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We suggest new dual algorithms and iterative methods for solving monotone generalized
variational inequalities. Instead of working on the primal space, this method performs a dual
step on the dual space by using the dual gap function. Under the suitable conditions, we prove
the convergence of the proposed algorithms and estimate their complexity to reach an ε-solution.
Some preliminary computational results are reported.

1. Introduction

Let C be a convex subset of the real Euclidean space R
n, F be a continuous mapping from C

into R
n, and ϕ be a lower semicontinuous convex function from C into R. We say that a point

x∗ is a solution of the following generalized variational inequality if it satisfies

〈F(x∗), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0, ∀x ∈ C, (GVI)

where 〈·, ·〉 denotes the standard dot product in R
n.

Associated with the problem (GVI), the dual form of this is expressed as following
which is to find y∗ ∈ C such that

〈
F(x), x − y∗〉 + ϕ(x) − ϕ

(
y∗) ≥ 0, ∀x ∈ C. (DGVI)

In recent years, this generalized variational inequalities become an attractive field
for many researchers and have many important applications in electricity markets,
transportations, economics, and nonlinear analysis (see [1–9]).
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It is well known that the interior quadratic and dual technique are powerfull tools for
analyzing and solving the optimization problems (see [10–16]). Recently these techniques
have been used to develop proximal iterative algorithm for variational inequalities (see [17–
22]).

In addition Nesterov [23] introduced a dual extrapolation method for solving
variational inequalities. Instead of working on the primal space, this method performs a dual
step on the dual space.

In this paper we extend results in [23] to the generalized variational inequality
problem (GVI) in the dual space. In the first approach, a gap function g(x) is constructed
such that g(x) ≥ 0, for all x∗ ∈ C and g(x∗) = 0 if and only if x∗ solves (GVI). Namely, we
first develop a convergent algorithm for (GVI) with F being monotone function satisfying a
certain Lipschitz type condition on C. Next, in order to avoid the Lipschitz condition we will
show how to find a regularization parameter at every iteration k such that the sequence xk

converges to a solution of (GVI).
The remaining part of the paper is organized as follows. In Section 2, we present

two convergent algorithms for monotone and generalized variational inequality problems
with Lipschitzian condition and without Lipschitzian condition. Section 3 deals with some
preliminary results of the proposed methods.

2. Preliminaries

First, let us recall the well-known concepts of monotonicity that will be used in the sequel
(see [24]).

Definition 2.1. Let C be a convex set in R
n, and F : C → R

n. The function F is said to be

(i) pseudomonotone on C if

〈
F
(
y
)
, x − y

〉 ≥ 0 =⇒ 〈F(x), x − y
〉 ≥ 0, ∀x, y ∈ C, (2.1)

(ii) monotone on C if for each x, y ∈ C,

〈
F(x) − F

(
y
)
, x − y

〉 ≥ 0, (2.2)

(iii) strongly monotone on C with constant β > 0 if for each x, y ∈ C,

〈
F(x) − F

(
y
)
, x − y

〉 ≥ β
∥∥x − y

∥∥2, (2.3)

(iv) Lipschitz with constant L > 0 on C (shortly L-Lipschitz), if

∥∥F(x) − F
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ C. (2.4)

Note that when ϕ is differentiable on some open set containing C, then, since ϕ is lower
semicontinuous proper convex, the generalized variational inequality (GVI) is equivalent to
the following variational inequalities (see [25, 26]):
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Find x∗ ∈ C such that

〈F(x∗) +∇ϕ(x∗), x − x∗〉 ≥ 0, ∀x ∈ C. (2.5)

Throughout this paper, we assume that:

(A1) the interior set of C, intC is nonempty,

(A2) the set C is bounded,

(A3) F is upper semicontinuous on C, and ϕ is proper, closed convex and subdifferen-
tiable on C,

(A4) F is monotone on C.

In special case ϕ = 0, problem (GVI) can be written by the following.
Find x∗ ∈ C such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C. (VI)

It is well known that the problem (VI) can be formulated as finding the zero points of the
operator T(x) = F(x) +NC(x), where

NC(x) =

⎧
⎨

⎩

{
y ∈ C :

〈
y, z − x

〉 ≤ 0, ∀z ∈ C
}
, if x ∈ C,

∅, otherwise.
(2.6)

The dual gap function of problem (GVI) is defined as follows:

g(x) := sup
{〈
F
(
y
)
, x − y

〉
+ ϕ(x) − ϕ

(
y
) | y ∈ C

}
. (2.7)

The following lemma gives two basic properties of the dual gap function (2.7) whose
proof can be found, for instance, in [6].

Lemma 2.2. The function g is a gap function of (GVI), that is,

(i) g(x) ≥ 0 for all x ∈ C,

(ii) x∗ ∈ C and g(x∗) = 0 if and only if x∗ is a solution to (DGVI). Moreover, if F is
pseudomonotone then x∗ is a solution to (DGVI) if and only if it is a solution to (GVI).

