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We consider the stability properties for thermoelastic Bresse system which describes the motion
of a linear planar shearable thermoelastic beam. The system consists of three wave equations and
two heat equations coupled in certain pattern. The two wave equations about the longitudinal
displacement and shear angle displacement are effectively damped by the dissipation from the
two heat equations. We use multiplier techniques to prove the exponential stability result when
the wave speed of the vertical displacement coincides with the wave speed of the longitudinal or
of the shear angle displacement. Moreover, the existence of the global attractor is firstly achieved.

1. Introduction

In this paper, we will consider the following system:

ρhw1tt = (Eh(w1x − kw3) − αθ1t)x − kGh
(
φ2 +w3x + kw1

)
, (1.1)

ρhw3tt = Gh
(
φ2 +w3x + kw1

)
x + kEh(w1x − kw3) − kαθ1t, (1.2)

ρIφ2tt = EIφ2xx −Gh
(
φ2 +w3x + kw1

) − αθ3x, (1.3)

ρcθ1tt = θ1xxt + θ1xx − αT0(w1tx − kw3t), (1.4)

ρcθ3t = θ3xx − αT0φ2tx, (1.5)

together with initial conditions

w1(x, 0) = u0(x), w1t(x, 0) = v0(x), φ2(x, 0) = φ0(x),

φ2t(x, 0) = ψ0(x), w3(x, 0) = w0(x), w3t(x, 0) = ϕ0(x),

θ1(x, 0) = θ0(x), θ1t(x, 0) = η0(x), θ3(x, 0) = ξ0(x)

(1.6)
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and boundary conditions

w1(x, t) = w3x(x, t) = φ2(x, t) = θ1(x, t) = θ3(x, t) = 0, for x = 0, 1, (1.7)

where w1, w3, and φ2 are the longitudinal, vertical, and shear angle displacement, θ1 and θ3
are the temperature deviations from the T0 along the longitudinal and vertical directions, E,
G, ρ, I, m, k, h, and c are positive constants for the elastic and thermal material properties.

From this seemingly complicated system, very interesting special cases can be
obtained. In particular, the isothermal system is exactly the system obtained by Bresse [1] in
1856. The Bresse system, (1.1)–(1.3)with θ1, θ3 removed, is more general than the well-known
Timoshenko system where the longitudinal displacementw1 is not considered. If both θ1 and
w1 are neglected, the Bresse thermoelastic system simplifies to the following Timoshenko
thermoelastic system:

ρhw3tt = Gh
(
φ2 +w3x

)
x,

ρIφ2tt = EIφ2xx −Gh
(
φ2 +w3x

) − αθ3tx,

ρcθ3tt = θ3xxt + θ3xx − αT0φ2tx,

(1.8)

which was studied by Messaoudi and Said-Houari [2]. For the boundary conditions

w3(x, t) = φ2(x, t) = θ3x(x, t) = 0, at x = 0, l, (1.9)

they obtained exponential stability for the thermoelastic Timoshenko system (1.8) when
E = G; later, they proved energy decay for a Timoshenko-type system with history in
thermoelasticity of type III [3], and this paper is similar to [2] with an extra damping that
comes from the presence of a history term; it improves the result of [2] in the sense that the
case of nonequal wave speed has been considered and the relaxation function g is allowed to
decay exponentially or polynomially. We refer the reader to [4–10] for the Timoshenko system
with other kinds of damping mechanisms such as viscous damping, viscoelastic damping of
Boltzmann type acting on the motion equation of w3 or φ2. In all these cases, the rotational
displacement φ2 of the Timoshenko system is effectively damped due to the thermal energy
dissipation. In fact, the energy associated with this component of motion decays exponen-
tially. The transverse displacementw3 is only indirectly damped through the coupling, which
can be observed from (1.2). The effectiveness of this damping depends on the type of coupling
and the wave speeds. When the wave speeds are the same (E = G), the indirect damping is
actually strong enough to induce exponential stability for the Timoshenko system, but when
the wave speeds are different, the Timoshenko system loses the exponential stability. This
phenomenon has been observed for partially damped second-order evolution equations. We
would like to mention other works in [11–15] for other related models.

