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A two-hop amplify and forward (AF) relay system is considered where source and destination are each equipped with multiple
antennas while the relay has a single antenna. Orthogonal space-time block coding (OSTBC) is employed at the source. New exact
expressions for outage probability in Rayleigh fading as well as symbol error rate (SER) expressions for a variety of modulation
schemes are derived. The diversity order of the system is evaluated. Monte Carlo simulations demonstrate the accuracy of the
analyses presented. Results that can be extended to relay systems with a direct source-destination link are also highlighted. To put
the results in context, the two-hop system performance is then compared to that of a MIMO point-to-point system. Finally, the
new analysis is applied to evaluate two-hop system performance as a function of relay location.

1. Introduction

Through exploiting spatial diversity, it is well known that
MIMO technology can improve the reliability of wireless
communication links [1]. Orthogonal space-time block
coding (OSTBC) is a key component of MIMO systems
that has attracted tremendous attention. First, OSTBC
does not require complicated feedback links to provide
channel state information at the transmitter (CSIT). Second,
OSTBC methods enable maximum likelihood detection to
be performed with low computational complexity [2]. As a
result of its practicality, OSTBC has been incorporated into
emerging MIMO standards [3].

While MIMO systems offer significant physical layer
performance enhancements, a significant problem in initial
wireless network deployments is obtaining adequate cov-
erage. The concept of relaying signals through interme-
diate nodes has been shown to be effective at extending
the coverage of networks in a power-efficient manner. In
addition, very simple relaying systems have been shown to
increase diversity through node collaboration. As a result, the
provision for relaying has recently been adopted into recent

standards [4]. This paper investigates the effect of simple
relaying on MIMO system performance.

Previously, end-to-end performance of two-hop relay
systems was studied in [5–7], including outage probability
and average bit error rate (BER) in a variety of fading
environments. However, in [5–7] all assume a single antenna
at both source and destination. Recently, a two-hop amplify
and forward (AF) relay system in which the source and
destination are both equipped with multiple antennas while
the relay has a single antenna appears in [8, 9]. In [8],
an OSTBC strategy is employed at the source, and end-to-
end average bit error rate (BER) was investigated. However,
the method in [8] is only suitable for systems with the
same numbers of antennas at the source and destination.
Moreover, an exact expression for outage probability was not
given, and the diversity order of the system was not evaluated
analytically. In [10], system performance including outage
probability and average SER is determined for the special case
of multiple antennas at the source and a single antenna at
the destination. Although the method used in [10] has been
often used in the literature, it cannot be easily generalized to
the case of multiple antennas at the destination.
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Figure 1: Two-hop relay system model.

In this paper, the same system model is assumed as in
[8, 9]. First, exact expressions for system outage probability
with both exact and ideal relay gain are derived for arbi-
trary antenna configurations at the source and destination.
Exact average SER expressions for different modulation
schemes are then derived by calculating the probability
density function (PDF) and moment generation method
(MGF). Generalizations of results to systems that include
a direct link are also briefly indicated where applicable.
The diversity order of the system is also evaluated. Monte
Carlo simulations confirm the analytical results, compare
performance between the proposed relaying system and a
MIMO point-to-point system as well as evaluate the two-hop
system performance as a function of relay location.

2. SystemModel

A two-hop relay system is considered where there are NS

antennas at the source, ND antennas at the destination, and a
single antenna at the relay, as shown in Figure 1. To make
the relay as simple as possible, an AF relaying protocol is
employed. It is also assumed that a direct communication
link between source and destination is not available, as
is reasonable in the case where the communication link
between source and destination is in a deep fading state
and/or the separation distance between them is large. In
addition, half-duplex transmission is assumed; that is, the
relay cannot transmit and receive simultaneously in the same
time slot or frequency band.