The problem sup{〈F(y), x − y〉 + ϕ(x) − ϕ(y) | y ∈ C} may not be solvable and the
dual gap function g may not be well-defined. Instead of using gap function g, we consider a
truncated dual gap function gR. Suppose that x ∈ intC fixed and R > 0. The truncated dual
gap function is defined as follows:

gR(x) := max
{〈
F
(
y
)
, x − y

〉
+ ϕ(x) − ϕ

(
y
) | y ∈ C,

∥∥y − x
∥∥ ≤ R

}
. (2.8)

For the following consideration, we define BR(x) := {y ∈ R
n | ‖y − x‖ ≤ R} as a closed ball

in R
n centered at x and radius R, and CR := C ∩ BR(x). The following lemma gives some

properties for gR.
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Lemma 2.3. Under assumptions (A1)–(A4), the following properties hold.

(i) The function gR(·) is well-defined and convex on C.

(ii) If a point x∗ ∈ C ∩ BR(x) is a solution to (DGVI) then gR(x∗) = 0.

(iii) If there exists x0 ∈ C such that gR(x0) = 0 and ‖x0 − x‖ < R, and F is pseudomonotone,
then x0 is a solution to (DGVI) (and also (GVI)).

Proof. (i) Note that 〈F(y), x − y〉 + ϕ(x) − ϕ(y) is upper semicontinuous on C for x ∈ C
and BR(x) is bounded. Therefore, the supremum exists which means that gR is well-defined.
Moreover, since ϕ is convex on C and g is the supremum of a parametric family of convex
functions (which depends on the parameter x), then gR is convex on C

(ii) By definition, it is easy to see that gR(x) ≥ 0 for all x ∈ C ∩ BR(x). Let x∗ be a
solution of (DGVI) and x∗ ∈ BR(x). Then we have

〈
F
(
y
)
, x∗ − y

〉
+ ϕ(x∗) − ϕ

(
y
) ≤ 0 ∀y ∈ C. (2.9)

In particular, we have

〈
F
(
y
)
, x∗ − y

〉
+ ϕ
(
y
) − ϕ(x∗) ≤ 0 (2.10)

for all y ∈ C ∩ BR(x). Thus

gR(x∗) = sup
{〈
F
(
y
)
, x∗ − y

〉
+ ϕ(x∗) − ϕ

(
y
) | y ∈ C ∩ BR(x)

} ≤ 0, (2.11)

this implies gR(x∗) = 0.
(iii) For some x0 ∈ C ∩ intBR(x), gR(x0) = 0 means that x is a solution to (DGVI)

restricted toC ∩ intBR(x). Since F is pseudomonotone, x0 is also a solution to (GVI) restricted
to C ∩ BR(x). Since x0 ∈ intBR(x), for any y ∈ C, we can choose λ > 0 sufficiently small such
that

yλ := x0 + λ
(
y − x0

)
∈ C ∩ BR(x), (2.12)

0 ≤
〈
F
(
x0
)
, yλ − x0

〉
+ ϕ
(
yλ

) − ϕ
(
x0
)

=
〈
F
(
x0
)
, x0 + λ

(
y − x0

)
− x0

〉
+ ϕ
(
x0 + λ

(
y − x0

))
− ϕ
(
x0
)

≤ λ
〈
F
(
x0), y − x0〉 + λϕ

(
y
)
+ (1 − λ)ϕ

(
x0) − ϕ

(
x0)

= λ
(〈

F
(
x0
)
, y − x0

〉
+ ϕ
(
y
) − ϕ

(
x0
))

,

(2.13)

where (2.13) follows from the convexity of ϕ(·). Since λ > 0, dividing this inequality by λ, we
obtain that x0 is a solution to (GVI) on C. Since F is pseudomonotone, x0 is also a solution to
(DGVI).
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Let C ⊆ R
n be a nonempty, closed convex set and x ∈ R

n. Let us denote dC(x) the
Euclidean distance from x to C and PrC(x) the point attained this distance, that is,

dC(x) := min
y∈C

∥
∥y − x

∥
∥, PrC(x) := arg min

y∈C

∥
∥y − x

∥
∥. (2.14)

As usual, PrC is referred to the Euclidean projection onto the convex set C. It is well-known
that PrC is a nonexpansive and co-coercive operator on C (see [27, 28]).

The following lemma gives a tool for the next discussion.

Lemma 2.4. For any x, y, z ∈ R
n and for any β > 0, the function dC and the mapping PrC defined

by (2.14) satisfy

〈
PrC(x) − x, y − PrC(x)

〉 ≥ 0, ∀y ∈ C, (2.15)

d2
C

(
x + y

) ≥ d2
C(x) + d2

C

(
PrC(x) + y

) − 2
〈
y, PrC(x) − x

〉
, (2.16)

∥∥∥∥x − PrC

(
x +

1
β
y

)∥∥∥∥

2

≤ 1
β2
∥∥y
∥∥2 − d2

C

(
x +

1
β
y

)
, ∀x ∈ C. (2.17)

Proof. Inequality (2.15) is obvious from the property of the projection PrC (see [27]). Now,
we prove the inequality (2.16). For any v ∈ C, applying (2.15) we have

∥∥v − (x + y)
∥∥2 =

∥∥v − (PrC(x) + y) + (PrC(x) − x)
∥∥2

=
∥∥v − (PrC(x) + y)

∥∥2 + 2
〈
v − (PrC(x) + y

)
, PrC(x) − x

〉
+ ‖PrC(x) − x‖2

=
∥∥v − (PrC(x) + y)

∥∥2 + 2〈PrC(x) − x, v − PrC(x)〉

− 2〈y, PrC(x) − x〉 + ‖PrC(x) − x‖2

≥ ∥∥v − (PrC(x) + y)
∥∥2 − 2

〈
y, PrC(x) − x

〉
+ ‖PrC(x) − x‖2.

