations of higher-order
derivatives of pn,ρ(x) at the zeros of pn,ρ(x) in a certain finite interval for two cases of an odd
order and of an even order. In addition, we estimate the higher-order derivatives of pn,ρ(x)
at all zeros of pn,ρ(x) for two cases of an odd order and of an even order. Furthermore, we
will estimate the coefficients of higher-order Hermite-Fejér interpolation polynomials based
at the zeros of pn,ρ(x), in Section 4.
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2. Higher-Order Differential Equation for Orthonormal Polynomials

In the rest of this paper we often denote pn,ρ(x) and xk,n,ρ simply by pn(x) and xkn,
respectively. Let ρn = ρ if n is odd, ρn = 0 otherwise, and define the integrating functions
An(x) and Bn(x)with respect to pn(x) as follows:

An(x) := 2bn

∫∞

−∞
p2n(u)Q(x, u)w2

ρ(u)du,

Bn(x) := 2bn

∫∞

−∞
pn(u)pn−1(u)Q(x, u)w2

ρ(u)du,

(2.1)

whereQ(x, u) = (Q′(x)−Q′(u))/(x−u) and bn = (γn−1)/γn. Then in [3, Theorem 4.1]we have
a relation of the orthonormal polynomial pn(x) with respect to the weight w2

ρ(x):

p′n(x) = An(x)pn−1(x) − Bn(x)pn(x) − 2ρn
pn(x)
x

. (2.2)

Theorem 2.1 (cf. [6, Theorem 3.3]). Let ρ > −1/2 andw(x) ∈ F(C2). Then for |x| > 0 one has the
second-order differential relation as follows:

a(x)p′′n(x) + b(x)p′n(x) + c(x)pn(x) +D(x) + E(x) = 0. (2.3)

Here, one knows that for any integer n � 1,

a(x) = An(x), b(x) = −2Q′(x)An(x) −A′
n(x),

c(x) =
bnA

2
n(x)An−1(x)
bn−1

+An(x)Bn(x)Bn−1(x) − xAn(x)An−1(x)Bn(x)
bn−1

+An(x)B′
n(x) −A′

n(x)Bn(x) − 2ρn
An(x)An−1(x)

bn−1

=: c1(x) + c2(x) + c3(x) + c4(x) + c5(x) + c6(x),

D(x) = d(x)
pn(x)
x

, E(x) = e1(x)
p′n(x)
x

+ e2(x)
pn(x)
x2

,

(2.4)

where

d(x) = 2ρn
(
An(x)Bn(x) −A′

n(x)
)
+ 2ρn−1An(x)Bn(x),

e1(x) = 2
(
ρn + ρn−1

)
An(x), e2(x) = −2ρnAn(x).

(2.5)

Especially, when n is odd, one has

a(x)p′′n(x) + b(x)p′n(x) + c(x)pn(x) + d(x)qn−1(x) + 2ρAn(x)q′n−1(x) = 0, (2.6)

where qn−1(x) is the polynomial of degree n − 1 with pn(x) = xqn−1(x).
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Proof. We may similarly repeat the calculation [6, Proof of Theorem 3.3], and then we obtain
the results. We stand for An := An(x), Bn := Bn(x) simply. Applying (2.2) to p′n−1(x) we also
see

p′n−1(x) = An−1pn−2(x) − Bn−1pn−1(x) − 2ρn−1
pn−1(x)

x
, (2.7)

and so if we use the recurrence formula

xpn−1(x) = bnpn(x) + bn−1pn−2(x) (2.8)

and use (2.2) too, then we obtain the following:

p′n−1(x) =
1

bn−1An

{
(xAn−1 − bn−1Bn−1)p′n(x)

+ (xAn−1Bn − bn−1BnBn−1 − bnAnAn−1)pn(x)

+
2ρn
x

(xAn−1 − bn−1Bn−1)pn(x) −
2ρn−1bn−1

x

(
p′n(x) + Bnpn(x)

)
}
.

(2.9)

We differentiate the left and right sides of (2.2) and substitute (2.2) and (2.9). Then
consequently, we have, for n ≥ 1,

p′′n(x) = −
{
Bn−1 + Bn − xAn−1

bn−1
− A′

n

An

}
p′n(x)

−
{
bnAn−1An

bn−1
+ Bn−1Bn − xAn−1Bn

bn−1
+ B′

n −
A′

nBn

An
− 2ρ

An−1
bn−1

}
pn(x)

− 2ρn
(
Bn −

A′
n

An

)
pn(x)
x

− 2ρn
xp′n(x) − pn(x)

x2
− 2ρn−1

p′n(x) + Bnpn(x)
x

.

(2.10)

Using the recurrence formula (2.8) and u/(u − x) = 1 + x/(u − x), we have

Bn + Bn−1 = 2
∫∞

−∞
pn−1(u)

{
bnpn(u) + bn−1pn−2(u)

}
Q(x, u)w2

ρ(u)du

= 2
∫∞

−∞
p2n−1(u)Q

′(u)w2
ρ(u)du − 2Q′(x) + 2x

∫∞

−∞
p2n−1(u)Q(x, u)w2

ρ(u)du

= −2Q′(x) +
xAn−1
bn−1

,

(2.11)

because Q′(u) is an odd function. Therefore, we have

b(x) = −2Q′(x)An −A′
n. (2.12)

When n is odd, since xp′n(x) − pn(x) = x2q′n−1(x), (2.6) is proved.
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For the higher-order differential equation for orthonormal polynomials, we see that
for j = 0, 1, 2, . . . , ν − 2 and |x| > 0

D(j)(x) =
j∑

t=0

(
j∑

i=t

(−1)i−tj!
(
j − i

)
!t!

d(j−i)(x)x−(i−t+1)
)

p
(t)
n (x),

E(j)(x) =
j∑

t=0

(
j∑

i=t

(−1)i−tj!
(
j − i

)
!t!

e
(j−i)
1 (x)x−(i−t+1)

)

p
(t+1)
n (x)

+
j∑

t=0

(
j∑

i=t

(−1)i−tj!(i − t + 1)
(
j − i

)
!t!

e
(j−i)
2 (x)x−(i−t+2)

)

p
(t)
n (x).

(2.13)

Let
(

j

−1

)
= 0 for nonnegative integer j. In the following theorem, we show the higher-order

differential equation for orthonormal polynomials.

Theorem 2.2. Let ρ > −1/2 and w(x) ∈ F(C2). Let ν � 2 and j = 0, 1, . . . , ν − 2. Then one has the
following equation for |x| > 0:

B
[j]
j+2(x)p

(j+2)
n (x) + B

[j]
j+1(x)p

(j+1)
n (x) +

j∑

s=0

B
[j]
s (x)p(s)n (x) = 0, (2.14)

where

B
[j]
j+2(x) = a(x), B

[j]
j+1(x) = ja′(x) + b(x) +

e1(x)
x

,
(2.15)

and for j ≥ 1 and 1 ≤ s ≤ j

B
[j]
s (x) =

(
j

s − 2

)

a(j−s+2)(x) +

(
j

s − 1

)

b(j−s+1)(x) +

(
j

s

)

c(j−s)(x)

+
j∑

i=s

(−1)i−sj!
(
j − i

)
!s!

d(j−i)(x)x−(i−s+1) +
j∑

i=s−1

(−1)i−s+1j!
(
j − i

)
!(s − 1)!

e
(j−i)
1 (x)x−(i−s+2)

+
j∑

i=s

(−1)i−sj!(i − s + 1)
(
j − i

)
!s!