OSTBC transmission containing K symbols x1, x2, . . . , xK
and block length of T is utilized at the source to achieve space
diversity. During the first time slot, the 1× T received vector
signal at the relay can be written as

yR = hSRXS + nR, (1)

where XS denotes a NS ×T OSTBC transmission matrix, hSR

denotes the 1 × NS Rayleigh fading complex channel gain
vector from the source to the relay, and nR ∼ CN (0, σ2

RI)
is the 1 × T independent and identically distributed (i.i.d)
complex Gaussian noise vector at the relay. During the
second time slot, the ND×T received signal at the destination
can be written as

YD = hTRDxR + ED, (2)

where hTRD denotes the ND × 1 Rayleigh fading channel gain

vector from the relay to the destination, ED = {ni jD}ND×T
is the ND × T i.i.d noise matrix at the destination where
n
i j
D ∼ CN (0, σ2

D) denotes the noise at the ith receive antenna
during the jth symbol period, and xR = GyR denotes the
1 × T signal vector sent by the relay where G is a relay
gain. As categorized in the literature, relay gains may be fixed
or variable. In this paper, variable relay gain is considered.
Relay gains can be further classified as exact or ideal. We

denote G =
√
PR/(PS‖hSR‖2/NS) + σ2

R as the exact relay gain,
where PS and PR are average power constraints at the source
and relay, respectively. If we ignore the noise at the relay,
G = √PR/(PS‖hSR‖2/NS) which is denoted as the ideal relay
gain [5] and is amenable to mathematical manipulation.
As in most of the literature, the ideal relay gain is used
to compute exact average SERs of the proposed system in
this paper. Later, it will be observed from simulations that
the ideal relay gain provides a tight lower bound on outage
probability and average SER in the case of medium-to-high
SNR. Substituting xR = GyR into (2) leads to the received
signal at the destination given by

YD = hTRDGhSRXS + hTRDGnR + ED. (3)

Using maximum likelihood (ML) detection of OSTBCs for
the case of spatially colored noise given in [11], the received
SNR is obtained as follows.

Theorem 1. Using the exact relay gain, the received SNR of
two-hop AF OSTBC transmission is given by

γtot =
((

PS ‖hSR‖2
)
/
(
NSσ

2
R

))(
PR ‖hRD‖2/σ2

D

)

PS ‖hSR‖2/
(
NSσ

2
R

)
+ PR ‖hRD‖2/σ2

D + 1

1
Rs

= γ1γ2

γ1 + γ2 + 1
1
Rs
= γ

1
Rs

.

(4)

When the ideal relay gain is utilized, the received SNR is given
by

γ̃tot =
((

PS ‖hSR‖2
)
/
(
NSσ

2
R

))(
PR ‖hRD‖2/σ2

D

)

PS ‖hSR‖2/
(
NSσ

2
R

)
+ PR ‖hRD‖2/σ2

D

1
Rs

= γ1γ2

γ1 + γ2

1
Rs
= γ̃

1
Rs

,

(5)

where γ1 = PS‖hSR‖2/(NSσ
2
R), γ2 = PR‖hRD‖2/σ2

D, γ = γ1γ2/
(γ1 + γ2 + 1), γ̃ = γ1γ2/(γ1 + γ2), and Rs = K/T denotes the
OSTBC code rate.

Proof. It can be observed from (3) that the noise at the
destination is temporally white but spatially colored; that is,
the columns of noise matrix hTRDGnR + ED are independent
and Gaussian with covariance matrix Σ = G2σ2

Rh
H
RDhRD+σ2

DI.
Also, note that system (3) under consideration is equivalent
to a conventional MIMO system with an effective channel
gain matrix H = hTRDGhSR. We first whiten the colored noise
and then employ the ML method given in [11, 12] to decode
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each symbol in the OSTBC. The noise-whitening process is
given by

ỸD = H̃XS + ẼD, (6)

where ỸD = Σ−1/2YD, H̃ = Σ−1/2H and ẼD ∼ CN (0, I). After
ML detection, the MIMO system in (6) can be transformed
into the following K parallel and independent single-input
and single-output (SISO) systems:

x̃k =
∥∥∥H̃
∥∥∥2

F
xk + nk, k = 1, 2, . . . ,K , (7)

where nk ∼ CN (0,‖H̃‖2
F) and ‖H̃‖2

F denotes the Frobenius
norm of H̃. Following similar arguments to [11], the received
SNR for each symbol can be written as

γtot = Tr
{
HHΣ−1H

}
E
[
|x|2

]
, (8)

where Tr(·) denotes trace of a matrix, Σ−1 is inverse of
matrix Σ, and E[|x|2] denotes average power of a symbol
where E[|x|2] = E[|x1|2] = · · · = E[|xK |2] is assumed for
OSTBCs. By substituting for H and Σ defined above, (8) can
be written as

γtot=Tr
{(

hTRDGhSR

)H(
G2σ2

Rh
H
RDhRD + σ2

DI
)−1

×
(
hTRDGhSR

)}
E
[
|x|2

]
.