(2.18)

Using the definition of dC(·) and noting that d2
C(x) = ‖PrC(x) − x‖2 and taking minimum

with respect to v ∈ C in (2.18), then we have

d2
C

(
x + y

) ≥ d2
C

(
PrC(x) + y

)
+ d2

C(x) − 2
〈
y, PrC(x) − x

〉
, (2.19)

which proves (2.16).
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From the definition of dC, we have

d2
C

(
x +

1
β
y

)
=
∥
∥
∥
∥PrC

(
x +

1
β
y

)
− x − 1

β
y

∥
∥
∥
∥

2

=
1
β2

∥
∥
∥y2
∥
∥
∥ −
∥
∥
∥
∥x +

1
β
y − PrC

(
x +

1
β
y

)
−
(
x − PrC

(
x +

1
β
y

))∥∥
∥
∥

2

+
∥
∥
∥
∥PrC

(
x +

1
β
y

)
− x − 1

β
y

∥
∥
∥
∥

2

=
1
β2

∥
∥
∥y2
∥
∥
∥ −
∥
∥
∥
∥x − PrC

(
x +

1
β
y

)∥∥
∥
∥

2

+ 2
〈
x +

1
β
y − PrC

(
x +

1
β
y

)
, x − PrC

(
x +

1
β
y

)〉
.

(2.20)

Since x ∈ C, applying (2.15) with PrC(x + (1/β)y) instead of PrC(x) and y = x for (2.20), we
obtain the last inequality in Lemma 2.4.

For a given integer number m ≥ 0, we consider a finite sequence of arbitrary points
{xk}mk=0 ⊂ C, a finite sequence of arbitrary points {wk}mk=0 ⊂ R

n and a finite positive sequence
{λk}mk=0 ⊆ (0,+∞). Let us define

wm =
m∑

k=0

λkw
k, λm =

m∑

k=0

λk, xm =
1

λm

m∑

k=0

λkx
k. (2.21)

Then upper bound of the dual gap function gR is estimated in the following lemma.

Lemma 2.5. Suppose that Assumptions (A1)–(A4) are satisfied and

wk ∈ −F
(
xk
)
− ∂ϕ

(
xk
)
. (2.22)

Then, for any β > 0,

(i) max{〈w,y−x〉 | y ∈ CR} ≤ (1/2β)‖w‖2−(β/2)d2
C(x+(1/β)w)+βR2/2, for all x ∈ C,

w ∈ R
n.

(ii) gR(x
m) ≤ (1/λm)(

∑m
k=0 λk〈wk, x − xk〉 + (1/2β)‖wm‖2 − (β/2)d2

C(x + (1/β)wm) +
βR2/2).
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Proof. (i)We define L(x, ρ) = 〈w,y−x〉+(ρ/2)(R2 −‖y − x‖2) as the Lagrange function of the
maximizing problem max{〈w,y −x〉 | y ∈ CR}. Using duality theory in convex optimization,
then we have

max
{〈
w,y − x

〉 | y ∈ CR

}
= max

{〈
w,y − x

〉 | y ∈ C,
∥
∥y − x

∥
∥2 ≤ R2

}

= max
y∈C

min
ρ≥0

{〈
w,y − x

〉
+ ρ
(
R2 − ∥∥y − x

∥
∥2
)}

= min
ρ≥0

{
max
y∈C

{〈
w,y − x

〉 − ρ

2
∥
∥y − x

∥
∥2
}
+
ρ

2
R2
}

= min
ρ≥0

{
1
2ρ

max
y∈C

{

‖w‖2 − ρ2
∥
∥
∥
∥y − x − 1

ρ
w

∥
∥
∥
∥

2
}

+
ρ

2
R2

}

≤ 1
2β

[

‖w‖2 − β2min
y∈C

∥∥∥∥y − x − 1
β
w

∥∥∥∥

2
]

+
βR2

2

=
1
2β

‖w‖2 − β

2
d2
C

(
x +

1
β
w

)
+
βR2

2
.

(2.23)

(ii) From the monotonicity of F and (2.22), we have

m∑

k=0

λk
(〈

F
(
y
)
, xk − y

〉
+ ϕ
(
xk
)
− ϕ
(
y
)) ≤ −

m∑

k=0

λk
(〈

F
(
xk
)
, y − xk

〉
+ ϕ
(
y
) − ϕ

(
xk
))

≤
m∑

k=0

λk
〈
wk, y − xk

〉

≤
m∑

k=0

λk〈wk, y − x〉 +
m∑

k=0

λk
〈
wk, x − xk

〉

=
〈
wm, y − x

〉
+

m∑

k=0

λk
〈
wk, x − xk

〉
.

