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The problem of fusing similarity measure-based classifiers is considered in the context of face verification. The performance of
face verification systems using different similarity measures in two well-known appearance-based representation spaces, namely
Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) is experimentally studied. The study is performed
for both manually and automatically registered face images. The experimental results confirm that our optimised Gradient
Direction (GD) metric within the LDA feature space outperforms the other adopted metrics. Different methods of selection and
fusion of the similarity measure-based classifiers are then examined. The experimental results demonstrate that the combined
classifiers outperform any individual verification algorithm. In our studies, the Support Vector Machines (SVMs) and Weighted
Averaging of similarity measures appear to be the best fusion rules. Another interesting achievement of the work is that although
features derived from the LDA approach lead to better results than those of the PCA algorithm for all the adopted scoring functions,
fusing the PCA- and LDA-based scores improves the performance of the system.

1. Introduction

In spite of the rapid advances in machine learning, in many
pattern recognition problems, the decision making is based
on simple concepts such as distance from or similarity to
some reference patterns. This type of approach is particularly
relevant when the number of training samples available to
model a class of objects is very limited. Examples of such
situations include content-based retrieval from image or
video databases, where the query image is the only sample
at our disposal to define the object model, or biometrics
where only one or a few biometric traits can be acquired
during subject enrolment to create a reference template.
In biometric identity verification, a similarity function
measures the degree of similarity of an unknown pattern
to the claimed identity template. If the degree exceeds a
pre-specified threshold, the unknown pattern is accepted
to be the same as the claimed identity. Otherwise, it is
rejected.

Different similarity measures have been adopted in
different machine vision applications. In [1], a number
of commonly used similarity measures including the City-
block, Euclidean, Normalised Correlation (NC), Chi-square
(χ2), and Chebyshev distance have been considered in an
image retrieval system. The reported experimental results
demonstrate that the City-block and Chi-square metrics
are more efficient in terms of both retrieval accuracy and
retrieval efficiency. In a similar comparative study, it has been
shown that the Chi-square statistics measure outperforms
the other similarity measures for remote sensing image
retrieval [2]. In another study, the effect of 14 scoring
functions such as the City-block, Euclidean, NC, Canberra,
Chebyshev, and Distance based Correlation Coefficients
has been studied in the context of the face recognition
problem [3] in the PCA space. It has been shown that a
simplified form of Mahalanobis distance outperforms the
other metrics. In [4], four classical distance measures, City-
block, Euclidean, Normalised Correlation, and Mahalanobis
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distance have been compared in the PCA space. It has
been shown that when the number of eigenvectors is
relatively high, the Mahalanobis distance outperforms the
other measures. Otherwise, a similar performance is achieved
using different measures. It has been also propounded that
no significant improvement is achieved by combining the
distance measures.

A similarity score is computed in a suitable feature space.
Commonly, similarity would be quantised in terms of a
distance function, on the grounds that similar patterns will
lie physically close to each other. Thus, the smaller the
distance, the greater the similarity of two entities. The role
of the feature space in similarity measurement is multifold.
First of all, the feature space is selected so as to maximise
the discriminatory information content of the data projected
into the feature space and to remove any redundancy.
However, additional benefits sought after from mapping the
original pattern data into a feature space is to simplify the
similarity measure deployed for decision making.

PCA and LDA are two classical tools widely used in the
appearance-based approaches for dimensionality reduction
and feature extraction. Many face recognition methods, such
as eigenfaces [5] and fisherfaces [6], are built on these
two techniques or their variants. Different researches show
that in solving the pattern classification problems the LDA-
based algorithms outperform the PCA-based ones, since the
former take the between classes variations into account.
The LDA is a powerful feature extraction tool for pattern
recognition in general and for face recognition in particular.
It was introduced to this application area by Belhumeur et
al. in 1997 [6]. An important contributing factor in the
performance of a face authentication system is the metric
used for defining a matching score. Theoretically, Euclidean
distance provides an optimal measure in the LDA space. In
[7], it has been demonstrated that it is outperformed by the
Normalised Correlation (NC) and Gradient Direction (GD).
Also, in [8], the performance of the NC scoring function
has been compared with the GD metric. The study has been
performed on the BANCA database [9] using internationally
agreed experimental protocols by applying a geometric face
registration method based on manually or automatically
annotated eyes positions. It has been concluded that overall
the NC function is less sensitive to missregistration error but
in certain conditions GD metric performs better. However, in
[10], it has been further demonstrated that by optimising the
GD metric, this metric almost always outperforms the NC
metric for both manually and automatically registered data.