(9)

Using the Matrix Inversion Lemma (A + μνH)−1 = A−1 −
A−1μνHA−1/(1 + νHA−1μ) [13], (9) can be written as

γtot = Tr

{(
hTRDGhSR

)H(
G2σ2

R

)−1

×
(
(
G2σ2

R/σ
2
D

)
I−

(
G4σ4

R/σ
4
D

)
hHRDhRD

1 +
(
G2σ2

R/σ
2
D

)
hRDhHRD

)

×
(
hTRDGhSR

)}
E
[
|x|2

]
.

(10)

Using Tr(AB) = Tr(BA), (10) can be simplified to

γtot =
‖hRD‖2‖hSR‖2E

[
|x|2

]

σ2
D/G2 + σ2

R‖hRD‖2 . (11)

Using the fact that NSKE[|x|2] = PST and Rs = K/T in
OSTBCs, substituting the exact relay gain into (11) yields (4),
and substituting the ideal relay gain into (11) yields (5).

Remark 2. Using maximal ratio combining (MRC) at the
destination, Theorem 1 can be generalized to the case of relay
systems with a direct link by including a term corresponding
to the SNR of the direct link that increases the SNR by
PS‖HSD‖2

F/(NSσ
2
D1), whereHSD is theND×NS Rayleigh fading

complex channel gain matrix from source to destination and
σ2
D1 denotes the received noise variance during the source-to-

destination time slot. It is assumed that relay-to-destination
communication occurs in a separate second time slot, that is,
half-duplex communication.

3. Outage Probability

In this section, analytical expressions for outage probability
are derived.

Theorem3. For the exact relay gain, the outage probability of a
two-hop AF relay system when an OSTBC strategy is employed
at the source is given by

Pout = 1− 2
(NS − 1)!

ND−1∑

p=0

p∑

i=0

(
p

i

)NS−1∑

k=0

(
NS − 1

k

)
1
p!

× (NSα)(NS+k+i)/2β(2p+NS−k−i)/2

× e−(NSα+β)γthγ
(2p+NS+k−i)/2
th

(
γth + 1

)(NS+i−k)/2

× K|NS−k−i|

(
2

√
NSαβ

(
γ2
th + γth

))
,

(12)

where γth = (22C − 1)Rs in which C denotes outage capacity
and Kι(·) denotes the modified Bessel function of second kind
and order ι. When the ideal relay gain is utilized, the outage
probability is given by

Pout = 1− 2
(NS − 1)!

ND−1∑

p=0

p∑

i=0

(
p
i

)NS−1∑

k=0

(
NS − 1

k

)
1
p!

× (NSα)(NS+k+i)/2β(2p+NS−k−i)/2

× e−(NSα+β)γthγ
Ns+p
th K|NS−k−i|

(
2
√
NSαβγth

)
.

(13)

Proof. As h
j
SR and h

j
RD are complex Gaussian distributed,

where h
j
SR and h

j
RD are elements of hSR and hRD, respectively,

it is readily found that PS|hj
SR|

2
/σ2

R and PR|hj
RD|

2
/σ2

D are expo-

nentially distributed. Setting rate parameters of PS|hj
SR|

2
/σ2

R

and PR|hj
RD|

2
/σ2

D to be equal to α and β, respectively, the
cumulative distribution function (CDF) and PDF of γ1 and
γ2 are, respectively, [14]

fγ1 (x) = NNS
S xNS−1

(NS − 1)!
e−NSαxαNS , (14)

Fγ1 (x) = 1− e−NSαx
NS−1∑

p=0

(NSαx)p

p!
, (15)

fγ2

(
y
) = yND−1e−βy

(ND − 1)!
βND , (16)

Fγ2

(
y
) = 1− e−βy

ND−1∑

p=0

(
βy
)p

p!
. (17)
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The CDF of γ and γ̃, in terms of the constant parameter t, is
given by