Recently, Liu and Rao [16] considered a similar system; they used semigroup method
and showed that the exponentially decay rate is preserved when the wave speed of the
vertical displacement coincides with the wave speed of longitudinal displacement or of the
shear angle displacement. Otherwise, only a polynomial-type decay rate can be obtained;
their main tools are the frequency-domain characterization of exponential decay obtained by
Prüss [17] and Huang [18] and of polynomial decay obtained recently by Muñoz Rivera and
Fernández Sare [5]. For the attractors, we refer to [19–24].
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In this paper, we consider system (1.1)–(1.5); that is, we use multiplier techniques to
prove the exponential stability result only for E = G. However, from the theory of elasticity,
E and G denote Young’s modulus and the shear modulus, respectively. These two elastic
moduli are not equal since

G =
E

2(1 + ν)
, (1.10)

where ν ∈ (0, 1/2) is the Poisson’s ratio. Thus, the exponential stability for the case of E = G is
only mathematically sound. However, it does provide useful insight into the study of similar
models arising from other applications.

2. Equal Wave Speeds Case: E = G

Here we state and prove a decay result in the case of equal wave speeds propagation.
Define the state spaces

H = H1
0 ×H1

∗ ×H1
0 ×H1

0 ×
(
L2

)5
, (2.1)

where

H1
∗ =

{

f ∈ H1(0, 1) |
∫1

0
f(x) = 0

}

. (2.2)

The associated energy term is given by

E(t) =
1
2

∫1

0

([
Eh(w1x − kw3)

2 +Gh
(
φ2 +w3x + kw1

)2 + EIφ2
2x

]

+
[
ρh

(
w2

1t +w2
3t

)
+ ρIφ2

2t

]
+
ρc

T0

(
θ2
1t + θ2

1x + θ2
3

))
dx.

(2.3)

By a straightforward calculation, we have

dE(t)
dt

= − 1
T0

(
‖θ1xt‖2 + ‖θ3x‖2

)
. (2.4)

From semigroup theory [25, 26], we have the following existence and regularity result;
for the explicit proofs, we refer the reader to [16].
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Lemma 2.1. Let u0(x), w0(x), ϕ0(x), θ0(x), v0(x), φ0(x), ψ0(x), η0(x), ξ0(x) ∈ H be given. Then
problem (1.1)–(1.5) has a unique global weak solution (ϕ, ψ, θ) verifying

w3(x, t) ∈ C
(
R+,H1

∗ (0, 1)
) ∩ C1(R+, L2(0, 1)

)
,

(
w1(x, t), φ2(x, t), θ1(x, t), θ3(x, t)

) ∈ C
(
R+,H1

0(0, 1)
) ∩ C1(R+, L2(0, 1)

)
.

(2.5)

We are now ready to state our main stability result.

Theorem 2.2. Suppose that E = G and u0(x), w0(x), ϕ0(x), θ0(x), v0(x), φ0(x), ψ0(x), η0(x),
ξ0(x) ∈ H. Then the energy E(t) decays exponentially as time tends to infinity; that is, there exist two
positive constants C and μ independent of the initial data and t, such that

E(t) ≤ CE(0)e−μt, ∀t > 0. (2.6)

The proof of our result will be established through several lemmas.
Let

I1 =
∫1

0
ρIφ2tφ2 + ρhw3tf, (2.7)

where f is the solution of

−fxx = φ2x, f(0) = f(1) = 0. (2.8)

Lemma 2.3. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has, for all ε1 > 0,

I1(t)
dt

≤ −EI
2
‖φ2x‖2 + ρI‖φ2t‖2 + ε1

(
‖w3t‖2 + ‖(w1x − kw3)‖2

)

+ C(ε1)
(
‖θ3x‖2 + ‖θ1xt‖2 + ‖φ2t‖2

)
.

