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Shooter localization in a wireless network of microphones is studied. Both the acoustic muzzle blast (MB) from the gunfire and
the ballistic shock wave (SW) from the bullet can be detected by the microphones and considered as measurements. The MB
measurements give rise to a standard sensor network problem, similar to time difference of arrivals in cellular phone networks,
and the localization accuracy is good, provided that the sensors are well synchronized compared to the MB detection accuracy.
The detection times of the SW depend on both shooter position and aiming angle and may provide additional information beside
the shooter location, but again this requires good synchronization. We analyze the approach to base the estimation on the time
difference of MB and SW at each sensor, which becomes insensitive to synchronization inaccuracies. Cramér-Rao lower bound
analysis indicates how a lower bound of the root mean square error depends on the synchronization error for the MB and the
MB-SW difference, respectively. The estimation problem is formulated in a separable nonlinear least squares framework. Results
from field trials with different types of ammunition show excellent accuracy using the MB-SW difference for both the position and
the aiming angle of the shooter.

1. Introduction

Several acoustic shooter localization systems are today
commercially available; see, for instance [1–4]. Typically, one
or more microphone arrays are used, each synchronously
sampling acoustic phenomena associated with gunfire. An
overview is found in [5]. Some of these systems are mobile,
and in [6] it is even described how soldiers can carry the
microphone arrays on their helmets. One interesting attempt
to find direction of sound from one microphone only is
described in [7]. It is based on direction dependent spatial
filters (mimicking the human outer ear) and prior knowledge
of the sound waveform, but this approach has not yet been
applied to gun shots.

Indeed, less common are shooter localization systems
based on singleton microphones geographically distributed
in a wireless sensor network. An obvious issue in wireless
networks is the sensor synchronization. For localization
algorithms that rely on accurate timing like the ones based on

time difference of arrival (TDOA), it is of major importance
that synchronization errors are carefully controlled. Regard-
less if the synchronization is solved by using GPS or other
techniques, see, for instance [8–10], the synchronization
procedures are associated with costs in battery life or
communication resources that usually must be kept at a
minimum.

In [11] the synchronization error impact on the sniper
localization ability of an urban network is studied by using
Monte Carlo simulations. One of the results is that the
inaccuracy increased significantly (>2 m) for synchroniza-
tion errors exceeding approximately 4 ms. 56 small wireless
sensor nodes were modeled. Another closely related work
that deals with mobile asynchronous sensors is [12], where
the estimation bounds with respect to both sensor synchro-
nization and position errors are developed and validated by
Monte Carlo simulations. Also [13] should be mentioned,
where combinations of directional and omnidirectional
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acoustic sensors for sniper localization are evaluated by per-
turbation analysis. In [14], estimation bounds for multiple
acoustic arrays are developed and validated by Monte Carlo
simulations.

In this paper we derive fundamental estimation bounds
for shooter localization systems based on wireless sensor
networks, with the synchronization errors in focus. An
accurate method independent of the synchronization errors
will be analyzed (the MB-SW model) as well as a useful
bullet deceleration model. The algorithms are tested on data
from a field trial with 10 microphones spread over an area
of 100 m and with gunfire at distances up to 400 m. Partial
results of this investigation appeared in [15] and almost
simultaneously in [12].

The outline is as follows. Section 2 sketches the local-
ization principle and describes the acoustical phenomena
that are used. Section 3 gives the estimation framework.
Section 4 derives the signal models for the muzzle blast
(MB), shock wave (SW), combined MB;SW, and difference
MB-SW, respectively. Section 5 derives expressions for the
root mean square error (RMSE) Cramér-Rao lower bound
(CRLB) for the described models and provides numerical
results from a realistic scenario. Section 6 presents the results
from field trials, and Section 7 gives the conclusions.

2. Localization Principle

Two acoustical phenomena associated with gunfire will be
exploited to determine the shooter’s position: the muzzle
blast and the shock wave. The principle is to detect and time
stamp the phenomena as they reach microphones distributed
over an area, and let the shooter’s position be estimated by,
in a sense, the most likely point, considering the microphone
locations and detection times.

The muzzle blast (MB) is the sound that probably most of
us associate with a gun shot, the “bang.” The MB is generated
by the pressure depletion in effect of the bullet leaving the
gun barrel. The sound of the MB travels at the speed of sound
in all directions from the shooter. Provided that a sufficient
number of microphones detect the MB, the shooters position
can be more or less accurately determined.