In this study, a variety of other metrics have been inves-
tigated, including Euclidean, City-block, Chebyshev, Can-
berra, Chi-square (χ2), NC, GD, and Correlation coefficient-
based distance. The experimental results in face verification
confirm that, individually, other metrics on the whole do
not perform as well as the NC and GD metrics in the LDA
space. However, in different conditions, certain classifiers can
deliver a better performance.

It is well known that a combination of many differ-
ent classifiers can improve classification accuracy. Various
schemes have been proposed for combining multiple clas-
sifiers. We concentrate on classifier combination at the

decision-level, that is, combining similarity scores output by
individual classifiers. Thus, the scores are treated as features,
and a second-level classifier is constructed to fuse these
scores.

Fusion rules can be divided into two main categories:
fixed rules such as the sum, product, minimum, maximum,
and median rule [11–13] and trained rules like the weighted
averaging of classifiers outputs [14, 15], Support Vector
Machines (SVM) [10], bagging, and boosting [16]. Overall,
the fixed rules are most often used because of their simplicity
and the fact that they do not require any training. Accord-
ingly, equal weights are used for all the classifiers [11, 17].

However, in many studies it has been demonstrated
that trained classifiers such as Support Vector Machines
(SVMs) have the potential to outperform the simple fusion
rules, especially when enough training data is available. In
[18], AdaBoost has been adopted for combining unimodal
features extracted from face and speech signals of individuals
in multimodal biometrics. In [8] the fusion problem was
solved by selecting the best classifier or a group of classifiers
dynamically with the help of a gating function learnt for each
similarity measure.

In summary, it is clear that it is still pertinent to
ask which classifiers provide useful information and how
the expert scores should be fused to achieve the best
possible performance of the face verification system. In
[19], considering a set of similarity measure-based classifiers
within the LDA feature space, a sequential search algorithm
was applied in order to find an optimum subset of similarity
measures to be fused as a basis for decision making. The SVM
classifier was used for fusing the selected classifiers.

In this paper, a variety of fixed and trained fusion rules
are compared in the context of face authentication. Five
fixed fusion rules (sum, min, max, median, and product)
and two trained rules (the support vector machines and
weighted averaging of scores) are considered. It is shown that
a better performance is obtained by fusing the classifiers.
Moreover, the adopted trained rules outperform the fixed
rule. Although, the PCA-based classifiers perform nearly 3
times worse than the LDA-based one, an interesting finding
of this paper compared to our previous work [19] is that
the performance of the verification system can be further
improved by fusing the LDA- and PCA-based classifiers. In
[20], a similar study has been performed using Euclidean
distance as the scoring function. In the training stage of
the proposed algorithm, adopting a fixed reference as the
central value of the decision making threshold, client specific
weights are determined by calculating the average value of
the Euclidean distance of all the patterns from each client
template. The client specific weights are determined in both
LDA and PCA spaces. The weights are then used within
the framework of three simple untrained fusion rules. In
the adopted experimental protocol, each subject images are
divided into two parts as the training and test sets. The
experimental study performed on the ORL and Yale data sets
demonstrate that the combined classifier outperforms the
individual PCA- and LDA-based classifiers [20]. Although
the training and test images are different, since the same
subjects are available within the training and test sets, the
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weighting process is somehow biased so that the performance
of the system in the presence of new impostors (not those
used for training) could be worse.

The rest of the paper is organised as follows. In the
next section, the adopted scoring functions are introduced.
Fusion rules are reviewed in Section 3. A description of
the experimental design including the face database used in
the study, the experimental protocols, and the experimental
setup are given in Section 4. The experimental results using
the adopted scoring functions and the fusion results are
presented and discussed in Section 5. Finally a summary of
the main findings and conclusions can be found in Section 6.

2. Similarity Functions

In a similarity measure-based face verification system, a
matching scheme measures the similarity or distance of the
test sample, x, to the template of the claimed identity, µi, both
projected into an appropriate feature space. The general form
of a group of similarity measures which is called Minkowski
Distance or power norm metrics (Lp) is defined as

sM =
⎡
⎣

m∑

j=1

∣∣∣µi j − x j

∣∣∣p
⎤
⎦

1/p

, (1)

where m is the dimensionality and j indexes the components
of the two vectors.