(2.9)

Proof.

dI1
dt

= −EI‖φ2x‖2 + ρI‖φ2t‖2 −
∫1

0
αθ3xφ2dx

− kEh

∫1

0
(w1x − kw3)fdx − kα

∫1

0
θ1tfdx + ρh

∫1

0
w3tftdx,

(2.10)

By using the inequalities

∫1

0
f2
xdx ≤

∫1

0
φ2
2dx ≤

∫1

0
φ2
2xdx,

∫1

0
f2
t dx ≤

∫1

0
f2
txdx ≤

∫1

0
φ2
2tdx,

(2.11)

and Young’s inequality, the assertion of the lemma follows.
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Let

I2 = ρcρh

∫1

0

(∫x

0
θ1tdy

)
w1tdx. (2.12)

Lemma 2.4. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has, for all ε2 > 0,

dI2(t)
dt

≤ −αρhT0
2

∫1

0
w2

1tdx + C(ε2)
(
‖θ1xt‖2 + ‖w3t‖2

)

+ ε2
(
‖(w1x − kw3)‖2 + ‖φ2 +w3x + kw1‖2

)
.

(2.13)

Proof. Using (1.4) and (1.1), we get

I2(t)
dt

= ρcρh

∫1

0

(∫x

0
θ1ttdy

)
w1tdx + ρcρh

∫1

0

(∫x

0
θ1tdy

)
w1ttdx

= ρh

∫1

0

(∫x

0
θ1xxt + θ1xx − αT0(w1tx − kw3t)dy

)
w1tdx

+
∫1

0

(∫x

0
θ1tdy

)
(
(Eh(w1x − kw3) − αθ1t)x −KGh

(
φ2 +w3x + kw1

))
dx

= ρh

∫1

0
(θ1xt + θ1x)w1tdx − ρhαT0

∫1

0
w2

1tdx + ρhk

∫1

0

(∫x

0
w3tdy

)
w1tdx

+ ρhEh

∫1

0

(
θ1xtw1 + kθ1tw3 + αθ2

1t

)
dx

− ρckGh

∫1

0

(∫x

0
θ1tdy

)
(
φ2 +w3x + kw1

)
dx.

(2.14)

The assertion of the lemma then follows, using Young’s and Poincaré’s inequalities.
Let

I3 = ρcρI

∫1

0

(∫x

0
θ3dy

)
φ2tdx. (2.15)

Lemma 2.5. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has, for all ε3 > 0,

dI3
dt

≤ −αρIT0
2

‖φ2t‖2 + C(ε3)‖θ3x‖2 + ε3‖φ2x‖2 + ε3‖φ2 +w3x + kw1‖2. (2.16)
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Proof. Using (1.3) and (1.5), we have

dI3
dt

= ρcρI

∫1

0

(∫x

0
θ3tdy

)
φ2tdx + ρcρI

∫1

0

(∫x

0
θ3dy

)
φ2ttdx

= ρI

∫1

0

∫x

0

(
θ3xx − αT0φ2xt

)
dyφ2tdx

+ ρc

∫1

0

(∫x

0
θ3dy

)
(
EIφ2xx −Gh

(
φ2 +w3x + kw1

) − αθ3x
)
dx

= ρI

∫1

0
θ3xφ2tdx − αIT0

∫1

0
φ2
2tdx + ρcEI

∫1

0
θ3φ2xdx

− ρcGh

∫1

0

(∫x

0
θ3dy

)
(
φ2 +w3x + kw1

)
dx − αρc

∫1

0
θ2
3dx.

(2.17)

Then, using Young’s and Poincaré’s inequalities, we can obtain the assertion.
Next, we set

I4 = hρI

∫1

0
φ2t

(
φ2 +w3x + kw1

)
dx + hρI

∫1

0
φ2xw3tdx. (2.18)

Lemma 2.6. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has, for all ε4 > 0,

dI4
dt

≤ −Gh2

2

∫1

0

(
φ2 +w3x + kw1

)2
dx + C(ε4)

(
‖θ3x‖2 + ‖θ1xt‖2

)

+
khρI

2

(
‖φ2t‖2 + ‖w1t‖2

)
+ C(ε4)‖φ2x‖2 + ε4‖w1x − kw3‖2.