The shock wave (SW) is formed by supersonic bullets.
The SW has (approximately) the shape of an expanding
cone, with the bullet trajectory as axis, and reaches only
microphones that happens to be located inside the cone.
The SW propagates at the speed of sound in direction away
from the bullet trajectory, but since it is generated by a
supersonic bullet, it always reaches the microphone before
the MB, if it reaches the microphone at all. A number of SW
detections may primarily reveal the direction to the shooter.
Extra observations or assumptions on the ammunition are
generally needed to deduce the distance to the shooter. The
SW detection is also more difficult to utilize than the MB
detection, since it depends on the bullet’s speed and ballistic
behavior.

Figure 1 shows an acoustic recording of gunfire. The
first pulse is the SW, which for distant shooters significantly
dominates the MB, not the least if the bullet passes close
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Figure 1: Signal from a microphone placed 180 m from a firing gun.
Initial bullet speed is 767 m/s. The bullet passes the microphone at a
distance of 30 m. The shockwave from the supersonic bullet reaches
the microphone before the muzzle blast.

to the microphone. The figure shows real data, but a rather
ideal case. Usually, and particularly in urban environments,
there are reflections and other acoustic effects that make
it difficult to accurately determine the MB and SW times.
This issue will however not be treated in this work. We will
instead assume that the detection error is stochastic with a
certain distribution. A more thorough analysis of the SW
propagation is given in [16].

Of course, the MB and SW (when present) can be used
in conjunction with each other. One of the ideas exploited
later is to utilize the time difference between the MB and
SW detections. This way, the localization is independent of
the clock synchronization errors that are always present in
wireless sensor networks.

3. Estimation Framework

It is assumed throughout this work that

(1) the coordinates of the microphones are known with
negligible error,

(2) the arrival times of the MB and SW at each micro-
phone are measured with significant synchronization
error,

(3) the shooter position and aim direction are the sought
parameters.

Thus, assume that there are M microphones with known
positions {pk}Mk=1 in the network detecting the muzzle blast.
Without loss of generality, the first S ≤ M ones also detect
the shock wave. The detected times are denoted by {yMB

k }M1
and {ySW

k }S1, respectively. Each detected time is subject to a
detection error {eMB

k }M1 and {eSW
k }S1, different for all times,

and a clock synchronization error {bk}M1 specific for each
microphone. The firing time t0, shooter position x ∈ R3,
and shooting direction α ∈ R2 are unknown parameters.
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Also the bullet speed v and speed of sound c are unknown.
Basic signal models for the detected times as a function of the
parameters will be derived in the next section. The notation
is summarized in Table 1.

The derived signal models will be of the form

y = h
(
x, θ; p

)
+ e, (1)

where y is a vector with the measured detection times, h
is a nonlinear function with values in RM+S, and where θ
represents the unknown parameters apart from x. The error
e is assumed to be stochastic; see Section 4.5. Given the
sensor locations in p ∈ RM×3, nonlinear optimization can
be performed to estimate x, using the nonlinear least squares
(NLS) criterion:

x̂ = arg min
x

min
θ

V
(
x, θ; p

)
,

V
(
x, θ; p

) = ∥∥y − h
(
x, θ; p

)∥∥2
R.

(2)

Here, argmin denotes the minimizing argument, min the
minimum of the function, and ‖v‖2

Q denotes the Q-norm,

that is, ‖v‖2
Q � vTQ−1v. Whenever Q is omitted, Q = I

is assumed. The loss function norm R is chosen by con-
sideration of the expected error characteristics. Numerical
optimization, for instance, the Gauss-Newton method, can
here be applied to get the NLS estimate.

In the next section it will become clear that the assumed
unknown firing time and the inverse speed of sound enter
the model equations linearly. To exploit this fact we identify
a sublinear structure in the signal model and apply the
weighted least squares method to the parameters appearing
linearly, the separable least squares method; see, for instance
[17]. By doing so, the NLS search space is reduced which in
turn significantly reduces the computational burden. For that
reason, the signal model (1) is rewritten as

y = hN
(
x, θN ; p

)
+ hL

(
x, θN ; p

)
θL + e. (3)

Note that θL enters linearly here. The NLS problem can then
be formulated as

x̂ = arg min
x

min
θL,θN

V
(
x, θN , θL; p

)
,

V
(
x, θN , θL; p

) = ∥∥y − hN
(
x, θN ; p

)− hL
(
x, θN ; p

)
θL
∥
∥2
R.
(4)

Since θL enters linearly, it can be solved for by linear least
squares (the arguments of hL(x, θN ; p) and hN (x, θN ; p) are
suppressed for clarity):

θ̂L = arg min
θL

V
(
x, θN , θL; p

)

=
(
hTLR

−1hL
)−1

hTLR
−1(y − hN

)
,

(5a)

PL =
(
hTLR

−1hL
)−1

. (5b)

Here, θ̂L is the weighted least squares estimate and PL is the
covariance matrix of the estimation error. This simplifies the
nonlinear minimization to

x̂ = arg min
x

min
θN

V
(
x, θN , θ̂L; p

)

= arg min
x

min
θN

∥
∥∥
∥y − hN + hL

(
hTLR

−1hL
)−1

× hTLR
−1(y − hN

)
∥
∥
∥∥

2

R′
,

R′ = R + hLPLh
T
L .