e
(j−i)
2 (x)x−(i−s+2),

(2.16)

and for j ≥ 0

B
[j]
0 (x) = c(j)(x) +

j∑

i=0

(−1)ij!
(
j − i

)
!
d(j−i)(x)x−(i+1) +

j∑

i=0

(−1)ij!(i + 1)
(
j − i

)
!

e
(j−i)
2 (x)x−(i+2). (2.17)

Proof. It comes from Theorem 2.1 and (2.13).
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Corollary 2.3. Under the same assumptions as Theorem 2.1, if n is odd, then

C
[j]
j+2(0)p

(j+2)
n (0) + C

[j]
j+1(0)p

(j+1)
n (0) +

j∑

s=1

C
[j]
s (0)p(s)n (0) = 0, j ≥ 1,

C
[0]
2 (0)p′′n(0) + C

[0]
1 (0)p′n(0) = 0, j = 0,

(2.18)

where C[j]
j+2(x) = An(0) + (2ρ/(j + 2))An(0) and for 1 ≤ s ≤ j + 1

C
[j]
s (0) =

(
j

s − 2

)

a(j−s+2)(0) +

(
j

s − 1

)

b(j−s+1)(0) +

(
j

s

)

c(j−s)(0)

+
1
s

((
j

s − 1

)

d(j−s+1)(0) +

(
j

s − 2

)

2ρA(j−s+2)
n (0)

)

.

(2.19)

Proof. Let n be odd. Then we will consider (2.6). Since q(j)n−1(0) = p
(j+1)
n (0)/(j + 1), we have

(
d(x)qn−1(x) + 2ρAn(x)q′n−1(x)

)(j)∣∣∣
x=0

= 2ρAn(0)
p
(j+2)
n (0)
j + 2

+
(
d(0) + 2jρA′

n(0)
)p

(j+1)
n (0)
j + 1

+
j∑

s=2

((
j

s − 1

)

d(j−s+1)(0) +

(
j

s − 2

)

2ρA(j−s+2)(0)

)
p
(s)
n (0)
s

+ d(j)(0)p′n(0),

(2.20)

and we have

(
a(x)p′′n(x) + b(x)p′n(x) + c(x)pn(x)

)(j)∣∣∣
x=0

= a(0)p(j+2)n (0) +
(
ja′(0) + b(0)

)
p
(j+1)
n (0)

+
j∑

s=0

((
j

s − 2

)

a(j−s+2)(0) +

(
j

s − 1

)

b(j−s+1)(0) +

(
j

s

)

c(j−s)(0)

)

p
(s)
n (0).

(2.21)

Therefore, we have the result from (2.6).

In the rest of this paper, we let ρ > −1/2 and w(x) = exp(−Q(x)) ∈ F̃ν(C2+) for
positive integer ν ≥ 1 and assume that 1 + 2ρ − δ ≥ 0 for ρ < 0 and

an � n1/(1+ν−δ), (2.22)

where 0 ≤ δ < 1 is defined in (1.13).
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In Section 3, wewill estimate the higher-order derivatives of orthonormal polynomials
at the zeros of orthonormal polynomials with respect to exponential-type weights.

3. Estimation of Higher-Order Derivatives of
Orthonormal Polynomials

From [3, Theorem 4.2] we know that there exist C and n0 > 0 such that for n ≥ n0 and
|x| ≤ an(1 + ηn),

An(x)
2bn

∼ ϕn(x)−1
(
a2
n

(
1 + 2ηn

)2 − x2
)−1/2

, |Bn(x)| � An(x). (3.1)

If T(x) is unbounded, then (2.22) is trivially satisfied. Additionally we have, from [17,
Theorem 1.3], that if we assume that Q′′(x) is nondecreasing, then for |x| ≤ εan with
0 < ε < 1/2

|Bn(x)| < λ(ε, n)An(x), (3.2)

where there exists a constant C > 0 such that

λ(ε, n) = C ·max
{(

1
nθ

+ 1
)
θΛ−1, ε(1−1/Λ)(Λ−1), ε1/Λ, λ(n)

}
, (3.3)

lim
ε→ 0

lim
n→∞

λ(ε, n) = 0. (3.4)

Here, θ = ε(Λ−1)/2Λ and λ(n) = O(e−n
C
) for some C > 0.

For the higher derivatives of An(x) and Bn(x), we have the following results in [17,
Theorem 1.8].

Theorem 3.1 (see[17, Theorem 1.4]). For |x| ≤ an(1 + ηn) and j = 0, . . . , ν − 1

∣∣∣A
(j)
n (x)

∣∣∣ � An(x)
(
T(an)
an

)j

,
∣∣∣B

(j)
n (x)

∣∣∣ � An(x)
(
T(an)
an

)j

. (3.5)

Moreover, there exists ε(n) > 0 such that for |x| ≤ an/2 and j = 1, . . . , ν − 1,

∣∣∣A
(j)
n (x)

∣∣∣ ≤ ε(n)An(x)
(

n

an

)j

,
∣∣∣B

(j)
n (x)

∣∣∣ ≤ ε(n)An(x)
(

n

an

)j

, (3.6)

with ε(n) → 0 as n → ∞.

Corollary 3.2. Let 0 < β1 < 1/2. Then there exists a positive constant C/=C(n) such that one has for
|x| ≤ β1an and j = 1, . . . , ν − 1,

∣∣∣A
(j)
n (x)

∣∣∣ ≤ CAn(x)
(

n

an

)j

,
∣∣∣B

(j)
n (x)

∣∣∣ ≤ CAn(x)
(

n

an

)j

. (3.7)
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In the following, we have the estimation of the higher-order derivatives of orthonor-
mal polynomials.

Theorem 3.3. Let 1 ≤ 2s + 1 ≤ ν and 0 < α < 1/2. Then for an/αn ≤ |xkn| ≤ αan the following
equality holds for n large enough:

p
(2s+1)
n (xkn) = (−1)sβs(xkn, n)

(
n

an

)2s(
1 + ρ̃2s+1(α, xkn, n)

)
p′n(xkn), (3.8)

where

β(x, n) :=
bn
bn−1

(
an

n

)2

An(x)An−1(x), (3.9)

and |ρ̃2s+1(α, xkn, n)| ≤ C(μ1(α, n) + μ2(α, n) + μ3(α, n)). Moreover, for 1 ≤ 2s ≤ ν

∣∣∣p(2s)n (xkn)
∣∣∣ � Cμ1(α, n)

(
n

an

)2s−1∣∣p′n(xkn)
∣∣. (3.10)

Here,

μ1(α, n) :=
(
ε(n) + αΛ−1 + α

)
, μ2(α, n) :=

logn
n

+ ε(n) + αλ(α, n) + α2,

μ3(α, n) := λ(α, n)λ(α, n − 1) + αλ(α, n) + ε(n) + ε(n)λ(α, n) +
1
n
.

(3.11)

Corollary 3.4. Suppose the same assumptions as Theorem 3.3. Given any δ > 0, there exists a small
fixed positive constant 0 < α0(δ) < 1/2 such that (3.8) holds satisfying |ρ̃2s+1(α0, xkn, n)| ≤ δ and

∣∣∣p(2s)n (xkn)
∣∣∣ ≤ δ

(
n

an

)2s−1∣∣p′n(xkn)
∣∣ (3.12)

for an/α0n ≤ |xkn| ≤ α0an.