(2.24)

Combining (2.24), Lemma 2.5(i) and

gR
(
xm) = max

{〈
F
(
y
)
, xm − y

〉
+ ϕ
(
xm) − ϕ

(
y
) | y ∈ CR

}

= max

{〈

F
(
y
)
,
1

λm

m∑

k=0

λkx
k − y

〉

+ ϕ

(
1

λm

m∑

k=0

λkx
k

)

− ϕ
(
y
) | y ∈ CR

}

≤ max

{
1

λm

m∑

k=0

λk
(〈

F
(
y
)
, xk − y

〉
+ ϕ
(
xk
)
− ϕ
(
y
)) | y ∈ CR

}

=
1

λm
max

{
m∑

k=0

λk
(〈

F
(
y
)
, xk − y

〉
+ ϕ
(
xk
)
− ϕ
(
y
)) | y ∈ CR

}

,

(2.25)
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we get

gR
(
xm) ≤ 1

λm
max

{〈
wm, y − x

〉 | y ∈ CR

}
+

m∑

k=0

λk
〈
wk, x − xk

〉

≤ 1

λm

(
1
2β
∥
∥wm∥∥2 − β

2
d2
C

(
x +

1
β
wm
)
+
βR2

2
+

m∑

k=0

λk
〈
wk, x − xk

〉)

.

(2.26)

3. Dual Algorithms

Now, we are going to build the dual interior proximal step for solving (GVI). The main idea
is to construct a sequence {xk} such that the sequence gR(x

k) tends to 0 as k → ∞. By virtue
of Lemma 2.5, we can check whether xk is an ε-solution to (GVI) or not.

The dual interior proximal step (uk, xk,wk,wk) at the iteration k ≥ 0 is generated by
using the following scheme:

uk := PrC

(
x +

1
β
wk−1

)
,

xk := arg min
{〈

F
(
uk
)
, y − uk

〉
+ ϕ
(
y
) − ϕ

(
uk
)
+
βρk
2

∥∥∥y − uk
∥∥∥
2 | y ∈ C

}
,

wk := wk−1 +
1
ρk

wk,

(3.1)

where ρk > 0 and β > 0 are given parameters, wk ∈ R
n is the solution to (2.22).

The following lemma shows an important property of the sequence (uk, xk, sk,wk).

Lemma 3.1. The sequence (uk, xk,wk,wk) generated by scheme (3.1) satisfies

d2
C

(
x +

1
β
wk
)

≥ d2
C

(
x +

1
β
wk−1

)
+
∥∥∥xk − uk

∥∥∥
2
+
∥∥∥πk

C − xk
∥∥∥
2

− 2
βρk

〈
πk
C − xk, ξk +wk

〉

+
1

β2ρ2
k

∥∥∥wk
∥∥∥
2
+

2
βρk

〈
wk, x − xk +

1
β
wk−1

〉
,

(3.2)

where ηk ∈ ∂ϕ(xk), ξk = ηk + F(uk) and πk
C = PrC(xk + (1/βρk)(ξk +wk)). As a consequence, we

have

d2
C

(
x +

1
β
wk
)
− d2

C

(
x +

1
β
wk−1

)
≥ 2

βρk

〈
wk, x − xk

〉
+

1
β2

∥∥∥wk
∥∥∥
2 − 1

β2

∥∥∥wk−1
∥∥∥
2

− 1
β2ρ2

k

∥∥∥ξk +wk
∥∥∥
2
.

(3.3)
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Proof. We replace x by x + (1/β)y and y by (1/β)z into (2.16) to obtain

d2
C

(
x +

1
β

(
y + z

)
)

≥ d2
C

(
x +

1
β
y

)
+ d2

C

(
PrC

(
x +

1
β
y

)
+
1
β
z

)

− 2
β

〈
z, PrC

(
x +

1
β
y

)
−
(
x +

1
β
y

)〉
.

(3.4)

Using the inequality (3.4) with x = x, y = wk−1, z = (1/ρk)wk and noting that uk = PrC(x +
(1/β)wk−1), we get

d2
C

(
x +

1
β
wk−1 +

1
βρk

wk

)
≥ d2

C

(
x +

1
β
wk−1

)
+ d2

C

(
PrC

(
x +

1
β
wk−1

)
+

1
βρk

wk

)

− 2
βρk

〈
wk, PrC

(
x +

1
β
wk−1

)
− x − 1

β
wk−1

〉
.