(6)

This general separable least squares (SLSs) approach will now
be applied to four different combinations of signal models for
the MB and SW detection times.

4. Signal Models

4.1. Muzzle Blast Model (MB). According to the clock at
microphone k, the muzzle blast (MB) sound is assumed to
reach pk at the time

yk = t0 + bk +
1
c

∥
∥pk − x

∥
∥ + ek. (7)

The shooter position x and microphone location pk are in
Rn, where generally n = 3. However, both computational
and numerical issues occasionally motivate a simplified plane
model with n = 2. For all M microphones, the model is
represented in vector form as

y = b + hL
(
x; p

)
θL + e, (8)

where

θL =
[

t0
1
c

]T
, (9a)

hL,k
(
x; p

) =
[

1
∥
∥pk − x

∥
∥
]T

, (9b)

and where y, b, and e are vectors with elements yk, bk, and
ek, respectively. 1M is the vector with M ones, where M might
be omitted if there is no ambiguity regarding the dimension.
Furthermore, p is M-by-n, where each row is a microphone
position. Note that the inverse of the speed of sound enters
linearly. The ·L notation indicates that · is part of a linear
relation, as described in the previous section. With hN = 0
and hL = hL(x; p), (6) gives

x̂ = arg min
x

∥∥
∥
∥y − hL

(
hTLR

−1hL
)−1

hTLR
−1y

∥∥
∥
∥

2

R′
, (10a)

R′ = R + hL
(
hTLR

−1hL
)−1

hTL . (10b)

Here, hL depends on x as given in (9b).
This criterion has computationally efficient implemen-

tations, that in many applications make the time it takes to
do an exhaustive minimization over a, say, 10-meter grid
acceptable. The grid-based minimization of course reduces
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Table 1: Notation. MB, SW, and MB-SW are different models, and L/N indicates if model parameters or signals enter the model linearly (L)
or nonlinearly (N).

Variable MB SW MB-SW Description

M Number of microphones

S Number of microphones receiving shock wave, S ≤M

x N N N Position of shooter, Rn (n = 2, 3)

pk N N N Position of microphone k, Rn (n = 2, 3)

yk L L L Measured detection time for microphone at position pk
t0 L L Rifle or gun firing time

c L N N Speed of sound

v N N Speed of bullet

α N N Shooting direction, Rn−1 (n = 2, 3)

bk L L Synchronization error for microphone k

ek L L L Detection error at microphone k

r N N Bullet speed decay rate

dk Point of origin for shock wave received by microphone k

β Mach angle, sinβ = c/v

γ Angle between line of sight to shooter and shooting angle

1000 m

Shooter

Microphones

Figure 2: Level curves of the muzzle blast localization criterion
based on data from a field trial.

the risk to settle on suboptimal local minimizers, which
otherwise could be a risk using greedy search methods.
The objective function does, however, behave rather well.
Figure 2 visualizes (10a) in logarithmic scale for data from
a field trial (the norm is R′ = I). Apparently, there are only
two local minima.

4.2. Shock Wave Model (SW). In general, the bullet follows a
ballistic three-dimensional trajectory. In practice, a simpler
model with a two-dimensional trajectory with constant
deceleration might suffice. Thus, it will be assumed that the
bullet follows a straight line with initial speed v0; see Figure 3.
Due to air friction, the bullet decelerates; so when the bullet
has traveled the distance ‖dk − x‖, for some point dk on the
trajectory, the speed is reduced to

v = v0 − r‖dk − x‖, (11)

where r is an assumed known ballistic parameter. This is
a rather coarse bullet trajectory model, compared with, for
instance, the curvilinear trajectories proposed by [18], but
we use it here for simplicity. This model is also a special case
of the ballistic model used in [19].

The shock wave from the bullet trajectory propagates at
the speed of sound c with angle βk to the bullet heading. βk
is the Mach angle defined as

sinβk = c

v
= c

v0 − r‖dk − x‖ . (12)

dk is now the point where the shock wave that reaches
microphone k is generated. The time it takes the bullet to
reach dk is

∫ ‖x−dk‖

0

dξ

v0 − r · ξ =
1
r

log
v0

v0 − r‖dk − x‖ . (13)

This time and the wave propagation time from dk to pk sum
up to the total time from firing to detection:

yk = t0 + bk +
1
r

log
v0

v0 − r‖dk − x‖ +
1
c

∥
∥dk − pk

∥
∥ + ek,

(14)

according to the clock at microphone k. Note that the
variable names y and e for notational simplicity have been
reused from the MB model. Below, also h, θN , and θL
will be reused. When there is ambiguity, a superscript will
indicate exactly which entity that is referred to, for instance,
yMB, hSW.