P

(
γ1γ2

γ1 + γ2 + t
< γ

)
=
∫∞

0
P

(
γ2x

γ2 + x + t
< γ

)
fγ1 (x)dx

=
∫ γ

0
fγ1 (x)dx

+
∫∞
γ
P

(
γ2 <

xγ + cγ

x − γ

)
fγ1 (x)dx,

(18)

where t = 1 denotes the CDF of γ with the exact relay gain
and t = 0 denotes the CDF of γ̃ with the ideal relay gain.
Setting ω = x − γ and substituting (14) and (17) into (18)
yield

1−
∫∞

0
e−β(ωγ+γ2+tγ)/ω

ND−1∑

p=0

βp
(
ωγ + γ2 + tγ

)p
ωp

×
(
ω + γ

)NS−1
e−NSα(ω+γ)(NSα)NS

p!(NS − 1)!
dω.

(19)

Moving the constant terms outside the integral and applying
the binomial expansion yield

1− NS
NS

(NS − 1)!
αNS

ND−1∑

p=0

p∑

i=0

⎛
⎝p
i

⎞
⎠
NS−1∑

k=0

βpγp+k
(
γ + t

)i
p!

e−(β+αNS)γ

×
∫∞

0
ωNS−k−i−1e−αNSω−β(γ2+tγ)/ωdω.

(20)

Using [15, Equation (3.324)], substituting γ = γth into
(20), and through straightforward mathematical manipula-
tions (12) with t = 1 and (13) with t = 0 are yielded.

4. Exact Average SER Expressions for
Different Modulation Schemes

In this section, exact SER expressions for different modula-
tion schemes are derived assuming an ideal relay gain.

(i) First, we consider modulation schemes that have
conditional SER Pe(γ) = aQ(

√
bγ) [16], for example,

BPSK, BFSK, and MPAM.

The average SER is obtained by integrating the conditional
SER over the PDF of γ̃ [14]

Pe =
∫∞

0
Pe
(
γ̃tot
)
fγ̃
(
γ
)
dγ. (21)

Using integration by parts yields

Pe = −
∫∞

0
Fγ̃
(
γ
)
P′e
(
γ̃tot
)
dγ, (22)

where P′e(γ̃tot) denotes the derivative of Pe(γ̃tot) and Fγ̃(γ)
denotes the CDF of γ̃ for the ideal relay gain. Substituting
(13) with γth = γ into (22) yields

Pe = a
√
b

2
√

2π
√
Rs

∫∞
0
e−bγ/(2Rs)γ−1/2 dγ

− a
√
b√

2Rs

1
(NS − 1)!

ND−1∑

p=0

1
p!

p∑

i=0

(
p
i

)NS−1∑

k=0

(αNS)(NS+k+i)/2

× β(2p+NS−k−i)/2

×
∫∞

0
e−(αNS+β+b/(2Rs))γγp+NS−1/2K|NS−i−k|

(
2
√
αβNSγ

)
dγ.

(23)

Using integrals of combinations of Bessel functions, expo-
nentials, and powers, for example, [15, Equation (3.381.4)]
and, [15, Equation (6.621.3)], it can be shown that the
following expression for average SER can be obtained from
(23):

Pe = a

2
− a

√
b√

2Rs

1
(NS − 1)!

ND−1∑

p=0

1
p!

p∑

i=0

(
p

i

)NS−1∑

k=0

(
NS − 1

k

)

× (αNS)(NS+k+i)/2β(2p+NS−k−i)/2

×
(

4
√
αβNS

)NS−k−i

(
β + αNS + b/(2Rs) + 2

√
αβNS

)(p+2NS−k−i+1)/2

× Γ
(
p + 2NS − k − i + 1/2

)
Γ
(
p + k + i + 1/2

)

Γ
(
p + NS + 1

)

× F

(
p + 2NS − k − i +

1
2

, NS − k − i +
1
2

; p + NS

+1;
β + αNS + b/(2Rs)− 2

√
αβNS

β + αNS + b/(2Rs) + 2
√
αβNS

⎞
⎠,

(24)

where F(·, ·; ·; ·) is the Gauss hypergeometric function,
(a, b) = (1, 2) for binary phase-shift keying (BPSK), (a, b) =
(1, 1) for binary frequency-shift keying (BFSK), and (a, b) =
(2(M − 1)/M, 6/(M2 − 1)) for M-ary pulse amplitude
modulation (MPAM).