The most commonly used similarity measures, Man-
hattan or City-block metric, Euclidean Distance (ED), and
Chebyshev Distance are special cases of the Minkowski metric
for p = 1, p = 2, and p → ∞, respectively, that is, L1, L2, and
L∞ metrics:

sCity =
m∑

j=1

∣∣∣µi j − x j

∣∣∣, (2)

sED =
√(

x − µi

)T(
x − µi

)
, (3)

sCheby = max
j

∣∣∣µi j − x j

∣∣∣. (4)

The Canberra Distance is also given by

sCanb =
m∑

j=1

∣∣∣µi j − x j

∣∣∣
∣∣∣µi j

∣∣∣ +
∣∣∣x j

∣∣∣
. (5)

This can be considered as the normalised Manhattan Dis-
tance. The Chi-squared (χ2) Distance is defined by

sχ2 =
m∑

j=1

(
µi j − x j

)2

∣∣∣µi j
∣∣∣ +

∣∣∣x j

∣∣∣
(6)

which is basically a relative Euclidean squared distance and is
usually meant for nonnegative variables only.

In [7], it has been demonstrated that a matching score
based on Normalised Correlation (NC) scoring function,
defined by the following equation, is more efficient:

sN =
∥∥∥xTµi

∥∥∥
√
xTxµTi µi

. (7)

Another similarity measure which is conceptually the
same as the NC function is the Correlation Coefficients-based
distance. For more details, the reader is referred to [3].

The Gradient Direction (GD) metric proposed in [7, 21]
measures the distance between a probe image and a model
in the gradient direction of the a posteriori probability
function P(i | x) associated with the hypothesised client
identity i. A mixture of Gaussian distributions with isotropic
covariance matrix has been assumed as the density function
representing the anticlass (world population) estimated from
the data provided by all the other users (for all j /= i). The
diagonal elements of the isotropic covariance matrix are
assumed to have values related to the magnitude of variation
of the image data in the feature space. It was demonstrated
that in a face verification system, applying GD metric is even
more efficient than the NC function. This matching score is
defined as

sO =

∥∥∥∥
(
x−µi

)T∇OP(i | x)
∥∥∥∥

‖∇OP(i | x)‖
, (8)

where ∇OP(i | x) refers to the gradient direction. For the
isotropic structure of the covariance matrix, that is, Σ = σI,
the optimal direction would be

∇IP(i | x) =
m∑

j=1
j /= i

p
(
x | j)

(
µ j − µi

)
. (9)

Note that the magnitude of σ will affect the gradient
direction through the values of density p(x | j)(x j).

3. Similarity Scores Fusion

One of the very promising research directions in the field
of pattern recognition and computer vision is classifier
fusion. It has been recognised that the classical approach
to designing a pattern recognition system which focuses
on finding the best classifier has a serious drawback.
Any complementary discriminatory information that other
classifiers may capture is not tapped. Multiple expert fusion
aims to make use of many different designs to improve the
classification performance. In the case considered here, as
different metrics span the feature space in different ways, it
seems reasonable to expect that a better performance could
be obtained by combining the resulting classifiers.

Since the scores for different classifiers lie in different
ranges, a normalisation process is required to transform
these score to the same range before combining them
[22]. The simplest normalisation technique is the min-max
normalisation. The min-max normalisation is best suited for
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the case where the bounds (maximum and minimum values)
of the scores produced by a matcher are known. In this case,
we can easily shift the minimum and maximum scores to 0
and 1, respectively. Given a set of scores for each classifier
si, i = 1, 2, . . . ,M, where M is the number of samples, the
normalised scores are given by

Si = si −mini

maxi −mini
, (10)

where si and Si are, respectively, the original and normalised
scores associated to the ith sample. mini and maxi are the
minimum and maximum scores determined from a training
set.

As mentioned earlier, two main groups of fusion rules,
untrained (fixed) and trained rules can be applied for
classifiers fusion. The untrained methods such as Sum (or
Average), Product, Min, Max,and Median are very well
known approaches. For example, the Sum rule is defined as

Snew =
M∑

i=1

Si, (11)

where M is the number of classifiers. This is simply
equivalent to averaging the normalised scores over the
classifiers. A variety of trained fusion techniques such as
neural network classifier, Bayesian classifier, and SVM have
been suggested. It has been shown that the SVM classifier
is among the best trained fusion rules. In [10], decision
level fusion strategy using the SVMs has been adopted for
combining the similarity measure-based classifiers. A very
good performance has been reported using the adopted
method.