(2.19)

Proof. Letting (1) = I
∫1
0 φ2t(φ2 +w3x + kw1)dx, (2) = hρI

∫1
0 φ2xw3tdx, then using (1.2), (1.3),

we have

(1)′ = ρI

∫1

0
φ2tt

(
φ2 +w3x + kw1

)
dx + hρI

∫1

0
φ2t

(
φ2 +w3x + kw1

)
tdx

= hEI

∫1

0
φ2xx

(
φ2 +w3x + kw1

)
dx −Gh2

∫1

0

(
φ2 +w3x + kw1

)2
dx

− αh

∫1

0
θ3x

(
φ2 +w3x + kw1

)
dx + hρI

∫1

0
φ2
2tdx + hρI

∫1

0
φ2t(w3x + kw1)tdx,
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(2)′ = Iρh

∫1

0
φ2xtw3tdx + Iρh

∫1

0
φ2xw3ttdx

= −Iρh
∫1

0
φ2tw3xtdx + IGh

∫1

0
φ2x

(
φ2 +w3x + kw1

)
xdx

+ IkEh

∫1

0
φ2x(w1x − kw3)dx − αIk

∫1

0
φ2xθ1tdx.

(2.20)

Noticing that E = G, then

I ′4 = (1)′ + (2)′

= −Gh2
∫1

0

(
φ2 +w3x + kw1

)2
dx − αh

∫1

0
θ3x

(
φ2 +w3x + kw1

)
dx + hρI

∫1

0
φ2
2tdx

+ khIρ

∫1

0
φ2tw1tdx + IkEh

∫1

0
φ2x(w1x − kw3)dx − αIk

∫1

0
φ2xθ1tdx.

(2.21)

Then, using Young’s inequality, we can obtain the assertion.
We set

I5 = −hρ
∫1

0
w3t(w1x − kw3)dx − hρ

∫1

0
w1t

(
φ2 +w3x + kw1

)
dx. (2.22)

Lemma 2.7. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has, for all ε5 > 0,

dI5
dt

≤ −kEh
2

‖(w1x − kw3)‖2 −
ρh

2
‖w1t‖2 + kρh‖w3t‖2

+
ρh

2
‖φ2t‖2 + C(ε5)‖θ1xt‖2 + (kGh + ε5)‖

(
φ2 +w3x + kw1

)‖2.
(2.23)

Proof. Let (1) = −hρ ∫10 w3t(w1x −kw3)dx, (2) = −hρ ∫10 w1t(φ2+w3x +kw1)dx, then using (1.1),
(1.2), we have

(1)′ = −Gh

∫1

0

(
φ2 +w3x + kw1

)
x(w1x − kw3)dx − kEh

∫1

0
(w1x − kw3)

2dx

+ αk

∫1

0
θ1t(w1x − kw3)dx + kρh

∫1

0
w2

3t − ρh

∫1

0
w3tw1xtdx,

(2)′ = −Eh
∫1

0
(w1x − kw3)x

(
φ2 +w3x + kw1

)
dx + α

∫1

0
θ1xt

(
φ2 +w3x + kw1

)
dx

+ kGh

∫1

0

(
φ2 +w3x + kw1

)2
dx − ρh

∫1

0
w2

1tdx − ρh

∫1

0
w1tφ2tdx + ρh

∫1

0
w1txw3tdx.

(2.24)
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Then, noticing E = G, again, from the above two equalities and Young’s inequality, we can
obtain the assertion.

Next, we set

I6 = −ρh
∫1

0
w3tw3dx − ρh

∫1

0
w1tw1dx. (2.25)

Lemma 2.8. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has

dI6
dt

≤ −ρh
(
‖w3t‖2 + ‖w1t‖2

)
+ C‖θ1xt‖2 + C‖φ2x‖2. (2.26)

Proof. Using (1.1), (1.2), we have

I ′6 = −ρh
∫1

0
w2

3tdx − ρh

∫1

0
w2

1tdx + Eh

∫1

0
(w1x − kw3)

2dx

+Gh

∫1

0

(
φ2 +w3x + kw1

)
(w3x + kw1)dx − α

∫1

0
θ1t(w1x − kw3)dx.