(3.5)

This implies that

d2
C

(
x +

1
β
wk
)

≥ d2
C

(
x +

1
β
wk−1

)
+ d2

C

(
uk +

1
βρk

wk

)
− 2
βρk

〈
wk, uk − x − 1

β
wk−1

〉
. (3.6)

From the subdifferentiability of the convex function ϕ to scheme (3.1), using the first-order
necessary optimality condition, we have

〈
F
(
uk
)
+ ηk + βρk

(
xk − uk

)
, v − xk

〉
≥ 0, ∀v ∈ C, (3.7)

for all ηk ∈ ∂ϕ(xk). This inequality implies that

xk = PrC

(
uk − 1

βρk
ξk
)
, (3.8)

where ξk = ηk + F(uk).
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We apply inequality (3.4) with x = uk, y = −(1/ρk)ξk and z = (1/ρk)(ξk + wk) and
using (3.8) to obtain

d2
C

(
uk +

1
βρk

wk

)
≥ d2

C

(
uk − 1

βρk
ξk
)
+ d2

C

(
xk +

1
βρk

(
ξk +wk

))

− 2
βρk

〈
ξk +wk, xk − uk +

1
βρk

ξk
〉

=
∥
∥
∥
∥PrC

(
uk − 1

βρk
ξk
)
− uk +

1
βρk

ξk
∥
∥
∥
∥

2

+ d2
C

(
xk +

1
βρk

(
ξk +wk

))
− 2
βρk

〈
ξk +wk, xk − uk +

1
βρk

ξk
〉

=
∥∥∥∥x

k − uk +
1

βρk
ξk
∥∥∥∥

2

+ d2
C

(
xk +

1
βρk

(
ξk +wk

))

+
2

βρk

〈
ξk +wk, uk − 1

βρk
ξk − xk

〉

=
∥∥∥xk − uk

∥∥∥
2
+

1
β2ρ2k

∥∥∥ξk
∥∥∥
2
+

2
βρk

〈
ξk, xk − uk

〉

+ d2
C

(
xk +

1
βρk

(
ξk +wk

))
+

2
βρk

〈
ξk +wk, uk − 1

βρk
ξk − xk

〉
.

(3.9)

Combine this inequality and (3.6), we get

d2
C

(
x +

1
β
wk
)

≥ d2
C

(
x +

1
β
wk−1

)
− 2
βρk

〈
wk, uk − x − 1

β
wk−1

〉

+
∥∥∥xk − uk

∥∥∥
2
+

1
β2ρ2k

∥∥∥ξk
∥∥∥
2
+

2
βρk

〈
ξk, xk − uk

〉

+ d2
C

(
xk +

1
βρk

(
ξk +wk

))
+

2
βρk

〈
ξk +wk, uk − 1

βρk
ξk − xk

〉
.

(3.10)

On the other hand, if we denote πk
C = PrC(xk + (1/βρk)(ξk +wk)), then it follows that

d2
C

(
xk +

1
βρk

(
ξk +wk

))
=
∥∥∥∥π

k
C − xk − 1

βρk

(
ξk +wk

)∥∥∥∥

2

=
∥∥∥πk

C − xk
∥∥∥
2 − 2

βρk

〈
πk
C − xk, ξk +wk

〉
+

1
β2ρ2

k

∥∥∥ξk +wk
∥∥∥
2
.

(3.11)
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Combine (3.10) and (3.11), we get

d2
C

(
x +

1
β
wk
)

≥ d2
C

(
x +

1
β
wk−1

)
+
∥
∥
∥xk − uk

∥
∥
∥
2
+
∥
∥
∥πk

C − xk
∥
∥
∥
2

− 2
βρk

〈
πk
C − xk, ξk +wk

〉

+
1

β2ρ2k

∥
∥
∥wk

∥
∥
∥
2
+

2
βρk

〈
wk, x − xk +

1
β
wk−1

〉
,

(3.12)

which proves (3.2).
On the other hand, from (3.9) we have

d2
C

(
uk +

1
βρk

wk

)
≥
∥∥∥xk − uk

∥∥∥
2
+

1
β2ρ2

k

∥∥∥ξk
∥∥∥
2
+

2
βρk

〈
ξk, xk − uk

〉

+
2

βρk

〈
ξk +wk, uk − 1

βρk
ξk − xk

〉
.

(3.13)

Then the inequality (3.3) is deduced from this inequality and (3.6).

The dual algorithm is an iterative method which generates a sequence (uk, xk,wk,wk)
based on scheme (3.1). The algorithm is presented in detail as follows:

Algorithm 3.2. One has the following.

Initialization:

Given a tolerance ε > 0, fix an arbitrary point x ∈ intC and choose β ≥ L, R = max{‖x‖ | x ∈
C}. Take w −1 := 0 and k := −1.

Iterations:

For each k = 0, 1, 2, . . . , kε, execute four steps below.

Step 1. Compute a projection point uk by taking

uk := PrC

(
x +

1
β
wk−1

)
. (3.14)

Step 2. Solve the strongly convex programming problem

min
{〈

F
(
uk
)
, y − uk

〉
+ ϕ
(
y
)
+
β

2

∥∥∥y − uk
∥∥∥
2 | y ∈ C

}
(3.15)

to get the unique solution xk.
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Step 3. Find wk ∈ R
n such that

wk ∈ −F
(
xk
)
− ∂ϕ

(
xk
)
. (3.16)

Set wk := wk−1 +wk.

Step 4. Compute

rk :=
k∑

i=0

〈
wi, x − xi

〉
+max

{〈
wk, y − x

〉
| y ∈ CR

}
. (3.17)

If rk ≤ (k + 1)ε, where ε > 0 is a given tolerance, then stop.

Otherwise, increase k by 1 and go back to Step 1.