(ii) Next, we consider the modulation schemes of MPSK
and MQAM.

When MPSK or MQAM is employed, we derive exact SER
expressions using the well-known MGF-SER relationships
given in [17]. For MPSK and MQAM, the MGF-SER
relationship can be written, respectively, as

Pe = 1
π

∫ (M−1)π/M

0
Mγ̃

(
gMPSK

Rssin2θ

)
dθ, (25)
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where gMPSK = sin2(π/M), and

Pe = 4
π

(√
M − 1√
M

)∫ π/2

0
Mγ̃

(
3

2Rs(M − 1)sin2θ

)
dθ

− 4
π

(√
M − 1√
M

)2 ∫ π/4

0
Mγ̃

(
3

2Rs(M − 1)sin2θ

)
dθ.

(26)

The moment generation function (MGF) of γ̃ is given by the
following theorem.

Theorem 4. The MGF of γ̃ is given by

Mγ̃(s)

= 2
(NS − 1)!

ND−1∑

p=0

1
p!

p∑

i=0

(
p

i

)NS−1∑

k=0

(
NS − 1

k

)

× (NSα)(NS+k+i)/2β(2p+NS−k−i)/2

×

⎡
⎢⎣
(
β + NSα

)
√
π
(

4
√
NSαβ

)NS−k−i

(
β + NSα + s + 2

√
NSαβ

)p+2NS−k−i+1

× Γ
(
p + 2NS − k − i + 1

)
Γ
(
p + k + i + 1

)

Γ
(
p + NS + 3/2

)

× F

⎛
⎝p + 2NS − k − i + 1, NS − k − i +

1
2

; p + NS

+
3
2

;
β + NSα + s− 2

√
NSαβ

β + NSα + s + 2
√
NSαβ

⎞
⎠

+ 2
√
NSαβ

√
π
(

4
√
NSαβ

)NS−k−i−1

(
β + NSα + s + 2

√
NSαβ

)p+2NS−k−i

× Γ
(
p + 2NS − k − i

)
Γ
(
p + k + i + 2

)

Γ
(
p + NS + 3/2

)

× F

⎛
⎝p + 2NS − k − i, NS − k − i− 1

2
; p + NS

+
3
2

;
β + NSα + s− 2

√
NSαβ

β + NSα + s + 2
√
NSαβ

⎞
⎠
⎤
⎦

− 2
(NS − 1)!

ND−1∑

p=1

1
p!

p∑

i=0

(
p
i

)NS−1∑

k=0

(
NS − 1

k

)

× (NSα)(NS+k+i)/2β(2p+NS−k−i)/2

× (p + i + k
)

√
π
(

4
√
NSαβ

)NS−k−i

(
β + NSα + s + 2

√
NSαβ

)p+2NS−k−i

× Γ
(
p + 2NS − k − i

)
Γ
(
p + k + i

)

Γ
(
p + NS + 1/2

)

× F

⎛
⎝p + 2NS − k − i, NS − k − i +

1
2

; p + NS

+
1
2

;
β + NSα + s− 2

√
NSαβ

β + NSα + s + 2
√
NSαβ

⎞
⎠

− 2
(NS − 1)!

NS−1∑

k=1

(
NS − 1

k

)
(NSα)(NS+k)/2β(NS−k)/2

×
k
√
π
(

4
√
NSαβ

)NS−k

(
β + NSα + s + 2

√
NSαβ

)2NS−k

× Γ(2NS − k)Γ(k)
Γ(NS + 1/2)

F

⎛
⎝2NS − k, NS − k +

1
2

; NS

+
1
2

;
β + NSα + s− 2

√
NSαβ

β + NSα + s + 2
√
NSαβ

⎞
⎠.

(27)

Before proving Theorem 4, the probability density func-
tion (PDF) of γ̃ is first presented in the following lemma.

Lemma 5. The PDF of γ̃ is given by

fγ̃
(
γ
) = 2

(NS − 1)!