(2.27)

Noticing (2.3) and (2.4), we have that ∃C1 > 0 satisfy the following:

−α
∫1

0
θ1t(w1x − kw3)dx ≤ C1‖θ1xt‖2 − Eh‖w1x − kw3‖2. (2.28)

Similarly,

Gh

∫1

0

(
φ2 +w3x + kw1

)
(w3x + kw1)dx

= Gh‖φ2 +w3x + kw1‖2 −Gh

∫1

0

(
φ2 +w3x + kw1

)
φ2dx

≤ C1‖φ2x‖2.

(2.29)

Then, insert (2.28) and (2.29) into (2.27), and the assertion of the lemma follows.
Now, we set

I7 = ρc

∫1

0
θ1tθ1dx +

1
2
‖θ1x‖2. (2.30)

Lemma 2.9. Letting w1, w3, φ2, θ1, θ3 be a solution of (1.1)–(1.5), then one has, for all ε7 > 0,

dI7
dt

≤ −1
2
‖θ1x‖2 + ρc‖θ3xt‖2 + C(ε7)

(
‖w1t‖2 + ‖w3t‖2

)
. (2.31)
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Proof. Using (1.5), we have

dI7
dt

= −‖θ1x‖2 + αT0

∫1

0
w1tθ1xdx + αT0k

∫1

0
w3tθ1xdx + ρc‖θ1t‖2. (2.32)

Then, using Young’s and Poincaré’s inequalities, we can obtain the assertion.
Now, letting N,N1,N2,N3,N4,N5,N6,N7 > 0, we define the Lyapunov functional F

as follows:

F = NE +N1I1 +N2I2 +N3I3 +N4I4 +N5I5 +N6I6 +N7I7. (2.33)

By using (2.4), (2.9), (2.13), (2.16), (2.19), (2.23), (2.26), and (2.31), we have

dF
dt

≤ Υ1‖θ1xt‖2 + Υ2‖θ3x‖2 + Υ3‖φ2x‖2 + Υ4‖w1t‖2 + Υ5‖φ2t‖2

+ Υ6‖φ2 +w3x + kw1‖2 + Υ7‖w1x − kw3‖2 + Υ8‖w3t‖2 + Υ9‖θ1x‖2,
(2.34)

where

Υ1 = −N
T0

+ C(ε1)N1 +N2C(ε2) +N4C(ε4) +N5C(ε5) +N7C1 + ρcN7,

Υ2 = −N
T0

+ C(ε1)N1 +N3C(ε3) +N4C(ε4),

Υ3 = −N1EI

2
+ ε3N3 + C(ε4)N4 + C1N6,

Υ4 = −αρhT0N2

2
+
khρIN4

2
− ρhN5

2
− ρhN6 +N7C(ε7),

Υ5 = −αρhT0N3

2
+
khρIN4

2
+N1ρI +N1C(ε1) +

ρhN5

2
,

Υ6 = −Gh2N4

2
+ kGhN5 +N5ε5 +N3ε3 +N2ε2,

Υ7 = −kEhN5

2
+N4ε4 +N1ε1 +N2ε2,

Υ8 = −N6ρh +N5kρh + C(ε2)N2 +N1ε1 +N7C(ε7),

Υ9 = −N7

2
+N2C(ε2).

(2.35)



10 Advances in Difference Equations

We can choose N big enough, ε1, . . . , ε8 small enough, and

N1 
 N4,N6,

N2 
 N4,

N3 
 N1,N6,

N4 
 N5,

N6 
 N2,N5,N7,

N7 
 N2.