Output:

Compute the final output xk as:

xk :=
1

k + 1

k∑

i=0

xi. (3.18)

Now, we prove the convergence of Algorithm 3.2 and estimate its complexity.

Theorem 3.3. Suppose that assumptions (A1)–(A3) are satisfied and F is L-Lipschitz continuous on
C. Then, one has

gR
(
xk
)
≤ βR2

2(k + 1)
, (3.19)

where xk is the final output defined by the sequence (uk, xk,wk,wk)k≥0 in Algorithm 3.2. As a
consequence, the sequence {gR(xk)} converges to 0 and the number of iterations to reach an ε-solution
is kε := [βR2/2ε], where [x] denotes the largest integer such that [x] ≤ x.

Proof. From ξk = ηk + F(uk), where ηk ∈ ∂ϕ(xk) and πk
C ∈ C, we get

〈
ξk +wk, πk

C − xk
〉
=
〈
F
(
xk
)
− F
(
uk
)
, xk − πk

C

〉

≤ L

2

(∥∥∥xk − uk
∥∥∥
2
+
∥∥∥xk − πk

C

∥∥∥
2
)
.

(3.20)
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Substituting (3.20) into (3.2), we obtain

d2
C

(
x +

1
β
wk
)

≥ d2
C

(
x +

1
β
wk−1

)
+
(
1 − L

βρk

)(∥
∥
∥xk − uk

∥
∥
∥
2
+
∥
∥
∥πk

C − xk
∥
∥
∥
2
)

+
1

β2ρ2
k

∥
∥
∥wk

∥
∥
∥
2
+

2
βρk

〈
wk, x − xk +

1
β
wk−1

〉
.

(3.21)

Using this inequality with ρi = 1 for all i ≥ 0 and β ≥ L, we obtain

d2
C

(
x +

1
β
wk
)

≥ d2
C

(
x +

1
β
wk−1

)
+
(
1 − L

β

)(∥
∥
∥xk − uk

∥
∥
∥
2
+
∥
∥
∥πk

C − xk
∥
∥
∥
2
)

+
1
β2

∥
∥
∥wk

∥
∥
∥
2
+
2
β

〈
wk, x − xk +

1
β
wk−1

〉

≥ d2
C

(
x +

1
β
wk−1

)
+

1
β2

∥∥∥wk
∥∥∥
2
+
2
β

〈
wk, x − xk +

1
β
wk−1

〉
.

(3.22)

If we choose λi = 1 for all i ≥ 0 in (2.21), then we have

wk =
k∑

i=0

wi, λk = k + 1, xk =
1

k + 1

k∑

i=0

xi. (3.23)

Hence, from Lemma 2.5(ii), we have

(k + 1)gR
(
xk
)
≤

k∑

i=0

〈wi, x − xi〉 + 1
2β

∥∥∥wk
∥∥∥
2 − β

2
d2
C

(
x +

1
β
wk
)
+
βR2

2
. (3.24)

Using inequality (3.22) and ‖wk‖2 = ‖wk +wk−1‖2, it implies that

ak :=
k∑

i=0

〈
wi, x − xi

〉
+

1
2β

∥∥∥wk
∥∥∥
2 − β

2
d2
C

(
x +

1
β
wk
)
+
βR2

2

=
k−1∑

i=0

〈
wi, x − xi

〉
+
〈
wk, x − xk

〉
+

1
2β

∥∥∥wk
∥∥∥
2 − β

2
d2
C

(
x +

1
β
wk
)
+
βR2

2

≤
k−1∑

i=0

〈
wi, x − xi

〉
+
〈
wk, x − xk

〉
+

1
2β

∥∥∥wk
∥∥∥
2
+
βR2

2

− β

2

(
d2
C

(
x +

1
β
wk−1

)
+

1
β2

∥∥∥wk
∥∥∥
2
+
2
β

〈
wk, x − xk +

1
β
wk−1

〉)

=
k−1∑

i=0

〈
wi, x − xi

〉
+

1
2β

∥∥∥wk−1
∥∥∥
2 − β

2
d2
C

(
x +

1
β
wk−1

)
+
βR2

2

= ak−1.

(3.25)
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Note that a−1 = βR2/2. It follows from the inequalities (3.24) and (3.25) that

(k + 1)gR
(
xk
)
≤ βR2

2
, (3.26)

which implies that gR(x
k) ≤ βR2/2(k + 1). The termination criterion at Step 4, rk ≤ (k + 1)ε,

using inequality (2.26) we obtain gR(x
k) ≤ ε and the number of iterations to reach an ε-

solution is kε := [βR2/2ε].

If there is no the guarantee for the Lipschitz condition, but the sequences (wk) and (ξk)
are uniformly bounded, we suppose that

M = sup
k

∥
∥
∥F
(
xk
)
− F
(
uk
)∥∥
∥ = sup

k

∥
∥
∥wk + ξk

∥
∥
∥, (3.27)

then the algorithm can be modified to ensure that it still converges. The variant of
Algorithm 3.2 is presented as Algorithm 3.4 below.

Algorithm 3.4. One has the following.

Initialization:

Fix an arbitrary point x ∈ intC and set R = max{‖x‖ | x ∈ C}. Take w −1 := 0 and k := −1.
Choose βk = M/R for all k ≥ 0.