Corollary 3.5. For |xkn| ≤ an/2 and 1 ≤ j ≤ ν

∣∣∣p
(j)
n (xkn)

∣∣∣ �
(

n

an

)j−1∣∣p′n(xkn)
∣∣. (3.13)

Theorem 3.6. Let 0 < |xkn| ≤ an(1 + ηn) and let ν = 2, 3, . . ., j = 1, 2, . . . , ν − 2. Then

∣∣∣p
(j+2)
n (xkn)

∣∣∣ �
(
An(xkn) +

T(an)
an

)j+1∣∣p′n(xkn)
∣∣, (3.14)
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and especially if j is even, then

∣∣
∣p

(j+2)
n (xkn)

∣∣
∣ �

(
T(an)
an

+
∣
∣Q′(xkn)

∣
∣ +

1
|xkn|

)(
An(xkn) +

T(an)
an

)j∣
∣p′n(xkn)

∣
∣. (3.15)

We note that for n large enough,

|xkn| < an

(
1 + ηn

)
, k = 1, 2, . . . , n, (3.16)

because we know that x1n < an+ρ/2 from [3, Theorem 2.2] and

an+ρ/2 − an = an+ρ/2

(

1 − an

an+ρ/2

)

≤ C1
an+ρ/2

T(an)
log

(
1 +

ρ/2
n

)

≤ C2
an

nT(an)
≤ ano

(
ηn

)
.

(3.17)

To prove these results we need some lemmas.

Lemma 3.7. (a) For s ≥ r > 0

T(ar)
(
1 − ar

as

)
≤ C log

s

r
. (3.18)

(b) For |x| ≤ (1/2)an

∣∣Q′(x)
∣∣ ≤ C

(
x

an

)Λ−1 n

an
. (3.19)

(c) For |x| ≤ an(1 + ηn)

|An(x)| ∼ n

a2n − |x| . (3.20)

(d) Let 0 ≤ j ≤ ν − 1. Then for |x| ≤ an/2

∣∣∣Q(j+1)(x)
∣∣∣ �

∣∣Q′(an/2)
∣∣
(
T(an/2)

an

)j

, (3.21)

and for an/2 ≤ |x| ≤ an(1 + ηn)

∣∣∣Q(j+1)(x)
∣∣∣ �

∣∣Q′(x)
∣∣
(
T(an)
an

)j

. (3.22)
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Proof. (a) It is [1, Lemma 3.11(c)]. (b) It is [1, Lemma 3.8(c)]. (c) It comes from (3.1). (d) Since
j + 1 ≤ ν, Q(j+1)(x) is increasing. So, we obtain (d) by (1.12).

Lemma 3.8. Let a(x), b(x), c(x), d(x), and ei(x), i = 1, 2, be defined in Theorem 2.1.
(a) For |x| ≤ an/2 and 1 ≤ k ≤ ν − 1, there exists ε(n) satisfying ε(n) → 0 as n → 0 such

that

∣
∣
∣a(k)(x)

∣
∣
∣ � ε(n)

(
n

an

)k+1

. (3.23)

Moreover, for |x| ≤ an(1 + ηn) and 1 ≤ k ≤ ν − 1,

∣
∣
∣a(k)(x)

∣
∣
∣ �

(
T(an)
an

)k

An(x). (3.24)

(b) For |x| ≤ an/2 and 1 ≤ k ≤ ν − 2, there exists ε(n) satisfying ε(n) → 0 as n → 0 such
that

∣∣∣b(k)(x)
∣∣∣ � ε(n)

(
n

an

)k+2

. (3.25)

Moreover, for |x| ≤ an(1 + ηn) and 1 ≤ k ≤ ν − 1,

∣∣∣b(k)(x)
∣∣∣ �

(
Q′(x) +

n

an

)(
T(an)
an

)k

An(x). (3.26)

(c) For |x| ≤ an/2 and 1 ≤ k ≤ ν − 3, there exists ε(n) satisfying ε(n) → 0 as n → 0 such
that

∣∣∣c(k)i (x)
∣∣∣ � ε(n)

(
n

an

)k+3

, i = 1, 2, 3, 4, 5, 6. (3.27)

Moreover, for |x| ≤ an(1 + ηn) and 1 ≤ k ≤ ν − 3,

∣∣∣c(k)i (x)
∣∣∣ �

(
T(an)
an

)k

A3
n(x), i = 1, 2, 3, 4, 5, 6. (3.28)

(d) For |x| ≤ an/2 and 1 ≤ k ≤ ν − 3, there exists ε(n) satisfying ε(n) → 0 as n → 0 such
that

∣∣∣d(k)(x)
∣∣∣ � ε(n)

(
n

an

)k+2

,
∣∣∣e(k)i (x)

∣∣∣ � ε(n)
(

n

an

)k+1

, i = 1, 2. (3.29)
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Moreover, for |x| ≤ an(1 + ηn) and 0 ≤ k ≤ ν − 3,

∣
∣d(k)(x)

∣
∣ �

(
An(x) +

T(an)
an

)(
T(an)
an

)k

An(x),

∣
∣
∣e(k)i (x)

∣
∣
∣ �

(
T(an)
an

)k

An(x), i = 1, 2.

(3.30)

Proof. (a) Since a(x) = An(x), we prove it by Theorem 3.1.
(b) For 1 ≤ k ≤ ν − 2, we see

b(k)(x) = −
⎛

⎝A
(k+1)
n (x) + 2

k∑

p=0

(
k

p

)

Q(p+1)(x)A(k−p)
n (x)

⎞

⎠. (3.31)

From (3.18), we know that T(an/2) � logn. Therefore by (3.19), (3.21), and (3.6)we have for
0 ≤ x ≤ an/2

∣∣∣Q(p+1)(x)A(k−p)
n (x)

∣∣∣ �
∣∣∣Q′

(an

2

)∣∣∣
(
T(an/2)

an

)p∣∣∣A
(k−p)
n (x)

∣∣∣ � ε(n)
(

n

an

)k+2

, (3.32)

and for |x| ≤ an(1 + ηn)we have by (3.21) and (3.22)

∣∣∣Q(p+1)(x)A(k−p)
n (x)

∣∣∣ �
(
Q′(x) +

n

an

)(
T(an)
an

)k

An(x). (3.33)

Consequently we have (b).
(c) Next we estimate c(k)(x). Suppose |x| ≤ an/2. Let us set c(x) =

∑6
i=1 ci(x). By (3.6)

and (3.20)we have

∣∣∣c(k)1 (x)
∣∣∣ �

∑

t,u,v,t+u+v=k

A
(t)
n (x)A(u)

n (x)A(v)
n−1(x)

� ε(n)
∑

t,u,v,t+u+v=k

(
n

an

)k

A3
n(x) � ε(n)

(
n

an

)k+3

.