(2.36)

Then Υ1, . . . ,Υ9 are all negative constants; at this point, there exists a constant ω > 0, and
(2.34) takes the form

dF
dt

≤ −ω
(
‖θ1xt‖2 + ‖θ1x‖2 + ‖θ3x‖2 + ‖φ2x‖2 + ‖w1t‖2

+‖φ2t‖2 + ‖φ2 +w3x + kw1‖2 + ‖w1x − kw3‖2 + ‖w3t‖2
)
.

(2.37)

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Firstly, from the definition of F, we have

F ∼ E(t), (2.38)

which, from (2.37) and (2.38), leads to

d

dt
F ≤ −μF. (2.39)

Integrating (2.39) over (0, t) and using (2.38) lead to (2.6). This completes the proof of
Theorem 2.2.

3. Global Attractors

In this section, we establish the existence of the global attractor for system (1.1)–(1.5).
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Setting v = w1t, ϕ = w3t, ψ = φ2t, η = θ1t, then, (1.1)–(1.5) can be transformed into the
system

w1t = v,

w3t = ϕ,

φ2t = ψ,

θ1t = η,

ρhvt = (Eh(w1x − kw3) − αθ1)x − kGh
(
φ2 +w3x + kw1

)
,

ρhϕt = Gh
(
φ2 +w3x + kw1

)
x + kEh(w1x − kw3) − kαθ1,

ρIψt = EIφ2xx −Gh
(
φ2 +w3x + kw1

) − αθ3x,

ρcηt = θ1xxt + θ1xx − αT0(w1tx − kw3t),

ρcθ3t = θ3xx − αT0φ2tx.

(3.1)

We consider the problem in the following Hilbert space:

H = H1
0 ×H1

∗ ×H1
0 ×H1

0 ×
(
L2

)5
. (3.2)

Recall that the global attractor of S(t) acting on H is a compact set A ⊂ H enjoying the
following properties:

(1) A is fully invariant for S(t), that is, S(t)A = A for every t ≥ 0;

(2) A is an attracting set, namely, for any bounded set R ⊂ H,

lim
t→∞

δH(S(t)R,A) = 0, (3.3)

where δH denotes the Hausdorff semidistance on H.
More details on the subject can be found in the books [23, 26, 27].

Remark 3.1. The uniform energy estimate (2.6) implies the existence of a bounded absorbing
set R∗ ⊂ H for the C0 semigroup S(t). Indeed, if R∗ is any ball ofH, then for any bounded set
R ⊂ H, it is immediate to see that there exists t(R) ≥ 0 such that

S(t)R ⊂ R∗ (3.4)

for every t ≥ t(R).



12 Advances in Difference Equations

Moreover, if we define

R0 =
⋃

t≥0
S(t)R∗, (3.5)

it is clear that R0 is still a bounded absorbing set which is also invariant for S(t), that is,
S(t)R0 ⊂ R0 for every t ≥ 0.

In the sequel, we define the operator A as Af = −fxx with Dirichlet boundary
conditions. It is well known thatA is a positive operator on L2 with domainD(A) = H2 ∩H1

0 .
Moreover, we can define the powers As of A for s ∈ R. The space V2s = D(As) turns out to be
a Hilbert space with the inner product

〈u, v〉V2s
= 〈Asu,Asv〉, (3.6)

where 〈·〉 stands for L2-inner product on L2.
In particular, V−1 = H−1, V0 = L2, and V1 = H1

0 . The injection Vs1 ↪→ Vs2 is compact
whenever s1 > s2. For further convenience, for s ∈ R, introduce the Hilbert space

Hs = V1+s × V1+s × V1+s × V1+s × (Vs)5. (3.7)

Clearly, H0 = H.
Now, let z0 = (u0, w0, φ0, θ0, v0, ϕ0, ψ0, η0, ξ0), where R0 is the invariant, bounded

absorbing set of S(t) given by Remark 3.1, and take the inner product in H0 of (3.1) and
(Aσw1, A

σw3, A
σφ2, A

σθ1, A
σv,Aσϕ,Aσψ,Aση,Aσθ3) to get

d

dt

(
Eh‖(w1x − kw3)‖2σ +Gh‖(φ2 +w3x + kw1

)‖2σ + EI‖φ2‖21+σ

+ρh
(
‖w1t‖2σ + ‖w3t‖2σ

)
+ ρI‖φ2t‖2σ +

ρc

T0

(
‖θ1t‖2σ + ‖θ1‖21+σ + ‖θ3‖2σ

))

= − 2
T0

(
‖θ1t‖21+σ + ‖θ3‖2(1+σ)

)
.