It is a little bit tedious to calculate dk. The law of sines
gives

sin
(
90◦ − βk − γk

)

‖dk − x‖ = sin
(
90◦ + βk

)

∥
∥pk − x

∥
∥ , (15)

which together with (12) implicitly defines dk. We have not
found any simple closed form for dk; so we solve for dk
numerically, and in case of multiple solutions we keep the
admissible one (which turns out to be unique). γk is trivially
induced by the shooting direction α (and x, pk). Both these
angles thus depend on x implicitly.
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pk c
Shock wave

βk

v

Gun
x

α ||dk
− x|| dkγk

||p
k
− x
||

90◦ + βk Bullet trajectory

Figure 3: Geometry of supersonic bullet trajectory and shock wave.
Given the shooter location x, the shooting direction (aim) α, the
bullet speed v, and the speed of sound c, the time it takes from firing
the gun to detecting the shock wave can be calculated.

The vector form of the model is

y = b + hN
(
x, θN ; p

)
+ hL

(
x, θN ; p

)
θL + e, (16)

where

hL
(
x, θN ; p

) = 1,

θL = t0,

θN =
[

1
c

αT v0

]T
,

(17)

and where row k of hN (x, θN ; p) ∈ RS×1 is

hN ,k
(
x, θN ; pk

) = 1
r

log
v0

v0 − r‖dk − x‖ +
1
c

∥
∥dk − pk

∥
∥, (18)

and dk is the admissible solution to (12) and (15).

4.3. Combined Model (MB;SW). In the MB and SW models,
the synchronization error has to be regarded as a noise
component. In a combined model, each pair of MB and SW
detections depends on the same synchronization error, and
consequently the synchronization error can be regarded as a
parameter (at least for all sensor nodes inside the SW cone).
The total signal model could be fused from the MB and SW
models as the total observation vector:

yMB;SW = hMB;SW
N

(
x, θN ; p

)
+ hMB;SW

L

(
x, θN ; p

)
θL + e, (19)

where

yMB;SW =
⎡

⎣
yMB

ySW

⎤

⎦, (20)

θL =
[
t0 bT

]T
, (21)

hMB;SW
L

(
x, θN ; p

) =
[

1M,1 IM
1S,1

[
IS 0S,M−S

]

]

, (22)

θN =
[

1
c

αT v0

]T
, (23)

hMB;SW
N

(
x, θN ; p

) =

⎡

⎢
⎣
hMB
L

(
x; p

)[

0
1
c

]T

hSW
N

(
x, θN ; p

)

⎤

⎥
⎦. (24)

4.4. Difference Model (MB-SW). Motivated by accurate
localization despite synchronization errors, we study theMB-
SW model:

yMB-SW
k = yMB

k − ySW
k

= hMB
L

(
x; p

)
θMB
L − hSW

N

(
x, θSW

N ; p
)

− hSW
L

(
x, θN ; p

)
θSW
N + eMB

k − eSW
k ,

(25)

for k = 1, 2 . . . S. This rather special model has also
been analyzed in [12, 15]. The key idea is that y is by
cancellation independent of both the firing time t0 and the
synchronization error b. The drawback, of course, is that
there are only S equations (instead of a total of M + S) and
the detection error increases, eMB

k − eSW
k . However, when the

synchronization errors are expected to be significantly larger
than the detection errors, and when also S is sufficiently large
(at least as large as the number of parameters), this model
is believed to give better localization accuracy. This will be
investigated later.

There are no parameters in (25) that appear linearly
everywhere. Thus, the vector form for the MB-SW model can
be written as

yMB-SW = hMB-SW
N

(
x, θN ; p

)
+ e, (26)

where

hMB-SW
N ,k

(
x, θN ; pk

)

= 1
c

∥
∥pk − x

∥
∥− 1

r
log

v0

v0 − r‖dk − x‖ −
1
c

∥
∥dk − pk

∥
∥,

(27)

and y = yMB − ySW and e = eMB − eSW. As before, dk is
the admissible solution to (12) and (15). The MB-SW least
squares criterion is

x̂ = arg min
x,θN

∥∥
∥yMB−SW − hMB−SW

N

(
x, θN ; p

)∥∥
∥

2

R
, (28)

which requires numerical optimization. Numerical experi-
ments indicate that this optimization problem is more prone
to local minima, compared to (10a) for the MB model;
therefore good starting points for the numerical search are
essential. One such starting point could, for instance, be the
MB estimate x̂MB. Initial shooting direction could be given by
assuming, in a sense, the worst possible case, that the shooter
aims at some point close to the center of the microphone
network.