(3.34)

For c(k)i (x) (i = 2, 3, 4, 5, 6), we obtain the same estimate as c(k)1 :

∣∣∣c(k)i (x)
∣∣∣ � ε(n)

(
n

an

)k+3

, i = 2, 3, 4, 5, 6. (3.35)

For |x| ≤ an(1 + ηn), we have similarly to the case of |x| ≤ an/2

∣∣∣c(k)i (x)
∣∣∣ �

(
T(an)
an

)k

A3
n(x), i = 1, 2, 3, 4, 5, 6. (3.36)

(d) It is similar to (c). Consequently we have the following lemma.
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Lemma 3.9. Let 0 < α < 1/2, 0 ≤ j ≤ ν − 2, and L1 > 0. Let an/αn ≤ |x| ≤ αan. Then

∣
∣
∣
∣∣
∣

B
[j]
j+1(x)

B
[j]
j+2(x)

∣
∣
∣
∣∣
∣
≤ Cμ1(α, n)

n

an
, (3.37)

where μ1(α, n) is defined in Theorem 3.3 and for L1(an/n) ≤ |x| ≤ an/2

∣
∣∣
∣
∣
∣

B
[j]
j+1(x)

B
[j]
j+2(x)

∣
∣∣
∣
∣
∣
≤ C

n

an
. (3.38)

Moreover, for |x| ≤ an(1 + ηn),

∣∣∣∣∣∣

B
[j]
j+1(x)

B
[j]
j+2(x)

∣∣∣∣∣∣
� T(an)

an
+
∣∣Q′(x)

∣∣ +
1
|x| . (3.39)

Proof. Since

∣∣∣B
[j]
j+1(x)

∣∣∣ =
∣∣∣∣ja

′(x) + b(x) +
e1(x)
x

∣∣∣∣

�
∣∣(j − 1

)
A′

n(x) − 2Q′(x)An(x)
∣∣ +

∣∣∣∣
An(x)

x

∣∣∣∣,

(3.40)

we have (3.39) for |x| ≤ an(1 + ηn) by (3.5). For an/αn ≤ |x| ≤ αan we have from (3.6) and
(3.19) that

∣∣∣B
[j]
j+1(x)

∣∣∣ ≤
(
ε(n) + C1α

Λ−1 + C2α
) n

an
An(x) ≤ Cμ1(α, n)

n

an
An(x). (3.41)

Moreover, we can obtain (3.38) for L1(an/n) ≤ |x| ≤ an/2 from the above easily.

Lemma 3.10. Let 0 < α < 1/2 and 0 ≤ j ≤ ν − 2. Let an/αn ≤ |x| ≤ αan. Then for an/αn ≤ |x| ≤
αan

−
B
[j]
j (x)

B
[j]
j+2(x)

= (−1)β(x, n)(1 + fj(α, xkn, n)
)
(

n

an

)2

(3.42)

with |fj(α, xkn, n)| ≤ C(μ2(α, n) + μ3(α, n)), where μ2(α, n), μ3(α, n), and β(x, n) are defined in
Theorem 3.3. For L1(an/n) ≤ |x| ≤ (1/2)an one has

∣∣∣∣∣∣

B
[j]
j (x)

B
[j]
j+2(x)

∣∣∣∣∣∣
≤ C

(
n

an

)2

. (3.43)
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On the other hand, one has for L1(an/n) < |x| ≤ an(1 + ηn),

∣
∣
∣
∣
∣
∣

B
[j]
j (x)

B
[j]
j+2(x)

∣
∣
∣
∣
∣
∣
�

(
An(x) +

T(an)
an

)2

. (3.44)

Proof. First, we know that

B
[j]
j (x) =

j
(
j − 1

)

2
a′′(x) + jb′(x) + c(x)

+ d(x)x−1 + je′1(x)x
−1 − je1(x)x−2 + e2(x)x−2.

(3.45)

Suppose an/αn ≤ |x| ≤ αan. Since from (3.18) and (3.19)

∣∣∣Q′′
(an

2

)∣∣∣ � logn
n

(
n

an

)2

,
∣∣∣Q′

(an

2

)∣∣∣ � n

an
, (3.46)

we have from (3.6)

∣∣∣∣∣
j
(
j − 1

)

2
a′′(x) + jb′(x)

∣∣∣∣∣
≤ C1

(
logn
n

+ ε(n)
)(

n

an

)2

An(x). (3.47)

Since

|d(x)| ≤ C1(λ(α, n) + ε(n))
n

an
An(x), (3.48)

we know from (3.6) that

∣∣
∣d(x)x−1 + je′1(x)x

−1 − je1(x)x−2 + e2(x)x−2
∣∣∣ ≤ Cα(λ(α, n) + ε(n) + α)

(
n

an

)2

An(x). (3.49)

Therefore we have for an/αn ≤ |x| ≤ αan

∣∣∣B
[j]
j (x) − c(x)

∣∣∣ ≤ Cμ2(α, n)
(

n

an

)2

An(x). (3.50)

Since from (3.3)

|c2(x) + c3(x)| =
∣∣∣∣An(x)Bn(x)Bn−1(x) +

x

bn−1
An(x)An−1(x)Bn(x)

∣∣∣∣

≤ C(λ(α, n)λ(α, n − 1) + αλ(α, n))
(

n

an

)2

An(x)

(3.51)
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and similarly

|c4(x) + c5(x) + c6(x)| ≤ C

(
ε(n) + ε(n)λ(α, n) +

1
n

)(
n

an

)2

An(x), (3.52)

we have

|c2(x) + c3(x) + c4(x) + c5(x) + c6(x)| ≤ Cμ3(α, n)
(

n

an

)2

An(x). (3.53)

Then we have

∣∣∣∣∣∣

B
[j]
j (x)

B
[j]
j+2(x)

− c1(x)

B
[j]
j+2(x)

∣∣∣∣∣∣
≤ C

(
μ2(α, n) + μ3(α, n)

)
(

n

an

)2

. (3.54)

Therefore, since

c1(x)

B
[j]
j+2(x)

= β(x, n)
(

n

an

)2

, (3.55)

there exist constants fj(α, xkn, n)with |fj(α, xkn, n)| ≤ C(μ2(α, n)+μ3(α, n)) such that we have
for an/αn ≤ |x| ≤ αan

−
B
[j]
j (x)

B
[j]
j+2(x)

= (−1)β(x, n)(1 + fj(α, xkn, n)
)
(

n

an

)2

. (3.56)

Especially, from the above estimates we can see (3.43) for L1(an/n) ≤ |x| ≤ an/2. On the other
hand, suppose L1(an/n) ≤ |x| ≤ an(1 + ηn). Then since from Theorem 2.1 and (3.5)

|c(x)| � A3
n(x) +

T(an)
an

A2
n(x) �

(
An(x) +

T(an)
an

)2

An(x) (3.57)

and |Q′(x)| + n/an � An(x), we have from Lemma 3.8

∣∣∣B
[j]
j (x)

∣∣∣ �
(
An(x) +

T(an)
an

)2

An(x). (3.58)

Therefore, we have (3.44) for L1(an/n) < |x| ≤ an(1 + ηn).
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Lemma 3.11. Let 0 < α < 1/2 and 1 ≤ j ≤ ν − 2. Let L1(an/n) ≤ |x| ≤ an/2. Then for � =
1, 2, . . . , j − 1, there exists ε(n) satisfying ε(n) → 0 as n → 0 such that

∣
∣
∣
∣∣
∣

B
[j]
� (x)

B
[j]
j+2(x)

∣
∣
∣
∣∣
∣
≤ ε(n)

(
n

an

)j−�+2
. (3.59)

Moreover, one has for L1(an/n) ≤ |x| ≤ an(1 + ηn),

∣
∣
∣
∣
∣
∣

B
[j]
� (x)

B
[j]
j+2(x)

∣
∣
∣
∣
∣
∣
� T(an)

an

(
An(x) +

T(an)
an

)j−�+1
. (3.60)

Proof. For � = 1, 2, . . . , j−1 we have from Lemma 3.8 that there exists ε(n) satisfying ε(n) → 0
as n → 0 such that

∣∣∣B
[j]
� (x)

∣∣∣ =
∣∣∣a(j−�+2)(x)

∣∣∣ +
∣∣∣b(j−�+1)(x)

∣∣∣ +
∣∣∣c(j−�)(x)

∣∣∣

+ |x|−1
j∑

i=�

∣∣∣d(j−i)(x)
∣∣∣ + |x|−1

j∑

i=�−1

∣∣∣e
(j−i)
1 (x)

∣∣∣ + |x|−2
j∑

i=�

∣∣∣e
(j−i)
2 (x)

∣∣∣

≤ ε(n)
(

n

an

)j−�+3
+ ε(n)

αn

an

(
n

an

)j−�+2
+ ε(n)

(
αn

an

)2( n

an

)j−�+1

≤ ε(n)
(

n

an

)j−�+3
.