ND−1∑

p=0

1
p!

p∑

i=0

(
p
i

)NS−1∑

k=0

(
NS − 1

k

)

× (NSα)(NS+k+i)/2β(2p+NS−k−i)/2

×
[(
β + NSα

)
γNS+pe−(NSα+β)γK|NS−k−i|

(
2
√
NSαβγ

)

+ 2
√
NSαβγ

NS+pe−(NSα+β)γK|NS−k−i−1|
(

2
√
NSαβγ

)

−(p + i + k
)
γNS+p−1e−(NSα+β)γK|NS−k−i|

(
2
√
NSαβγ

)]
.

(28)

Proof of Lemma 5. Differentiating (13), where γth = γ with
respect to γ and using the expression for the modified
Bessel function derivative in [15, Equation (8.486.12)]yield
(28).

Proof of Theorem 4. From Lemma 5, taking the Laplace
transform of (28) and using [15, Equation (6.621.3)] yields
(27).

Finally, from Theorem 4, substituting MGF (27) for the
ideal relay gain into (25) and (26), respectively, we obtain
exact average SER expressions for MPSK and MQAM.

Remark 6. The SER expressions for MPSK and MQAM
can straightforwardly be generalized to a system with a
direct link. The MGF would be multiplied by the factor
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(λNS/(λNS + s))NSND , where λ is the rate parameter of
the exponentially distributed source-to-destination gain
PS‖HSD‖2

F/σ
2
D1.

5. Diversity Order Analysis

The diversity order of the system can be determined directly
by the definition

d = − lim
SNR→∞

log Pout

log SNR
. (29)

Theorem 7. The diversity order of a two-hop AF relay system
is min{NS,ND} when an OSTBC strategy is employed at the
source.

Proof. Since the diversity order of the system describes
performance at asymptotically high SNR, the ideal relay
gain assumption is used. We begin by determining the
lower bound on diversity order of the system. Setting α =
μ/SNR, β = ν/SNR, and x = 1/SNR, then when SNR → ∞,
x → 0, it can be claimed that P(γ1γ2/(γ1 + γ2) < γth) ≤
P(γ1 < 2γth) + P(γ2 < 2γth) by ([18], Lemma 3). Substituting
(15) and (17) into the previous expression yields

P

(
γ1γ2

γ1 + γ2
< γth

)
≤ 1− e−2NSμγthx

ND−1∑

p=0

(
2NSμγthx

)p
p!

+1− e−2νγthx
ND−1∑

p=0

(
2νγthx

)p
p!

.

(30)

According to the appendix in [19], the following expression
can be obtained when x → 0:

1− e−2NSμγthx
NS−1∑

p=0

(
2NSμγthx

)p
p!

∼ (2NSμγthx
)NS 1

NS!
,

1− e−2νγthx
ND−1∑

p=0

(
2νγthx

)p
p!

∼ (2νγthx
)ND 1

ND!
.

(31)

Combining (29), (30), and (31), we obtain

d ≥ min{NS,ND}. (32)

An upper bound on diversity order can be obtained as
follows:

P

(
γ1γ2

γ1 + γ2
< γth

)
= P

((
1
γ1

+
1
γ2

)
>

1
γth

)

≥ P

(
max

(
1
γ1

,
1
γ2

)
>

1
γth

)

= 1− (1− P
(
γ1 < γth

))(
1− P

(
γ2 < γth

))

= P
(
γ1 < γth

)
+ P
(
γ2 < γth

)

− P
(
γ1 < γth

)
P
(
γ2 < γth

)
.

(33)
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Figure 2: Outage probability of the system with different numbers
of antennas.

Combining (29), (31), and (33), we obtain

d ≤ min{NS,ND}. (34)

Combining (32) and (34), we conclude that the diversity
order is min{NS,ND}.