4.5. Error Model. At an arbitrary moment, the detection
errors and synchronization errors are assumed to be inde-
pendent stochastic variables with normal distribution:

eMB ∼ N
(

0,RMB
)

, (29a)

eSW ∼ N
(

0,RSW
)

, (29b)

b ∼ N
(

0,Rb
)
. (29c)
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For the MB-SW model the error is consequently

eMB-SW ∼ N
(

0,RMB + RSW
)
. (29d)

Assuming that S = M in the MB;SW model, the covariance
of the summed detection and synchronization errors can be
expressed in a simple manner as

RMB;SW =
[
RMB + Rb Rb

Rb RSW + Rb

]

. (29e)

Note that the correlation structure of the clock synchroniza-
tion error b enables estimation of these. Note also that the
(assumed known) total error covariance, generally denoted
by R, dictates the norm used in the weighted least squares
criterion. R also impacts the estimation bounds. This will be
discussed in the next section.

4.6. Summary of Models. Four models with different pur-
poses have been described in this section.

(i) MB. Given that the acoustic environment enables
reliable detection of the muzzle blast, the MB
model promises the most robust estimation algo-
rithms. It also allows global minimization with
low-dimensional exhaustive search algorithms. This
model is thus suitable for initialization of algorithms
based on the subsequent models.

(ii) SW. The SW model extends the MB model with
shooting angle, bullet speed, and deceleration param-
eters, which provide useful information for sniper
detection applications. The SW is easier to detect
in disturbed environments, particularly when the
shooter is far away and the bullet passes closely.
However, a sufficient number of microphones are
required to be located within the SW cone, and the
SW measurements alone cannot be used to determine
the distance to the shooter.

(iii) MB;SW. The total MB;SW model keeps all informa-
tion from the observations and should thus provide
the most accurate and general estimation perfor-
mance. However, the complexity of the estimation
problem is large.

(iv) MB-SW. All algorithms based on the models above
require that the synchronization error in each micro-
phone either is negligible or can be described with
a statistical distribution. The MB-SW model relaxes
such assumptions by eliminating the synchronization
error by taking differences of the two pulses at each
microphone. This also eliminates the shooting time.
The final model contains all interesting parameters
for the problem, but only one nuisance parameter
(actual speed of sound, which further may be elim-
inated if known sufficiently well).

The different parameter vectors in the relation y =
hL(θN )θL + hN (θN ) + e are summarized in Table 2.

5. Cramér-Rao Lower Bound

The accuracy of any unbiased estimator η̂ in the rather
general model

y = h
(
η
)

+ e (30)

is, under not too restrictive assumptions [20], bounded by
the Cramér-Rao bound:

Cov
(
η̂
) ≥ I−1(ηo

)
, (31)

where I(ηo) is Fisher’s information matrix evaluated at
the correct parameter values ηo. Here, the location x is
for notational purposes part of the parameter vector η.
Also the sensor positions pk can be part of η, if these are
known only with a certain uncertainty. The Cramér-Rao
lower bound provides a fundamental estimation limit for
unbiased estimators; see [20]. This bound has been analyzed
thoroughly in the literature, primarily for AOA, TOA, and
TDOA [21–23].

The Fisher information matrix for e ∼ N (0,R) takes the
form

I
(
η
) = ∇η

[
h
(
η
)]
R−1∇T

η

[
h
(
η
)]
. (32)

The bound is evaluated for a specific location, parameter
setting, and microphone positioning, collectively η = ηo.

The bound for the localization error is

Cov(x̂) ≥
[
In 0

]
I−1(ηo

)
[
In
0

]

. (33)

This covariance can be converted to a more convenient scalar
value giving a bound on the root mean square error (RMSE)
using the trace operator:

RMSE ≥
√√
√
√ 1
n

tr

([
In 0

]
I−1

(
ηo
)
[
In
0

])

. (34)

The RMSE bound can be used to compare the information
in different models in a simple and unambiguous way, which
does not depend on which optimization criterion is used or
which numerical algorithm that is applied to minimize the
criterion.

5.1. MB Case. For the MB case, the entities in (32) are
identified by

η =
[
xT θTL

]T
,

h
(
η
) = hMB

L

(
x; p

)
θL,

R = RMB + Rb.