(3.61)

Similarly, for � = 1, 2, . . . , j − 1 and L1(an/n) < |x| ≤ an(1 + ηn),

∣∣∣B
[j]
� (x)

∣∣∣ � T(an)
an

(
An(x) +

T(an)
an

)j−�+1
An(x). (3.62)

Therefore, we have the results.

Proof of Theorem 3.3. First we know that the following differential equation is satisfied:

p
(j+2)
n (xkn) = −

B
[j]
j+1(xkn)

B
[j]
j+2(xkn)

p
(j+1)
n (xkn) −

B
[j]
j (xkn)

B
[j]
j+2(xkn)

p
(j)
n (xkn)

−
B
[j]
j−1(xkn)

B
[j]
j+2(xkn)

p
(j−1)
n (xkn) − · · · − B

[j]
1 (xkn)

B
[j]
j+2(xkn)

p′n(xkn).

(3.63)

Suppose L1(an/n) ≤ |xkn| ≤ (1/2)an. Then since we see from (3.63) and (3.38) that

∣∣p′′n(xkn)
∣∣ ≤ C

n

an

∣∣p′n(xkn)
∣∣, (3.64)



18 Journal of Inequalities and Applications

we have by (3.63) and mathematical induction

∣
∣
∣p

(j+1)
n (xkn)

∣
∣
∣ �

(
n

an

)j∣∣p′n(xkn)
∣∣. (3.65)

Next, suppose an/αn ≤ |xkn| ≤ αan. More precisely, from Lemma 3.9 we have

∣
∣p′′n(xkn)

∣
∣ ≤ Cμ1(α, n)

n

an

∣
∣p′n(xkn)

∣
∣. (3.66)

Then by (3.63), (3.42), and (3.66) there exists a constant ρ̃1(α, xkn, n) with

∣∣ρ̃1(α, xkn, n)
∣∣ ≤ ∣∣f1(α, xkn, n) + Cμ1(α, xkn)

∣∣ ≤ C
3∑

i=1

μi(α, n), (3.67)

such that we have that

p
(3)
n (xkn) = (−1)β(xkn, n)

(
n

an

)2(
1 + ρ̃1(α, xkn, n)

)
p′n(xkn). (3.68)

Suppose that there exist constants ρ̃2s−1(α, xkn, n)with |ρ̃2s−1(α, xkn, n)| ≤ C(μ1(α, n)+μ2(α, n)+
μ3(α, n)) such that

p
(2s−1)
n (xkn) = (−1)s−1βs−1(xkn, n)

(
n

an

)2s−2(
1 + ρ̃2s−1(α, xkn, n)

)
p′n(xkn), (3.69)

∣∣∣p(2s)n (xkn)
∣∣∣ ≤ Cμ1(α, n)

(
n

an

)2s−1∣∣p′n(xkn)
∣∣. (3.70)

Then we have by (3.38) and (3.70)

∣∣∣∣∣∣

B
[2s−1]
2s (xkn)

B
[2s−1]
2s+1 (xkn)

p
(2s)
n (xkn)

∣∣∣∣∣∣
� Cμ1(α, n)

(
n

an

)2s+1∣∣p′n(xkn)
∣∣, (3.71)

and we have by (3.42) and (3.69)

−B
[2s−1]
2s−1 (xkn)

B
[2s−1]
2s+1 (xkn)

p
(2s−1)
n (xkn) = (−1)sβs(xkn, n)

(
n

an

)2s(
1 + ˜̃ρ2s−1(α, xkn, n)

)
p′n(xkn), (3.72)
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where ˜̃ρ2s−1(α, xkn, n) = f2s−1(α, xkn, n)ρ̃2s−1(α, xkn, n) + f2s−1(α, xkn, n) + ρ̃2s−1(α, xkn, n) and
|˜̃ρ2s−1(α, xkn, n)| ≤ C(μ1(α, n)+μ2(α, n)+μ3(α, n)). Also, we have by (3.59) that for 1 ≤ � ≤ 2s−2

∣
∣
∣
∣
∣
∣

B
[2s−1]
� (xkn)

B
[2s−1]
2s+1 (xkn)

p
(�)
n (xkn)

∣
∣
∣
∣
∣
∣
� ε(n)

(
n

an

)2s∣
∣p′n(xkn)

∣
∣. (3.73)

Therefore, there exists ρ̃2s+1(α, xkn, n) satisfying |ρ̃2s+1(α, xkn, n)| ≤ C(μ1(α, n) + μ2(α, n) +
μ3(α, n)) such that

p
(2s+1)
n (xkn) = (−1)sβs(xkn, n)

(
n

an

)2s(
1 + ρ̃2s+1(xkn, n)

)
p′n(xkn). (3.74)

Moreover, we have by (3.37) and (3.65)

∣∣∣∣∣∣

B
[2s]
2s+1(xkn)

B
[2s]
2s+2(xkn)

p
(2s+1)
n (xkn)

∣∣∣∣∣∣
� Cμ1(α, n)

(
n

an

)2s+1∣∣p′n(xkn)
∣∣, (3.75)

and by (3.43) and (3.70)

∣∣∣∣∣
B
[2s]
2s (xkn)

B
[2s]
2s+2(xkn)

p
(2s)
n (xkn)

∣∣∣∣∣
≤ Cμ1(α, n)

(
n

an

)2s∣∣p′n(xkn)
∣∣. (3.76)

Also we obtain by (3.59) and (3.65) that for 1 ≤ � ≤ 2s − 1

∣∣∣∣∣∣

B
[2s]
� (xkn)

B
[2s]
2s+2(xkn)

p
(�)
n (xkn)

∣∣∣∣∣∣
≤ ε(n)

(
n

an

)2s+1∣∣p′n(xkn)
∣∣. (3.77)

Therefore, since we have by (3.63) that

∣∣∣p(2s+2)n (xkn)
∣∣∣ ≤ Cμ1(α, n)

(
n

an

)2s+1∣∣p′n(xkn)
∣∣, (3.78)

we proved the results.

Proof of Theorem 3.4 . From (3.3), Theorem 3.1, and the definitions of μi(α, n) (i = 1, 2, 3) in
Theorem 3.3, if for any δ > 0 we choose a fixed constant α0(δ) > 0 small enough, then there
exists an integer N = N(α0) such that we can make μ1(α0, n), μ2(α0, n), and μ3(α0, n) small
enough for an/α0n ≤ |x| ≤ α0an with n > N.
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Proof of Corollary 3.5. Since we have from Lemma 3.8 that |C[j]
j+2(0)| ∼ n/an, |C[j]

j+1(0)| �
(n/an)

2 for j ≥ 0 and |C[j]
s (0)| � (n/an)

j+3−s for 1 ≤ s ≤ j, we obtain using the mathematical
induction that

∣
∣
∣p

(j+1)
n (0)

∣
∣
∣ �

(
n

an

)j∣
∣p′n(0)

∣
∣. (3.79)

Therefore, from (3.65)we prove the result easily.