Another promising trained rule involves a weighted
averaging of similarity scores. Obviously, the technique used
for determining the weight is an important factor in such a
method.

3.1. Support Vector Machines. A Support Vector Machine is
a two-class classifier showing superior performance to other
methods in terms of Structural Risk Minimisation [23]. For a
given training sample {xi, yi}, i = 1, . . . ,N , where xi ∈ RD is
the object marked with a label yi ∈ {−1, 1}, it is necessary to
find the direction w along which the margin between objects
of two classes is maximal. Once this direction is found the
decision function is determined by threshold b:

y(x) = sgn(w · x + b). (12)

The threshold is usually chosen to provide equal distance to
the closest objects of the two classes from the discriminant
hyperplane w · x + b = 0, which is called the optimal
hyperplane. When the classes are linearly nonseparable some
objects can be shifted by a value δi towards the right class.
This converts the original problem into one which exhibits
linear separation. The parameters of the optimal hyperplane

and the optimal shifts can be found by solving the following
quadratic programming problem:

minimise w ·w + C
N∑

i=1

δi

subject to: yi(w · xi + b) ≥ 1− δi,

δi ≥ 0, i = 1, . . . ,N ,

(13)

where parameterC defines the penalty for shifting the objects
that would otherwise be misclassified in the case of linearly
nonseparable classes.

The QP problem is usually solved in a dual formulation:

minimise
N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαj yi y jxi · x j

subject to:
N∑

i=1

αi yi = 0,

0 ≤ αi ≤ C i = 1, . . . ,N.

(14)

Those training objects xi with αi > 0 are called Support
Vectors, because only they determine direction w:

w =
N∑

i=1, αi>0

αi yixi (15)

The dual QP problem can be rapidly solved by the Sequential
Minimal Optimisation method, proposed by Platt [24]. This
method exploits the presence of linear constraints in (14).
The QP problem is iteratively decomposed into a series of
one variable optimisation problems which can be solved
analytically.

For the face verification problem, the size of the training
set for clients is usually less than the one for impostors.
In such a case, the class of impostors is represented better.
Therefore, it is necessary to shift the optimal hyperplane
towards the better represented class. In this paper, the size
of the shift is determined in the evaluation step based on the
Equal Error Rate criterion.

3.2. Weighted Averaging of Similarity Measures. Compare to
the simple averaging rule, in the case of weighted averaging,
different weights are considered for the scores achieved from
different classifiers, that is,

Snew =
M∑

i=1

wiSi, (16)

where wi is the weight assigned to the ith classifier output.
In this study, three methods of weighted averaging are

considered. In the first group, each classifier weight is
determined based on the performance of the classifier in an
evaluation step. The smaller the error rate, the greater the
weight assigned to the classifier output, that is,

wi = 1
TEREi

, i = 1, 2, . . . ,M, (17)
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where TEREi is the Total Error Rate of the ith classifier in the
Evaluation stage.

The main idea behind the second adopted method is
to minimise the correlation between classifier outputs. In
practise, outputs of multiple classifiers are not uncorre-
lated, but some classifiers are more correlated than others.
Therefore, it is reasonable to assign different weights to
different classifiers according to their correlation. Principle
Component Analysis, PCA, is one of the statistical techniques
frequently used to decorrelate the data [25]. Denote by S the
vector of scores delivered by the M classifiers, that is,

S = [S1 S2 · · · . SN ] . (18)

Let λi and vi, i = 1, . . . ,M, be the eigenvalues and
eigenvectors of the covariance matrix of the evaluation score
vectors S retaining a certain proportion of the score variance.
The eigenvectors are used as the bases of a new feature space.
Applying the simple averaging rule (equation (11)) to the
scores transformed to this feature space is equivalent to the
weighted averaging of the original scores in (16) where wi are
determined using the following equation:

wi =
M∑

j=1

vi j . (19)

As the third method of weighted averaging of the scores,
the above mentioned idea can be extended by applying the
LDA algorithm. In a face verification system, two groups
of score vectors are considered: client scores and impostor
scores. In the evaluation step, these classes of data can
be used within the framework of the Linear Discriminant
Analysis (LDA) for computing the feature space bases and
the classifier weights.