(35)

Note that b is accounted for by the error model. The Jacobian
∇ηh is an M-by-n+2 matrix, n being the dimension of x. The
LS solution in (5a) however gives a shortcut to an M-by-n
Jacobian:

∇x

[
hLθ̂L

]
= ∇x

[
hL
(
hTLR

−1hL
)−1

hTLR
−1yo

]
(36)
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Table 2: Summary of parameter vectors for the different models y = hL(θN )θL + hN (θN ) + e, where the noise models are summarized in
(29a), (29b), (29c), (29d), and (29e). The values of the dimensions assume that the set of microphones giving SW observations is a subset of
the MB observations.

Model Linear Parameters Nonlinear Parameters dim(θ) dim(y)

MB θMB
L = [t0 1/c]T θMB

N = [ ] 2 + 0 M

SW θSW
L = t0 θMB

N = [1/c,αT , v0]T 1 + (n + 1) S

MB;SW θMB;SW
L = [t0 b]T θMB;SW

N = [1/c,αT , v0]T (M + 1) + (n + 1) M + S

MB-SW θMB-SW
L = [ ] θMB-SW

N = [1/c,αT , v0]T 0 + (n + 1) S

1000 m

Shooter

Microphones

Trees

Trees

Camp

Road

x2

x1

Figure 4: Example scenario. A network with 14 sensors deployed
for camp protection. The sensors detect intruders, keep track on
vehicle movements, and, of course, locate shooters.

for yo = hL(xo; po)θoL, where xo, po, and θo denote the true
(unperturbed) values. For the case n = 2 and known p = po,
this Jacobian can, with some effort, be expressed explicitly.
The equivalent bound is

Cov(x̂) ≥
[
∇T

x

[
hLθ̂L

]
R−1∇x

[
hLθ̂L

]]−1
. (37)

5.2. SW, MB;SW, and MB-SW Cases. The estimation bounds
for the SW, MB;SW, and MB-SW cases are analogously to
(33), but there are hardly any analytical expressions available.
The Jacobian is probably best evaluated by finite difference
methods.

5.3. Numerical Example. The really interesting question is
how the information in the different models relates to each
other. We will study a scenario where 14 microphones are
deployed in a sensor network to support camp protection;
see Figure 4. The microphones are positioned along a road to
track vehicles and around the camp site to detect intruders.
Of course, the microphones also detect muzzle blasts and
shock waves from gunfire, so shooters can be localized and
the shooter’s target identified.

A plane model (flat camp site) is assumed, x ∈ R2, α ∈
R. Furthermore, it is assumed that

Rb = σ2
b I

(
synchronization error Cov .

)
,

RMB = RSW = σ2
e I (detection error Cov .),

(38)

and that α = 0, c = 330 m/s, v0 = 700 m/s, and r = 0.63.
The scenario setup implies that all microphones detect the
shock wave, so S = M = 14. All bounds presented below are
calculated by numerical finite difference methods.

MBModel. The localization accuracy using the MB model is
bounded below according to

Cov
(
x̂MB

)
≥
(
σ2
e + σ2

b

)[ 64 −17
−17 9

]

· 104. (39)

The root mean square error (RMSE) is consequently
bounded according to

RMSE
(
x̂MB

)
≥
√

1
n

tr Cov x̂MB ≈ 606
√
σ2
e + σ2

b [m]. (40)

Monte Carlo simulations (not described here) indicate that

the NLS estimator attains this lower bound for
√
σ2
e + σ2

b <
0.1 s. The dash-dotted curve in Figure 5 shows the bound
versus σb for fix σe = 500μs. An uncontrolled increase as
soon as σb > σe can be noted.

SWModel. The SW model is disregarded here, since the SW
detections alone contain no shooter distance information.

MB-SWModel. The localization accuracy using the MB-SW
model is bounded according to

Cov
(
x̂MB-SW

)
≥ σ2

e

[
28 5
5 12

]

· 105, (41)

RMSE
(
x̂MB-SW

)
≥ 1430σe [m]. (42)

The dashed lines in Figure 5 correspond to the RMSE bound
for four different values of σe. Here, the MB-SW model gives
at least twice the error of the MB model, provided that
there are no synchronization errors. However, in a wireless
network we expect the synchronization error to be 10–100
times larger than the detection error, and then the MB-SW
error will be substantially smaller than the MB error.

MB;SW Model. The expression for the MB;SW bound is
somewhat involved; so the dependence on σb is only pre-
sented graphically, see Figure 5. The solid curves correspond
to the MB;SW RMSE bound for the same four values
of σe as for the MB-SW bound. Apparently, when the
synchronization error σb is large compared to the detection
error σe, the MB-SW and MB;SW models contain roughly
the same amount of information, and the model having
the simplest estimator, that is, the MB-SW model, should
be preferred. However, when the synchronization error is
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Figure 5: Cramér-Rao RMSE bound (34) for the MB (40), the MB-
SW (42), and the MB;SW models, respectively, as a function of the
synchronization error (STD) σb, and for different levels of detection
error σe.

smaller than 100 times the detection error, the complete
MB;SW model becomes more informative.