Iterations:

For each k = 0, 1, 2, . . . execute the following steps.

Step 1. Compute the projection point uk by taking

uk := PrC

(
x +

1
βk

wk−1
)
. (3.28)

Step 2. Solve the strong convex programming problem

min
{〈

F
(
uk
)
, y − uk

〉
+ ϕ
(
y
)
+
βk
2

∥∥∥y − uk
∥∥∥
2 | y ∈ C

}
(3.29)

to get the unique solution xk.

Step 3. Find wk ∈ R
n such that

wk ∈ −F
(
xk
)
− ∂ϕ

(
xk
)
. (3.30)

Set wk := wk−1 +wk.
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Step 4. Compute

rk :=
k∑

i=0

〈wi, x − xi〉 +max
{
〈wk, y − x〉 | y ∈ CR

}
. (3.31)

If rk ≤ (k + 1)ε, where ε > 0 is a given tolerance, then stop.

Otherwise, increase k by 1, update βk := (M/R)
√
k + 1 and go back to Step 1.

Output:

Compute the final output xk as

xk :=
1

k + 1

k∑

i=0

xi. (3.32)

The next theorem shows the convergence of Algorithm 3.4.

Theorem 3.5. Let assumptions (A1)–(A3) be satisfied and the sequence (uk, xk,wk,wk) be generated
by Algorithm 3.4. Suppose that the sequences (F(xk)) and (F(uk)) are uniformly bounded by (3.27).
Then, we have

gR
(
xk
)
≤ MR√

k + 1
. (3.33)

As a consequence, the sequence {gR(xk)} converges to 0 and the number of iterations to reach an
ε-solution is kε := [M2R2/ε2].

Proof. If we choose λk = 1 for all k ≥ 0 in (2.21), then we have λk = k + 1. Since w −1 = 0, it
follows from Step 3 of Algorithm 3.4 that

wk =
k∑

i=0

wk. (3.34)

From (3.34) and Lemma 2.5(ii), for all βk ≥ 1 we have

(k + 1)gR
(
xk
)
≤

k∑

i=0

〈
wi, x − xi

〉
+

1
2βk

∥∥∥wk
∥∥∥
2 − βk

2
d2
C

(
x +

1
βk

wk
)
+
βkR

2

2
. (3.35)



16 Journal of Inequalities and Applications

We define bk :=
∑k

i=0〈wi, x − xi〉 + (1/2βk)‖wk‖2 − (βk/2)d2
C(x + (1/β)kw

k). Then, we have

bk − bk−1 =
〈
wk, x − xk

〉
+

1
2βk

∥∥
∥wk

∥∥
∥
2 − βk

2
d2
C

(
x +

1
βk

wk
)
− 1
2βk−1

∥∥
∥wk−1

∥∥
∥
2

+
βk−1
2

d2
C

(

x +
1
βk−1

wk−1
)

.

(3.36)

We consider, for all y ∈ R
n

q
(
β
)
:=

1
2β
∥
∥y
∥
∥2 − β

2
d2
C

(
x +

1
β
w

)

=
1
2β
∥
∥y
∥
∥2 − β

2
min
v∈C

∥
∥
∥∥v − x − 1

β
w

∥
∥
∥∥

2

.

(3.37)

Then derivative of q is given by

q′
(
β
)
= −
∥∥∥∥PrC

(
x +

1
β
y

)
− x

∥∥∥∥

2

≤ 0. (3.38)

Thus q is nonincreasing. Combining this with (3.36) and 0 < βk−1 < βk, we have

bk − bk−1 ≤ 〈wk, x − xk〉 + 1
2βk

∥∥∥wk
∥∥∥
2 − βk

2
d2
C

(
x +

1
βk

wk
)
− 1
2βk

∥∥∥wk−1
∥∥∥
2

+
βk
2
d2
C

(
x +

1
βk

wk−1
)
.

(3.39)

From Lemma 3.1, β = βk and ρk = 1, we have

d2
C

(
x +

1
βk

wk
)
− d2

C

(
x +

1
βk

wk−1
)

≥ 2
βk

〈wk, x − xk〉 + 1
β2k

∥∥∥wk
∥∥∥
2 − 1

β2k

∥∥∥wk−1
∥∥∥
2

− 1
β2
k

∥∥∥ξk +wk
∥∥∥
2
.

(3.40)

Combining (3.39) and this inequality, we have

bk − bk−1 ≤
∥∥ξk +wk

∥∥2

2βk
=

∥∥F(xk) − F(uk)
∥∥2

2βk
≤ MR

2
√
k + 1

. (3.41)

By induction on k, it follows from (3.41) and β0 := (Mx +Mu)/R that

bk ≤ MR

2

k∑

i=0

1√
i + 1

≤ MR

2

√
k + 1 ≡ βkR

2

2
. (3.42)
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From (3.35) and (3.42), we obtain

(k + 1)gR
(
xk
)
≤ βkR

2 = MR
√
k + 1, (3.43)

which implies that gR(xk) ≤ MR/
√
k + 1. The remainder of the theorem is trivially follows

from (3.33).