4. Experimental Design

In this section, the face verification experiments carried
out on images of the BANCA database are described.
The BANCA database is briefly introduced first. The main
specification of the experimental setup is then presented.

4.1. BANCA Database. The BANCA database has been
designed in order to test multimodal identity verification
systems deploying different cameras in different scenarios
(Controlled, Degraded, and Adverse). The database has been
recorded in several languages in different countries. Our
experiments were performed on the English section of the
database. Each section contains 52 subjects (26 males and 26
females).

Each subject participated to 12 recording sessions in
different conditions and with different cameras. Sessions 1–4
contain data under Controlled conditions whereas sessions 5–
8 and 9–12 contain Degraded and Adverse scenarios, respec-
tively. In order to create more independent experiments,
images in each session have been divided into two groups of
26 subjects (13 males and 13 females). Experiments can be
performed on each group separately.

In the BANCA protocol, 7 different distinct experimental
configurations have been specified, namely, Matched Con-
trolled (Mc), Matched Degraded (Md), Matched Adverse
(Ma), Unmatched Degraded (Ud), Unmatched Adverse (Ua),
Pooled test (P), and Grand test (G). Table 1 describes the
usage of the different sessions in each configuration. “T”
refers to the client training while “C” and “I” depict client
and impostor test sessions, respectively.

4.2. Experimental Setup. The performance of different deci-
sion making methods discussed in Section 2 is experimen-
tally evaluated on the BANCA database using the config-
urations discussed in the previous section. The evaluation
is performed in the LDA and PCA spaces. The original
resolution of the image data is 720 × 576. The experiments
were performed with a relatively low resolution face images,
namely, 64× 49. The results reported in this paper have been
obtained by applying a geometric face normalisation based
on the eyes positions. The eyes positions were localised either
manually or automatically. A fast method of face detection
and eyes localisation was used for the automatic localisation
of eyes centre [26]. The XM2VTS database [27] was used for
calculating the LDA and PCA projection matrices.

The thresholds in the decision making system have been
determined based on the Equal Error Rate criterion, that
is, by the operating point where the false rejection rate
(FRR) is equal to the false acceptance rate (FAR). The
thresholds are set either globally (GT) or using the client
specific thresholding (CST) technique [21]. In the training
sessions of the BANCA database 5 client images per person
are available. In the case of global thresholding method, all
these images are used for training the clients template. The
other group data is then used to set the threshold. In the
case of the client specific thresholding strategy, only two
images are used for the template training and the other three
along with the other group data are used to determine the
thresholds. Moreover, in order to increase the number of
data used for training and to take the errors of the geometric
normalisation into account, 24 additional face images per
each image were generated by perturbing the location of the
eyes position around the annotated positions.

In the previous studies [21], it has been demonstrated
that the Client Specific Thresholding (CST) technique is
superior in the matched scenario (Mc, Md, Ma, and G)
whereas the Global Thresholding (GT) method gives a
better performance on the unmatched protocols. The results
reported in the next section using thresholding have been
acquired using this criterion.

5. Experimental Results and Discussion

As mentioned earlier, in the GD metric, the impostor
distributions have been approximated by isotropic Gaussian
functions with a standard deviation of σ , that is, Σ = σI . The
order of σ is related to the order of the standard deviation of
the input data (grey level values in the LDA feature space). In
the previous work [8], a fixed value equal to 104 has been
used for σ . In this work, in order to optimise the metric
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Table 1: The usage of the different sessions in the BANCA experimental protocols.

1 2 3 4 5 6 7 8 9 10 11 12

Mc TI CI CI CI

Md TI CI CI CI

Ma TI CI CI CI

Ud T I CI CI CI

Ua T I CI CI CI

P TI CI CI CI I CI CI CI I CI CI CI

G TI CI CI CI TI CI CI CI TI CI CI CI
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Figure 1: The performance of the GD metric versus the value of σ .

for dealing with different imaging conditions, the value of
σ is adaptively determined in the evaluation step where
the performance of the system for different values of σ is
evaluated. As examples, Figure 1 contains plots of the Total
Error rate versus the value of σ in the evaluation and test steps
for the Mc, Md, Ud, and P protocols.