Proof of Theorem 3.6. We know that from (3.39)

∣
∣p′′n(xkn)

∣
∣ ≤

∣
∣
∣
∣
∣
B
[0]
1 (xkn)

B
[0]
2 (xkn)

∣
∣
∣
∣
∣
∣
∣p′n(xkn)

∣
∣ ≤

(
T(an)
an

+
∣
∣Q′(xkn)

∣
∣ +

1
|xkn|

)∣
∣p′n(xkn)

∣
∣ (3.80)

and from (3.44)

∣∣∣p(3)n (xkn)
∣∣∣ �

(
An(xkn) +

T(an)
an

)2∣∣p′n(xkn)
∣∣. (3.81)

Suppose

∣∣∣p(2s−1)n (xkn)
∣∣∣ �

(
An(xkn) +

T(an)
an

)2s−2∣∣p′n(xkn)
∣∣,

∣∣∣p(2s)n (xkn)
∣∣∣ �

(
T(an)
an

+
∣∣Q′(xkn)

∣∣ +
1

|xkn|
)(

An(xkn) +
T(an)
an

)2s−2∣∣p′n(xkn)
∣∣.

(3.82)

Then since

∣∣∣∣∣∣

B
[2s−1]
2s (xkn)

B
[2s−1]
2s+1 (xkn)

∣∣∣∣
∣∣

∣∣
∣p(2s)n (xkn)

∣∣∣ �
(
T(an)
an

+ |Q′(xkn)| + 1
|xkn|

)2(
An(xkn) +

T(an)
an

)2s−2∣∣p′n(xkn)
∣∣,

∣∣∣∣∣∣

B
[2s−1]
2s−1 (xkn)

B
[2s−1]
2s+1 (xkn)

∣∣∣∣∣∣

∣∣∣p(2s−1)n (xkn)
∣∣∣ �

(
An(xkn) +

T(an)
an

)2s∣∣p′n(xkn)
∣∣,

∣∣∣∣∣∣

B
[2s−1]
s (xkn)

B
[2s−1]
2s+1 (xkn)

∣∣∣∣∣∣

∣∣∣p(s)n (xkn)
∣∣∣ �

(
T(an)
an

+
∣∣Q′(xkn)

∣∣ +
1

|xkn|
)(

An(xkn) +
T(an)
an

)2s−1∣∣p′n(xkn)
∣∣,

(3.83)

we have

∣∣∣p(2s+1)n (xkn)
∣∣∣ �

(
An(xkn) +

T(an)
an

)2s∣∣p′n(xkn)
∣∣ . (3.84)
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Here, we used that T(an)/an + |Q′(xkn)| + 1/|xkn| � An(xkn) + T(an)/an. Similarly, since

∣
∣
∣
∣
∣
B
[2s]
s (xkn)

B
[2s]
2s+2(xkn)

∣
∣
∣
∣
∣

∣
∣
∣p(s)n (xkn)

∣
∣
∣ �

(
T(an)
an

+
∣
∣Q′(xkn)

∣
∣ +

1
|xkn|

)(
An(xkn) +

T(an)
an

)2s∣
∣p′n(xkn)

∣
∣,

(3.85)

we have

∣
∣
∣p(2s+2)n (xkn)

∣
∣
∣ �

(
T(an)
an

+
∣
∣Q′(xkn)

∣
∣ +

1
|xkn|

)(
An(xkn) +

T(an)
an

)2s∣
∣p′n(xkn)

∣
∣. (3.86)

4. Estimation of the Coefficients of Higher-Order
Hermite-Fejér Interpolation

Let l,m be nonnegative integers with 0 ≤ l < m ≤ ν. For f ∈ C(l)(R) we define the (l,m)-
order Hermite-Fejér interpolation polynomials Ln(l,m, f ;x) ∈ Pmn−1 as follows: for each k =
1, 2, . . . , n,

L
(j)
n

(
l,m, f ;xk,n,ρ

)
= f (j)(xk,n,ρ

)
, j = 0, 1, 2, . . . , l,

L
(j)
n

(
l,m, f ;xk,n,ρ

)
= 0, j = l + 1, l + 2, . . . , m − 1.

(4.1)

Especially for each P ∈ Pmn−1 we see Ln(m−1, m, P ;x) = P(x). The fundamental polynomials
hs,k,n,ρ(m;x) ∈ Pmn−1, k = 1, 2, . . . , n of Ln(l,m, f ;x) are defined by

hs,k,n,ρ(l,m;x) = lmk,n,ρ(x)
m−1∑

i=s

es,i(l,m, k, n)
(
x − xk,n,ρ

)i
. (4.2)

Here, lk,n,ρ(x) is fundamental Lagrange interpolation polynomial of degree n−1 (cf. [18, page
23]) given by

lk,n,ρ(x) =
pn

(
w2

ρ;x
)

(
x − xk,n,ρ

)
p′n

(
w2

ρ;xk,n,ρ

) , (4.3)

and hs,k,n,ρ(l,m;x) satisfies

h
(j)
s,k,n,ρ

(
l,m;xp,n,ρ

)
= δs,jδk,p j, s = 0, 1, . . . , m − 1, p = 1, 2, . . . , n. (4.4)

Then

Ln

(
l,m, f ;x

)
=

n∑

k=1

l∑

s=0

f (s)(xk,n,ρ

)
hs,k,n,ρ(l,m;x). (4.5)
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In this section, we often denote lkn(x) := lk,n,ρ(x) and hskn(x) := hs,k,n,ρ(x) if it does not confuse
us. Then we will first estimate (lm

kn
)(j)(xkn) for 0 ≤ j ≤ ν − 1. Since we have

l
(j)
kn(x) =

p
(j+1)
n (xkn)

(
j + 1

)
p′n(xkn)

(4.6)

by induction on m, we can estimate (lmkn)
(j)(xkn).

Theorem 4.1. Let 0 ≤ j ≤ ν − 1. Then one has for |xkn| ≤ an/2

∣
∣
∣
(
lmkn

)(j)(xkn)
∣
∣
∣ ≤ C

(
n

an

)j

. (4.7)

In addition, one has that for |xkn| ≤ an(1 + ηn)

∣∣∣
(
lmkn

)(j)(xkn)
∣∣∣ �

(
An(xkn) +

T(an)
an

)j

(4.8)

and if j is odd, then one has that for 0 < |xkn| ≤ an(1 + ηn)

∣∣∣
(
lmkn

)(j)(xkn)
∣∣∣ �

(
T(an)
an

+
∣∣Q′(xkn)

∣∣ +
1

|xkn|
)(

An(xkn) +
T(an)
an

)j−1
. (4.9)

For j = 0, 1, . . . define φj(1) := (2j + 1)−1 and for k ≥ 2

φj(k) :=
j∑

r=0

1
2j − 2r + 1

(
2j

2r

)

φr(k − 1). (4.10)

Theorem 4.2 (cf. [10, Lemma 10]). Let 0 < α < 1/2 and let an/αn ≤ |xkn| ≤ αan. Then for
0 ≤ 2s ≤ ν − 2 there exists uniquely a sequence {φj(m)}∞j=0 of positive numbers

(
lmkn

)(2s)(xkn) = (−1)sφs(m)βs(xkn, n)
(

n

an

)2s

(1 + ξs(m,α, xkn, n)) (4.11)

and |ξs(m,α, xkn, n)| ≤ C(μ1(α, n) + μ2(α, n) + μ3(α, n)). Moreover, one has for 1 ≤ 2s − 1 ≤ ν − 1