4. Illustrative Example and Numerical Results

In this section, we illustrate the proposed algorithms on a class of generalized variational
inequalities (GVI), where C is a polyhedral convex set given by

C := {x ∈ R
n | Ax ≤ b}, (4.1)

where A ∈ R
m×n, b ∈ R

m. The cost function F : C → R is defined by

F(x) = D(x) −Mx + q, (4.2)

where D : C → R
n, M ∈ R

n×n is a symmetric positive semidefinite matrix and q ∈ R
n. The

function ϕ is defined by

ϕ(x) :=
n∑

i=1

(
x2
i + |xi − i|

)
. (4.3)

Then ϕ is subdifferentiable, but it is not differentiable on R
n.

For this class of problem (GVI) we have the following results.

Lemma 4.1. Let D : C → R
n. Then

(i) if D is τ-strongly monotone on C, then F is monotone on C whenever τ = ‖M‖.

(ii) ifD is τ-strongly monotone on C, then F is (τ − ‖M‖)-strongly monotone on C whenever
τ > ‖M‖.

(iii) if D is L-Lipschitz on C, then F is (L + ‖M‖)-Lipschitz on C.

Proof. Since D is τ-strongly monotone on C, that is

〈
D(x) −D

(
y
)
, x − y

〉 ≥ τ
∥∥x − y

∥∥2, ∀x, y ∈ C,

〈
M
(
x − y

)
, x − y

〉 ≤ ‖M‖ ∥∥x − y
∥∥2, ∀x, y ∈ C,

(4.4)



18 Journal of Inequalities and Applications

we have

〈
F(x) − F

(
y
)
, x − y

〉
= 〈D(x) −D

(
y
)
, x − y〉 − 〈M(x − y

)
, x − y

〉

≥ (τ − ‖M‖)∥∥x − y
∥
∥2, ∀x, y ∈ C.

(4.5)

Then (i) and (ii) easily follow.
Using the Lipschitz condition, it is not difficult to obtain (iii).

To illustrate our algorithms, we consider the following data.

n = 10, D(x) := τx, q = (1,−1, 2,−3, 1,−4, 5, 6,−2, 7)T ,

C :=

{

x ∈ R
10 |

10∑

i=1

xi ≥ −2,−1 ≤ xi ≤ 1

}

,

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 2 0 0 0 0 0 0 0 0

2 2.2 0 0 0 0 0 0 0 0

0 0 3 1 0 0 0 0 0 0

0 0 1 4 0 0 0 0 0 0

0 0 0 0 4.5 2 0 0 0 0

0 0 0 0 0 3 0 0 0 0

0 0 0 0 2 0 1.5 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 2.5 0

0 0 0 0 0 0 0 0 0 3.5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ intC, ε = 10−6, R =
√
10,

(4.6)

with τ = ‖M‖ = 2.2071, L = τ + ‖M‖ = 4.4142, β = L/2 = 2.2071. From Lemma 4.1, we have F
is monotone on C. The subproblems in Algorithm 3.2 can be solved efficiently, for example,
by using MATLAB Optimization Toolbox R2008a. We obtain the approximate solution

x10 = (0.0510, 0.6234,−0.2779, 1.0000, 0.0449, 1.0000,−1.0000, 1.0000, 0.7927,−1.0000)T .
(4.7)

Now we use Algorithm 3.4 on the same variational inequalities except that

F(x) := τx +D(x) −Mx + q, (4.8)

where the n components of the D(x) are defined by: Dj(x) = dj arctan(xj), with dj randomly
chosen in (0, 1) and the n components of q are randomly chosen in (−1, 3). The function D is
given by Bnouhachem [19]. Under these assumptions, it can be proved that F is continuous
and monotone on C.
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Table 1: Numerical results: Algorithm 3.4 with n = 10.

P xk
1 xk

2 xk
3 xk

4 xk
5 xk

6 xk
7 xk

8 xk
9 xk

10

1 −0.278 0.001 −0.006 −0.377 0.272 −0.007 −0.462 −0.227 0.395 −0.364
2 −0.054 0.133 −0.245 −0.435 −0.348 0.080 0.493 −0.223 −0.146 0.307

3 −0.417 0.320 −0.027 −0.270 0.463 −0.375 −0.381 0.255 −0.087 −0.403
4 0.197 0.161 0.434 −0.090 0.505 −0.001 0.451 −0.358 −0.320 0.278

5 0.291 0.071 −0.383 −0.290 0.453 −0.035 −0.393 −0.536 0.238 0.166

6 −0.021 0.246 0.211 −0.036 0.044 −0.241 0.466 −0.186 0.486 −0.072
7 −0.429 0.220 0.134 0.321 −0.312 0.364 −0.278 0.551 0.421 −0.118
8 −0.349 −0.448 0.365 −0.467 −0.137 0.387 0.217 −0.049 −0.443 −0.453
9 −0.115 0.562 −0.371 −0.536 −0.198 −0.248 −0.233 0.124 −0.149 0.319

10 0.071 0.134 −0.268 −0.340 0.307 0.010 0.052 −0.168 −0.206 −0.244

With x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ intC and the tolerance ε = 10−6, we obtained the
computational results (see, the Table 1).
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