These results are comparable with the analysis in
[12, Figure 4a], where an example scenario with 6 micro-
phones is considered.

5.4. Summary of the CRLB Analysis. The synchronization
error level in a wireless sensor network is usually a matter
of design tradeoff between performance and battery costs
required by synchronization mechanisms. Based on the
scenario example, the CRLB analysis is summarized with the
following recommendations.

(i) If σb � σe, then the MB-SW model should be used.

(ii) If σb is moderate, then the MB;SW model should be
used.

(iii) Only if σb is very small (σb ≤ σe), the shooting
direction is of minor interest, and performance may
be traded for simplicity, then the MB model should
be used.

6. Experimental Data

A field trial to collect acoustic data on nonmilitary small
arms fire is conducted. 10 microphones are placed around
a fictitious camp; see Figure 6. The microphones are placed
close to the ground and wired to a common recorder with 16-
bit sampling at 48 kHz. A total of 42 rounds are fired from
three positions and aimed at a common cardboard target.
Three rifles and one pistol are used; see Table 3. Four rounds
are fired of each armament at each shooter position, with
two exceptions. The pistol is only used at position three. At

1

2

3

Target

500 m

Shooter

Microphone

Figure 6: Scene of the shooter localization field trial. There are ten
microphones, three shooter positions, and a common target.

position three, six instead of four rounds of 308 W are fired.
All ammunition types are supersonic. However, when firing
from position three, not all microphones are subjected to the
shock wave.

Light wind, no clouds, and around 24◦C are the weather
conditions. Little or no acoustic disturbances are present.
The terrain is rough. Dense woods surround the test site.
There is light bush vegetation within the site. Shooter
position 1 is elevated some 20 m; otherwise spots are within
±5 m of a horizontal plane. Ground truth values of the
positions are determined with less relative error than 1 m,
except for shooter position 1, which is determined with 10 m
accuracy.

6.1. Detection. The MB and SW are detected by visual
inspection of the microphone signals in conjunction with
filtering techniques. For shooter positions 1 and 2, the
shock wave detection accuracy is approximately σSW

e ≈
80μs, and the muzzle blast error σMB

e is slightly worse. For
shooting position 3 the accuracies are generally much worse,
since the muzzle blast and shock wave components become
intermixed in time.

6.2. Numerical Setup. For simplicity, a plane model is
assumed. All elevation measurements are ignored and x ∈
R2 and α ∈ R. Localization using the MB model (7) is done
by minimizing (10a) over a 10 m grid well covering the area
of interest, followed by numerical minimization.

Localization using the MB-SW model (25) is done by
numerically minimizing (28). The objective function is sub-
ject to local optima; therefore the more robust muzzle blast
localization x̂ is used as an initial guess. Furthermore, the
direction from x̂ toward the mean point of the microphones
(the camp) is used as initial shooting direction α. Initial
bullet speed is v = 800 m/s and initial speed of sound is
c = 330 m/s. r = 0.63 is used, which is a value derived from
the 308 Winchester ammunition ballistics.

6.3. Results. Figure 7 shows, at three enlarged parts of the
scene, the resulting position estimates based on the MB
model (blue crosses) and based on the MB-SW (squares).
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Table 3: Armament and ammunition used at the trial, and number of rounds fired at each shooter position. Also, the resulting localization
RMSE for the MB-SW model for each shooter position. For the Luger Pistol the MB model RMSE is given, since only one microphone is
located in the Luger Pistol SW cone.

Type Caliber Weight Velocity Sh. pos. # Rounds RMSE

308 Winchester 7.62 mm 9.55 g 847 m/s 1, 2, 3 4, 4, 6 19, 6, 6 m

Hunting Rifle 9.3 mm 15 g 767 m/s 1, 2, 3 4, 4, 4 6, 5, 6 m

Swedish Mauser 6.5 mm 8.42 g 852 m/s 1, 2, 3 4, 4, 4 40, 6, 6 m

Luger Pistol 9 mm 6.8 g 400 m/s 3 —, —, 4 —, —, 2 m

Apparently, the use of the shock wave significantly improves
localization at positions 1 and 2, while rather the opposite
holds at position 3. Figure 8 visualizes the shooting direction
estimates, α̂. Estimate root mean square errors (RMSEs) for
the three shooter positions, together with the theoretical
bounds (34), are given in Table 4. The practical results
indicate that the use of the shock wave from distant shooters
cut the error by at least 75%.