∣∣∣
(
lmkn

)(2s−1)(xkn)
∣∣∣ ≤ Cμ1(α, n)

(
n

an

)2s−1
. (4.12)

Theorem 4.3. Suppose the same assumptions as Theorem 4.2. Given any δ > 0, there exists a small
fixed positive constant 0 < α0(δ) < 1/2 such that (4.11) holds satisfying |ξj(m,α, xkn, n)| ≤ δ and

∣∣∣
(
lmkn

)(2j+1)(xkn)
∣∣∣ ≤ δ

(
n

an

)2j+1
(4.13)

for an/α0n ≤ |xkn| ≤ α0an.
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Theorem 4.4. Let 0 ≤ s ≤ i ≤ m − 1. Then one has for |xkn| ≤ an/2

|es,i(l,m, k, n)| ≤ C

(
n

an

)i−s
. (4.14)

On the other hand, one has for |xkn| ≤ an(1 + ηn)

|es,i(l,m, k, n)| �
(
An(xkn) +

T(an)
an

)i−s
. (4.15)

Especially, if i − s is odd, then one has

|es,i(l,m, k, n)| �
(
T(an)
an

+
∣
∣Q′(xkn)

∣
∣ +

1
|xkn|

)(
An(xkn) +

T(an)
an

)i−s−1
. (4.16)

Especially, for f ∈ C(R) we define the m-order Hermite-Fejér interpolation
polynomials Ln(m, f ;x) ∈ Pmn−1 as the (0, m)-order Hermite-Fejér interpolation polynomials
Ln(0, m, f ;x). Then we know that

Ln

(
m, f ;x

)
=

n∑

k=1

f
(
xk,n,ρ

)
hk,n,ρ(m;x), (4.17)

where ei(m, k, n) := e0,i(0, m, k, n) and

hk,n,ρ(m;x) = lmk,n,ρ(x)
m−1∑

i=0

ei(m, k, n)
(
x − xk,n,ρ

)i
. (4.18)

Then for the convergence theoremwith respect to Ln(m, f ;x)we have the following corollary.

Corollary 4.5. Let 0 ≤ i ≤ m − 1. Then one has for |xkn| ≤ an/2

|ei(m, k, n)| ≤ C

(
n

an

)i

. (4.19)

On the other hand, one has for |xkn| ≤ an(1 + ηn)

|ei(m, k, n)| �
(
An(xkn) +

T(an)
an

)i

. (4.20)

Especially, if i is odd, then one has

|ei(m, k, n)| �
(
T(an)
an

+
∣∣Q′(xkn)

∣∣ +
1

|xkn|
)(

An(xkn) +
T(an)
an

)i−1
. (4.21)
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Proof of Theorem 4.1. Theorem 4.1 is shown by induction with respect to m. The case of m = 1
follows from (4.6), Corollary 3.5, and Theorem 3.6. Suppose that for the case of m − 1 the
results hold. Then from the following relation:

(
lmkn

)(j)(xkn) =
j∑

r=0

(
j

r

)(
lm−1
kn

)(r)
(xkn)l

(j−r)
kn (xkn), (4.22)

we have (4.7) and (4.8). Moreover, we obtain (4.9) from the following: for 1 ≤ 2s − 1 ≤ ν − 1

(
lmkn

)(2s−1)(xkn) =
s∑

r=0

(
2s − 1

2r

)(
lm−1
kn

)(2r)
(xkn)l

(2s−2r−1)
kn (xkn)

+
s∑

r=0

(
2s − 1

2r + 1

)(
lm−1
kn

)(2r+1)
(xkn)l

(2s−2r−2)
kn (xkn).

(4.23)

Proof of Theorem 4.2. Similarly to Theorem 4.1, we use mathematical induction with respect to
m. From Theorem 3.3 we know that for 0 ≤ 2s ≤ ν − 1

l
(2s)
kn (xkn) = (−1)sφs(1)βs(xkn, n)

(
n

an

)2s

(1 + ξs(1, α, xkn, n)) (4.24)

and for 1 ≤ 2s − 1 ≤ ν − 1

∣∣∣l(2s−1)kn (xkn)
∣∣∣ ≤ Cμ1(α, n)

(
n

an

)2s−1
, (4.25)

where ξs(1, α, xkn, n) = ρ̃2s+1(α, xkn, n) and

|ξs(1, α, xkn, n)| ≤ C
(
μ1(α, n) + μ2(α, n) + μ3(α, n)

)
. (4.26)

Then from the following relations:

(
lmkn

)(j)(xkn) =
∑

0≤2r≤j

(
j

2r

)(
lm−1
kn

)(2r)
(xkn)l

(j−2r)
kn (xkn)

+
∑

1≤2r−1≤j

(
j

2r − 1

)(
lm−1
kn

)(2r−1)
(xkn)l

(j−2r+1)
kn (xkn).

(4.27)

we have the results by induction with respect tom.

Proof of Theorem 4.3. It is proved by the same reason as the proof of Corollary 3.4.
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Proof of Theorem 4.4. To prove the result, we proceed by induction on i. From (4.2) and (4.4)
we know that es,s(l,m, k, n) = 1/s! and the following recurrence relation; for s + 1 ≤ i ≤ m − 1

es,i(l,m, k, n) = −
i−1∑

p=s

1
(
i − p

)
!
es,p(l,m, k, n)

(
lmk,n,ρ

)(i−p)(
xk,n,ρ

)
. (4.28)

When i = s, es,s(l, ν, k, n) = 1/s! so that (4.14) and (4.15) are satisfied for i = s. From (4.7),
(4.8), (4.28), and assumption of induction on i, for s+ 1 ≤ i ≤ m− 1, we have the results easily.
When i − s is odd, we know that

i − p : odd, if p − s : even,

i − p : even, if p − s : odd.
(4.29)

Therefore, similarly we have (4.16) from (4.8), (4.9), (4.28), and assumption of induction
on i.

Proof of Corollary 4.5. Since ei(m, k, n) = e0,i(0, m, k, n), it is trivial from Theorem 4.4.

We rewrite the relation (4.10) in the form for ν = 1, 2, 3, . . .,

φ0(ν) := 1 (4.30)

and for j = 1, 2, 3, . . . , ν = 2, 3, 4, . . .,

φj(ν) − φj(ν − 1) =
1

2j + 1

j−1∑

r=0

(
2j + 1

2r

)

φr(ν − 1). (4.31)

Now, for every j we will introduce an auxiliary polynomial determined by {Ψj(y)}∞j=1 as the
following lemma.

Lemma 4.6 (see[10, Lemma 11]). (i) For j = 0, 1, 2, . . ., there exists a unique polynomial Ψj(y) of
degree j such that

Ψj(ν) = φj(ν), ν = 1, 2, 3, . . . . (4.32)

(ii)Ψ0(y) = 1 and Ψj(0) = 0, j = 1, 2, . . ..