6. Numerical Results and Conclusions

In the following Monte Carlo simulations, without loss of
generality, we assume equal transmit SNR at the source
and destination: PS/σ

2
R = PR/σ

2
D = SNRT and outage

capacity C = 1.5 bit/sec/Hz. In Figures 2–4, the variances
of Rayleigh fading channels 1/(αSNRT) from the source
antennas to the relay and the variance of Rayleigh fading
channels 1/(βSNRT) from the relay to the destination
antennas are set to 0.8 and 0.9, respectively. Also, OSTBCs
with the highest code rate and minimum decoding delay
are employed as given in [2]. Figure 2, showing outage
probability for different antenna configurations, reveals that
Monte Carlo simulations agree closely with the analysis
predicted by Theorem 3. Also, the ideal relay gain provides a
tight lower bound on outage probability even in the medium
SNR regime. It is clear that the diversity order, observable
by the slope of the outage probability curve, cannot be
improved through simply adding transmit antennas only or
receive antennas only for the case where an equal number of
antennas is installed at the source and destination. This is as
expected from Theorem 7, where the diversity order of the
system is shown to be equal to min{NS,ND}.

Figure 3 compares Monte Carlo simulations and analyt-
ical results for modulations with conditional SER Pe(γ) =
aQ(

√
bγ) including BPSK, BFSK, and 4 PAM as well as with

QPSK and 16 QAM. Clearly, the simulations very closely
match the analyses. Again, the ideal relay gain provides a tight
lower bound on average SER even in the case of medium
SNR.

Figure 4 shows average SER with BPSK modulation for
different antenna configurations. Here, the diversity order
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Figure 3: Average SER of the system with different modulation
schemes.
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Figure 4: Average SER of the BPSK system with different antenna
configurations.

can be observed as the slope of the average SER curve. In
accordance with Theorem 7, it is observed that the diversity
order cannot be improved through simply adding transmit
or receive antennas for the case of equal numbers of source
and destination antennas.

To assess the impact of relaying, Figure 5 compares
the proposed relaying system with an MIMO point-to-
point system. The relay is located between the source and
destination. The normalized distance between the source
and destination is assumed to be unity, so dRD = 1 − dSR.
The path loss exponent is set to 4, and it is assumed that
shadowing effects are the same for the source-relay and relay-
destination links, with a standard deviation δ = 8 dB, a value
typically assumed in urban cellular environments. For a fair
comparison, the transmit SNR as well as the OSTBC transmit
strategy is assumed to be identical for both systems.

Specifically, the relay is assumed to be placed halfway
between the source and destination in Figure 5. Figure 5
shows how system performance trades off between the
relaying and MIMO point-to-point systems. As expected, the
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Figure 5: Average SER comparison between the relaying system and
MIMO point-to-point system.
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Figure 6: Average system SER versus source-relay distance. Shown
are transmit SNRs of 10 and 6 dB.

results clearly show that the diversity order of the MIMO
point-to-point system, which is known to be NSND, is larger
than that of the relaying system for the same antenna
configuration at both source and destination. In other words,
as transmit SNR increases, the MIMO point-to-point system
has an advantage over the relaying system. However, it can
also be observed that the relaying system outperforms the
MIMO point-to-point system in lower SNR regimes: for
the case of NS = ND = 2, the relay system outperforms
point-to-point MIMO systems at transmit SNRs below 6 dB.
Adding a transmit antenna to the MIMO system lowers this
threshold to -1 dB, while at the same time, the code rate for
OSTBCs becomes 3/4. On the other hand, adding a receive
antenna to the MIMO system lowers this threshold to -4 dB.
Of course, the MIMO point-to-point system would be able to
achieve similar system performance gain by adding transmit
or receive antennas, but this would increase complexity.
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Figure 6 shows average SER of the system for different
source-relay distances with a fixed transmit SNR. It can be
observed from the figure that performance is best when the
relay is placed halfway between the source and destination.
Although not shown here, it is found that a similar trend
holds across a wide range of transmit SNR values.

7. Conclusions

The performance of a MIMO system using OSTBC transmis-
sion that encounters a simple relay in a two-hop AF con-
figuration has been analyzed, including outage probability,
SER and diversity order. These results extend those found in
[8, 10]. Monte Carlo simulations are found to agree closely
with the analyses. In fact, the numerical results indicate that
tight lower bounds are obtainable using the ideal relay gain
approximation, even at SNRs as low as 5–8 dB. In addition,
Monte Carlo simulations also compare system performance
between the proposed relaying system and a MIMO point-
point system and assess performance as a function of location
of the relay between the source and destination.
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