The evaluation plots show that by increasing the value
of σ , the Total Error rate first rapidly decreases. Then, for
larger values of σ , the TE rate remains relatively constant
or increases gradually. From these plots, one can also see
that the behaviour of the system in the evaluation and test
phases is almost consistent. Therefore, the optimum σ can
be found in the evaluation step by looking for the point
after which the performance of the system is not significantly
improved by increasing the value of σ . The associated value

of σ is then used in the test stage. Since, the effectiveness
of a similarity measure depends on the adopted method of
feature extraction, in the next subsection the experimental
results using the PCA and LDA algorithms are reported. The
fusion rules are presented in the sequel.

5.1. Experimental Results in the PCA and LDA Feature Spaces.
Figure 2 contains the results obtained using the individual
scoring functions on the evaluation and test data sets in the
PCA and LDA spaces when manually annotated eyes position
were used for the face geometric normalisation. The Total
Error rates in the Evaluation (TEE) and Test (TET) stages
have been used as performance measures in the plots. These
results clearly demonstrate that among the adopted metrics,
the GD metric is individually the outright winner.
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Figure 2: ID verification results using different scoring functions in the PCA and LDA feature spaces for the manually registered data.
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Figure 3: ID verification results using different scoring functions in the LDA feature space for automatically registered data.

For the sake of simplicity of comparison, Table 2 contains
the evaluation and test results for the GD metric using the
PCA and LDA spaces. These results demonstrate that a better
performance can always be achieved using the LDA space.

Table 3 also contains a summary of the results obtained
using the individual scoring functions on the evaluation

and test sets when manually annotated eyes positions were
used for the face geometric normalisation in the LDA space.
The values in the table indicate the Total Error rates in the
Evaluation (TEE) and Test (TET) stages, respectively.

The results of the similar experiments with automatically
registered data in the LDA feature space demonstrate that in
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Table 2: ID verification results using GD metric, LDA (left) and PCA (right). TEE: Total Error rate Evaluation; TET: Total Error rate Test.

Manual Registration

LDA PCA

TEE TET TEE TET

Mc 0.597 4.87 2.2 15.77

Md 1.77 7.18 4.26 25.19

Ma 1.56 8.03 8.6 20.54

Ud 26.09 24.74 49.49 48.32

Ua 27.5 27.4 48.49 50.96

P 19.56 19.64 39.64 39.6

G 2.43 4.12 8.74 18.04

Table 3: ID verification results using different similarity measures for the manual registered data in the LDA feature space.

Mc Md Ma Ud Ua P G

TEE TET TEE TET TEE TET TEE TET TEE TET TEE TET TEE TET

NC 1.93 8.08 3.57 13.36 3.79 14.61 24.81 25.93 37.63 38.81 27.69 28.01 7.26 9.75

GD 0.60 4.87 1.77 7.18 1.55 8.03 26.09 24.74 27.5 27.40 19.56 19.64 2.43 4.12

ED 7.97 25.89 17 32.34 25.06 38.62 52.37 51.15 59.26 60.42 47.12 48.22 46.33 54.93

City 11.6 29.65 22.9 37.4 34.17 43.71 57.82 58.4 66.44 67.3 54.25 54.25 57.24 62.26

Cheb 8.2 31.73 16.22 39.23 16 35.86 56.44 56.3 58.94 57.41 51.56 51.85 32.54 43.79

χ2 7.49 20.41 14.88 28.88 22.99 34.17 48.17 47.15 56.35 60.48 44.46 45.45 42.91 48.12

Corr 2.25 11.22 4.74 15.6 4.54 17.43 22.66 26.25 36.57 37.44 34.44 34.54 8.02 10.85

Canb 5 13.85 8.69 20.25 12.01 24.2 34.26 33.5 51.54 52.37 26.74 27.69 22.54 24.04

Table 4: Fusion results for the different BANCA protocols using different fusion rules.

Sum WA1 WA2 WA3

TEE TET TEE TET TEE TET TEE TET

Mc 2.51 10.61 .82 6.31 1.9 8.56 1.38 6.5

Md 5.98 16.28 2.93 10.67 5.35 15.93 2.5 9.33

Ma 7.54 18.75 2.24 11.06 6.29 17.14 2.55 10.32

Ud 30.03 30.54 26.16 25.38 29.45 30.48 19.55 21.79

Ua 40.41 41.19 36.47 37.95 40.35 41.4 26.96 29.61

P 29.65 29.8 25.3 24.87 18.51 28.57 18.33 19.94

G 15.5 19.12 3.8 5.66 14.92 18.47 3.32 4.55

this case the optimised GD function again delivers a better or
at least comparable performance. The performance of other
metrics, with the exception of NC, is much worse. These
results are shown in Figure 3.