SinceΨj(y) is a polynomial of degree j, we can replace φj(ν) in (4.10)withΨj(y), that
is,

Ψj

(
y
)
=

j∑

r=0

1
2j − 2r + 1

(
2j

2r

)

Ψr

(
y − 1

)
, j = 0, 1, 2, . . . , (4.33)
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for an arbitrary y and j = 0, 1, 2, . . .. We use the notation Fkn(x, y) = (lkn(x))
y which coincides

with l
y

kn
(x) if y is an integer. Since lkn(xkn) = 1, we have Fkn(x, t) > 0 for x in a neighborhood

of xkn and an arbitrary real number y.
We can show that (∂/∂x)jFkn(xkn, y) is a polynomial of degree at most j with respect

to y for j = 0, 1, 2, . . ., where (∂/∂x)jFkn(xkn, y) is the jth partial derivative of Fkn(x, y) with
respect to x at (xkn, y) (see [6, page 199]). We prove these facts by induction on j. For j = 0
it is trivial. Suppose that it holds for j ≥ 0. To simplify the notation, let F(x) = Fkn(x, y) and
l(x) = lkn(x) for a fixed y. Then F ′(x)l(x) = yl′(x)F(x). By Leibniz’s rule, we easily see that

F(j+1)(xkn) = −
j−1∑

s=0

F(s+1)(xkn)l(j−s)(xkn) + y
j∑

s=0

l(s+1)(xkn)F(j−s)(xkn), (4.34)

which shows that F(j+1)(xkn) is a polynomial of degree at most j + 1 with respect to y. Let
P
[j]
kn

(y), j = 0, 1, 2, . . . be defined by

(
∂

∂x

)2j

Fkn

(
xkn, y

)
= (−1)jβj(xkn, n)

(
n

an

)2j

Ψj

(
y
)
+ P

[j]
kn

(
y
)
. (4.35)

Then P
[j]
kn (y) is a polynomial of degree at most 2j.
By Theorem 4.2 we have the following.

Lemma 4.7 (see[10, Lemma 12]). Let j = 0, 1, 2, . . ., and let M be a positive constant. If an/αn ≤
|xkn| ≤ αan and |y| ≤ M, then

∣∣∣∣

(
∂

∂y

)s

P
[j]
kn

(
y
)
∣∣∣∣ ≤ C

(
μ1(α, n) + μ2(α, n) + μ3(α, n)

)
(

n

an

)2j

, s = 0, 1, (4.36)

∣∣∣∣∣

(
∂

∂y

)2j+1

Fkn

(
xkn, y

)
∣∣∣∣∣
≤ Cμ1(α, n)

(
n

an

)2j+1

. (4.37)

Lemma 4.8 (see[10, Lemma 13]). If y < 0, then for j = 0, 1, 2, . . .,

(−1)jΨj

(
y
)
> 0. (4.38)

Lemma 4.9. For positive integers s and m with 1 ≤ m ≤ ν

s∑

r=0

(
2s

2r

)

Ψr(−m)φs−r(m) = 0. (4.39)
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Proof. If we let Cs(y) =
∑s

r=0

(
2s

2r

)
Ψr(−y)Ψs−r(y), then it suffices to show that Cs(m) = 0. For

every s

0 =
(
l−m+m
kn

)2s(xkn) =
2s∑

i=0

(
2s

i

)
(
l−mkn

)(i)(xkn)
(
lmkn

)(2s−i)(xkn)

=
s∑

r=0

(
2s

2r

)(
∂

∂x

)2r

Fkn(xkn,−m)
(
lmkn

)(2s−2r)(xkn)

+
s−1∑

r=0

(
2s

2r + 1

)(
∂

∂x

)2r+1

Fkn(xkn,−m)
(
lmkn

)(2s−2r−1)(xkn).

(4.40)

By (4.24), (4.35), and (4.36), we see that the first sum
∑s

r=0 has the form of

s∑

r=0

= (−1)sβs(xkn, n)
(

n

an

)2s
(

s∑

r=0

(
2s

2r

)

Ψr(−m)φs−r(m) + η̃s(−m,α, xkn, n)

)

. (4.41)

Then since

η̃s(−m,α, xkn, n) =
s∑

r=0

(
2s

2r

)

Ψr(−m)φs−r(m)ξs−r(m,α, xkn, n)

+
s∑

r=0

(
2s

2r

)

(−1)−rβ−r(xkn, n)
(

n

an

)−2r
φs−r(m)P [j]

kn (m)(1 + ξs−r(m,α, xkn, n)),

(4.42)

we know that |η̃s(−m,α, xkn, n)| ≤ C(μ1(α, n) + μ2(α, n) + μ3(α, n)). By (4.37) and (4.7), the
second sum

∑s−1
r=0 is bounded by Cμ1(α, n)(n/an)

2s. Here, we can make C(μ1(α, n)+μ2(α, n)+
μ3(α, n)) < δ for arbitrary positive δ. Therefore, we obtain the following result: for every s

0 =
s∑

r=0

(
2s

2r

)

Ψr(−m)Ψs−r(m). (4.43)

Then the following theorem is important to show a divergence theorem with respect
to Ln(m, f ;x) where m is an odd integer.

Theorem 4.10 (cf. [10, (4.16)] and [15]). For j = 0, 1, 2, . . ., there is a polynomial Ψj(x) of degree
j such that (−1)jΨj(−m) > 0 for m = 1, 3, 5, . . . and the following relation holds. Let 0 < α < 1/2.
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Then one has an expression for an/αn ≤ |xkn| ≤ αan, and 0 ≤ 2s ≤ m − 1:

e2s(m, k, n) = (−1)s 1
(2s)!

Ψs(−m)βs(xkn, n)
(

n

an

)2s(
1 + ηs(m,α, xkn, n)

)
, (4.44)

where ηs(m,α, xkn, n) satisfies that for an/αn ≤ |xkn| ≤ αan and for s = 0, 1, 2, . . .

∣∣ηs(m,α, xkn, n)
∣∣ ≤ C

(
μ1(α, n) + μ2(α, n) + μ3(α, n)

)
. (4.45)

Proof. We prove (4.44) by induction on s. Since e0(m, k, n) = 1 and Ψ0(y) = 1, (4.44) holds for
s = 0. From (4.28)we write e2s(m, k, n) in the form of

e2s(m, k, n) = −
s−1∑

r=0

1
(2s − 2r)!

e2r(m, k, n)
(
lmkn

)(2s−2r)(xkn)

−
s∑

r=1

1
(2s − 2r + 1)!

e2r−1(m, k, n)
(
lmkn

)(2s−2r+1)(xkn)

=: I + II.

(4.46)

Then by (4.12) and (4.14), |II| is bounded by Cμ1(α, n)(n/an)
2s. For 0 ≤ i < s we suppose

(4.44) and (4.45). Then we have for I

s−1∑

r=0

=
(−1)s+1
(2s)!

βs(xkn, n)
(

n

an

)2s s−1∑

r=0

(
2s

2r

)

Ψr(−m)φs−r(m)
(
1 + ηr

)
(1 + ξs−r), (4.47)

where ξs−r := ξs−r(m,α, xkn, n) and ηr := ηr(m,α, xkn, n)which are defined in (4.11) and (4.44).
Then using Lemma 4.9 and φ0(m) = 1 we have the following form:

e2s(m, k, n) =
(−1)s
(2s)!

Ψs(−m)βs(xkn, n)
(

n

an

)2s(
1 + ηs(m,α, xkn, n)

)
. (4.48)

Here, since

ηs(m,α, xkn, n) =
s−1∑

r=0

(
2s

2r

)

Ψr(−m)φs−r(m)
(
ηr + ξs−r + ηrξs−r

)

+ (−1)sβ−s(xkn, n)
(

n

an

)−2s
II,

(4.49)

we see that |ηs(ν, α, xkn, n)| ≤ C(μ1(α, n) + μ2(α, n) + μ3(α, n)). Therefore, we proved the
result.
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