(3.8)
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Here, the boundary term of integration by parts is neglected since we are working with more
regular functions. We denote

E2(t) = Eh‖(w1x − kw3)‖2σ +Gh‖(φ2 +w3x + kw1
)‖2σ + EI‖φ2‖21+σ

+ ρh
(
‖w1t‖2σ + ‖w3t‖2σ

)
+ ρI‖φ2t‖2σ +

ρc

T0

(
‖θ1‖2σ + ‖θ3‖2σ

)
,

F1(t) =
∫1

0
ρIAσφ2tφ2dx +

∫1

0
ρhAσw3tfdx,

F2(t) = ρcρh

∫1

0

(∫x

0
θ1dy

)
Aσw1tdx,

F3 = ρcρI

∫1

0

(∫x

0
θ3dy

)
Aσφ2tdx,

F4(t) = hρI

∫1

0
Aσφ2t

(
φ2 +w3x + kw1

)
dx + hρI

∫1

0
Aσφ2xw3tdx,

F5(t) = −hρ
∫1

0
Aσw3t(w1x − kw3)dx − hρ

∫1

0
Aσw1t

(
φ2 +w3x + kw1

)
dx,

F6(t) = −ρh
∫1

0
Aσw3tw3dx − ρh

∫1

0
Aσw1tw1dx,

F7 = ρc

∫1

0
Aσθ1tθ1dx +

1
2

∫1

0
Aσθ2

1xdx.

(3.9)

Then, introduce the functional

J(t) = NE2(t) +N1F1 +N2F2 +N3F3 +N4F4 +N5F5 +N6F6 +N7F7. (3.10)

By repeating similar argument as in the proofs of Lemmas 2.3–2.9 and (3.8), choosing our
constants very carefully and properly, we get

d

dt
J(t) + cE2(t) ≤ 0. (3.11)

On the other hand,

J(t) ∼ E2(t), (3.12)

so that

d

dt
J(t) + c1J(t) ≤ 0, (3.13)
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which gives

E2(t) ∼ J(t) ≤ c2e
−c1t, ‖z(t)‖Hσ ≤ c2e

−c1t. (3.14)

Let R(t) be the ball of V3/2 × V3/2 × V3/2 × V3/2 × (V1/2)
5; from the compact embedding V3/2 ×

V3/2 × V3/2 × V3/2 × (V1/2)
5 ↪→ H1

0 ×H1
∗ ×H1

0 ×H1
0 × (L2)5, R(t) is compact inH. Then, due to

the compactness of R(t), for every fixed t ≥ 0 and every d > c2e
−c1t, there exist finitely many

balls ofH of radius d such that z(t) belongs to the union of such balls, for every z0 ∈ R0. This
implies that

αH(S(t)R0) ≤ c2e
−c1t, ∀t ≥ 0, (3.15)

where αH is the Kuratowski measure of noncompactness, defined by

αH(R) = inf{d : R has a finite cover of balls of H of diameter less than d}. (3.16)

Since the invariant, connected, bounded absorbing set R0 fulfills (3.15), exploiting a classical
result of the theory of attractors of semigroups (see, e.g., [28]), we conclude that the ω-limit
set of R0, that is,

A ≡ ω(R0) =
⋂

t≥0

⋃

s≥t
S(s)R0, (3.17)

is a connected and compact global attractor of S(t). Therefore, we have proved the following
result.

Theorem 3.2. Under the assumption of (H1) − (H2), problem (3.1) possesses a unique global
attractorA.
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