6.3.1. Synchronization and Detection Errors. Since all micro-
phones are recorded by a common recorder, there are actually
no timing errors due to inaccurate clocks. This is of course
the best way to conduct a controlled experiment, where any
uncertainty renders the dataset less useful. From experimen-
tal point of view, it is then simple to add synchronization
errors of any desired magnitude off-line. On the dataset at
hand, this is however work under progress. At the moment,
there are apparently other sources of error, worth identifying.
It should however be clarified that in the final wireless sensor
product, there will always be an unpredictable clock error.
As mentioned, detection errors are present, and the expected
level of these (80 μs) is used for bound calculations in Table 4.
It is noted that the bounds are in level with, or below, the
positioning errors.

There are at least two explanations for the bad perfor-
mance using the MB-SW model at shooter position 3. One is
that the number of microphones reached by the shock wave
is insufficient to make accurate estimates. There are four
unknown model parameters, but for the relatively low speed
of pistol ammunition, for instance, only one microphone has
a valid shock wave detection. Another explanation is that the
increased detection uncertainty (due to SW/MB intermix)
impacts the MB-SW model harder, since it relies on accurate
detection of both the MB and SW.

6.3.2. Model Errors. No doubt, there are model inaccuracies
both in the ballistic and in the acoustic domain. To that end,
there are meteorological uncertainties out of our control.
For instance, looking at the MB-SW localizations around
shooter position 1 in Figure 7 (squares), three clusters
are identified that correspond to three ammunition types
with different ballistic properties; see the RMSE for each
ammunition and position in Table 3. This clustering or bias
more likely stems from model errors than from detection
errors and could at least partially explain the large gap
between theoretical bound and RMSE in Table 4. Working
with three-dimensional data in the plane is of course another

Table 4: Localization RMSE and theoretical bound (34) for the
three different shooter positions using the MB and the MB-SW
models, respectively, beside the aim RMSE for the MB-SW model.
The aim RMSE is with respect to the aim at x̂ against the target,
α′, not with respect to the true direction α. This way the ability to
identify the target is assessed.

Shooter position 1 2 3

RMSE(x̂MB) 105 m 28 m 2.4 m

MB Bound 1 m 0.4 m 0.02 m

RMSE (x̂MB-SW) 26 m 5.7 m 5.2 m

MB-SW Bound 9 m 0.1 m 0.08 m

RMSE(α̂′) 0.041◦ 0.14◦ 17◦

model discrepancy that could have greater impact than we
first anticipated. This will be investigated in experiments to
come.

6.3.3. Numerical Uncertainties. Finally, we face numerical
uncertainties. There is no guarantee that the numerical
minimization programs we have used here for the MB-
SW model really deliver the global minimum. In a realistic
implementation, every possible a priori knowledge and also
qualitative analysis of the SW and MB signals (amplitude,
duration, caliber classification, etc.) together with basic
consistency checks are used to reduce the search space. The
reduced search space may then be exhaustively sampled over
a grid prior to the final numerical minimization. Simple
experiments on an ordinary desktop PC indicate that with
an efficient implementation, it is feasible to, within the time
frame of one second, minimize any of the described model
objective functions over a discrete grid with 107 points. Thus,
by allowing—say—one second extra of computation time,
the risk for hitting a local optima could be significantly
reduced.

7. Conclusions

We have presented a framework for estimation of shooter
location and aiming angle from wireless networks where each
node has a single microphone. Both the acoustic muzzle
blast (MB) and the ballistic shock wave (SW) contain useful
information about the position, but only the SW contains
information about the aiming angle. A separable nonlinear
least squares (SNLSs) framework was proposed to limit the
parametric search space and to enable the use of global
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Figure 7: Estimated positions x̂ based on the MB model and on the
MB-SW model. The diagrams are enlargements of the interesting
areas around the shooter positions. The dashed lines identify the
shooting directions.

grid-based optimization algorithms (for the MB model),
eliminating potential problems with local minima.

For a perfectly synchronized network, both MB and
SW measurements should be stacked into one large signal
model for which SNLS is applied. However, when the
synchronization error in the network becomes comparable
to the detection error for MB and SW, the performance
quickly deteriorates. For that reason, the time difference of
MB and SW at each microphone is used, which automatically
eliminates any clock offset. The effective number of measure-
ments decreases in this approach, but as the CRLB analysis
showed, the root mean square position error is comparable
to that of the ideal stacked model, at the same time as

Target

500 m

Shooter

Microphone
Estimated position

Figure 8: Estimated shooting directions. The relatively slow pistol
ammunition is excluded.

the synchronization error distribution may be completely
disregarded.

The bullet speed occurs as nuisance parameters in the
proposed signal model. Further, the bullet retardation con-
stant was optimized manually. Future work will investigate
if the retardation constant should also be estimated, and if
these two parameters can be used, together with the MB and
SW signal forms, to identify the weapon and ammunition.
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