5.2. Fusion Results and Discussions. In the next step, we
investigated the effect of fusing the classifiers employing
the different similarity measures. In the first group of
experiments, we compared the fixed combination rules
(Sum, Product, Min, Max, and Median) in which all the
classifiers are deemed to carry the same weight. The results
obtained in the evaluation and test steps for both manually
and automatically registered data are shown in Figure 4.
These results clearly demonstrated that among the adopted
fixed rules, the Sum rule outperforms the others for both

manually and automatically registered data. For the sake of
simplicity of comparison of the results using the untrained
and trained rules, the fusion results using the Sum rule for
manually registered data have been reported in Table 4.

In the second group of fusion experiments, different
weighted averaging of the outputs of classifiers employing
different similarity measures were examined. The results
are presented in Table 4. In this table WA1, WA2, and
WA3 represent the weighted averaging results for the error
minimisation method, PCA, and LDA, respectively.

As can be seen, all the adopted weighted averaging
methods give better results compared to the simple aver-
aging (Sum) rule. Also, among the weighted averaging
methods, a better performance is achieved using the LDA
method.
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Figure 4: Untrained fusion results in the evaluation and test steps for different BANCA experimental protocols.

Table 5: Fusion results on BANCA protocols with PCA and LDA space using SVM, manual registration (left), and automatic registration
(right).

Manual Registration Automatic Registration

FARE FRRE TERE FART FRRT TERT FARE FRRE TERE FART FRRT TERT

Mc 0.096 0.13 0.22 0.86 0.13 0.99 5.48 5.51 10.99 6.92 6.54 13.46

Md 0.96 1.02 1.98 1.06 2.18 3.24 2.88 2.95 5.83 21.83 6.41 28.24

Ma 1.44 1.54 2.98 0.38 3.72 4.1 0.86 0.9 1.76 0.86 7.56 8.42

Ud 10.19 10.13 20.32 9.14 14.61 23.75 10.48 10.38 20.86 9.81 15 24.81

Ua 10.77 10.9 21.67 11.83 10.51 22.34 15 14.87 29.87 26.15 22.44 48.59

P 7.6 7.52 15.12 7.92 9.83 17.75 14.87 14.82 29.6 12.08 17.52 29.6

G 1.31 1.33 2.64 1.15 1.7 2.85 6.35 6.41 12.76 9.87 8.93 18.8

Figure 5 contains comparative plots of the results using
the Sum rule, LDA-based weighted averaging, and the
SVMs. These plots demonstrate that the trained methods
outperform the untrained (Sum) rule. In most of the cases,
comparable results are obtained using LDA weighting and
SVMs.

Since, the effectiveness of a similarity measure depends
on the adopted method of feature extraction, in the next
step, the merit of fusing the PCA- and LDA-based clas-
sifiers using SVM was investigated. Figure 6 contains the
comparative plots of the Total Error rates obtained in the
Evaluation (TEE) and Test (TET) stages for both manually
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Figure 5: Fusion using the Sum, LDA- based weighted averaging, and SVMs.
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Figure 6: Verification results by fusing the LDA- and PCA-based classifiers using SVMs.
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and automatically registered data (see Table 5). These plots
demonstrate that these methods outperform the other
rules.

Overall, the results clearly demonstrate that the proposed
similarity measure fusion considerably improves the perfor-
mance of the face verification system.

6. Conclusions

The problem of fusing similarity measure-based classifiers in
face verification was considered. First, the performance of
face verification systems in PCA and LDA feature spaces with
different similarity measure classifiers was experimentally
evaluated. The study was performed for both manually
and automatically registered face images. The experimental
results confirm that our optimised Gradient Direction
metric in the LDA feature space outperforms the other
investigated metrics. Different methods for the selection and
fusion of the various similarity measure-based classifiers
were compared. The experimental results demonstrate that
the combined classifiers outperform any individual verifi-
cation algorithm. Moreover, the Support Vector Machines
and Weighted Averaging of similarity measures have been
shown to be the best fusion rules. It was also shown that
although the features derived from the LDA approach lead
to better results, than those of the PCA algorithm, fusing
the PCA- and LDA-based scores improves the performance
further. Based on our previous study within the LDA space
[19], further improvement is also expected by adaptively
selecting a subset of the LDA-based and PCA-based classi-
fiers.
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