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The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor
networks (RSNs) if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring
the polarization information of the electromagnetic (EM) waves. Then, we propose the oblique projection polarization filtering-
(OPPF-) based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the
polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization
information of each radar member is known to all. The proposed method uses all radar members’ polarization information
to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization
information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the
frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the
proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good
filtering performance when dealing with the problem of interference suppressions for RSNs.

1. Introduction

Due to the complex and time-varying environments, also
with respect to the manmade or natural interferences, the
detection and recognition performance of the single radar
system is limited by several issues. Since the techniques
on electromagnetic countermeasure (ECM) and counter-
counter measures (CCM) are developing more and more
sophisticated, we can foresee that it is considerably difficult
to fulfil the goal of giving the most accurate interpretation
about what the target is at any given point in time for any
detection and recognition system. It is also known to all that
the slow fluctuations of the target radar cross section (RCS),
which result in the radar target fades, are a main factor of
degrading the detection and recognition performance of the
radar systems [1].

The single radar systems encountering those problems
mentioned above boost the radar researchers and engineers
to exploit the new and effective schemes, therein, the
radar sensor networks (RSNs) appear [2–10]. The RSNs
are promised to operate with multiple goals managed

by an intelligent platform network that can manage the
dynamics of each radar member to meet the common
goals of the platform, rather than each radar to operate
as an independent system. This is the so-called cooperative
radar networks with communication function [6]. While the
performance of RSNs degrades because the radar members
are likely to interfere with each other if their waveforms are
not orthogonally designed, or their polarized states of the
waveforms are not properly allocated [7]. In order to elim-
inate these interferences, much attention has been paid to
the waveform design for RSNs [4–7, 9, 10]. The utilization of
the polarization information for RSNs attracts relatively little
attention than the waveform design, while our work tries to
exploit the polarization information of the electromagnetic
(EM) waves for RSNs, and we expect to seek an effective and
easy implementation for RSNs to mitigate the interferences
based on the use of the polarization information.

For the single radar systems, the polarization filtering
(PF) technique is an effective method of interference sup-
pressions, and the PF attracts much attention in recent
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decades [11–18]. While the conventional polarization filter-
ing (CPF) [11–13] suffers distortions on both amplitude and
phase of the target signal when establishing the orthogonal
complementary vector of the interference polarization to
cancel the interference, because of the neglect of the target
polarization. The distortions on target is called the polar-
ization loss introduced by the PF [14], and the polarization
loss is determined by the distance when representing the
polarization of the target and the interference in the form of
the Poincare-Sphere. If and only if the distance between them
is 180◦, that is, their polarizations are orthogonal, no polar-
ization loss is introduced. The polarization loss limits the fil-
tering performance of the PF. To avoid the distortions on tar-
get, the null-phase-shift polarization filtering (NPSPF) was
proposed in [15]. Although the NPSPF can solve the problem
of distortions, it would suppress both the interference and
the target when they hold the same polarized angle, and the
CPF also encounters this problem when the target and the
interference are both vertical polarization. These issues limit
the application scopes of the PF. Meanwhile, little attention
has been paid to the applications of the PF for RSNs.

In this paper, we propose a novel polarization filtering-
based approach for RSNs, the suggested scheme suppresses
the interferences from the radar members by using the
oblique projection polarization filtering (OPPF) [16–20],
and the OPPF is the extension to the CPF and the NPSPF.
The proposed OPPF can separate the signals effectively if
the polarization information of them is different, and the
polarized states are not needed to be orthogonal due to
the merits of the oblique projections [20]. The detailed
implementation of the OPPF is to construct the polarization
subspaces of the target and the interference, respectively,
then the filtering operator is established according to the
oblique projection operator. After passing through the OPPF,
the interferences (other radar members’ returned signals)
are effectively cancelled while keeping the desired return
with the same amplitude/phase and the polarization before
the operation by the OPPF, even if their waveforms and
polarized states are not orthogonal. The proposed scheme
can effectively separate the desired returned signal and the
interferences without additional transformation and com-
pensation processing. With the desired return not suffering
distortions after separation, the scheme is still valid when the
desired return and the interferences hold the same polarized
angle but with different phase difference in polarized angle.

Since the polarization filtering is independent of the
frequency, the spatial, and the temporal domains, the
proposed design is expected to exploit more resources which
can achieve better suppression performance of the clutter
and the interferences for RSNs. The Doppler-shift and its
uncertainty are also independent of polarization, and this
shows the implementation of the suggested scheme is simpler
than the waveform-design-based systems.

We consider that all radar members’ polarization infor-
mation are shared among each radar member, that is, in
a cooperative way. The proposed method utilizes all of the
radar members’ polarization information to establish the
corresponding filtering operator for each radar member.
Theoretical analysis and the mathematical deduction show
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Figure 1: Block diagram of the RSNs.

that the proposed scheme is a valid and simple implemen-
tation. Simulation results also demonstrate that this method
can obtain a good filtering performance when dealing with
the problem of interference suppressions for RSNs.

The remainder of this paper is organized as follows.
System model and fundamentals of the oblique projections
are introduced in Section 2. The OPPF-based interference
suppressions for the cooperative scenario is discussed in
Section 3. Detailed analysis and the simulation results are
done and illustrated in Section 4. Finally, Section 5 concludes
this paper.

Typographic Conventions. A scalar is represented by any
symbol in an italic font, for example, m. Vectors are column
vectors and are represented by a boldface symbol, such as
x. Matrices are represented by symbols in a bold font and
are usually uppercase, such as S. The subspace spanned by
the columns of a matrix is represented with angle brackets
around the symbol for the matrix, for example, 〈S〉. We use
the symbol 〈S〉⊥ to denote the orthogonal complement of
〈S〉. The symbol CN denotes the complex Euclidean space of
dimension N . We use Mn,m(CN ) to represent an n-by-m array
matrix defined in the complex Euclidean space of dimension
N . I is the unit matrix. E{·} is the operation of calculating
the expectation.

A superscript T is used to indicate the transpose of a
matrix or vector, such as ST , and H denotes the Hermitian
transpose, for example, SH . · is the dot product of two
vectors, † is the symbol of pseudoinverse of a matrix, such as
S†, and∗ denotes the conjugate operating. j is the imaginary
part unit, and · is the conjugate of a complex number.

2. SystemModel and Oblique Projections

2.1. System Model. We assume that the RSN consists of
N radar members and is organized together in a self-
organizing fashion. Figure 1 shows the block diagram of the
discussed RSN. For the ith radar member, the received signal
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contains its own return (red color) and returned signals of
other radar members (dashed lines). In our discussed RSN,
each radar member is equipped with an orthogonal dual
polarized antenna (ODPA) which can radiate and receive any
polarization pattern.

Since the polarization information is taken into our
consideration, we should represent the transmitted and the
received signals in the form of the polarization represen-
tation. When representing the completely polarized EM
waves using the Jones vector in a right-handed Cartesian
coordinate system with the z coordinate representing the
direction of propagation and the orthogonal basis defined
by a pair of x and y representing the horizontal (H) and
the vertical (V) components, ignoring the absolute phase
of the horizontal component, the transmitted modulated
waveform ̂Ssi(t) of the ith radar member can be modelled as

̂Ssi(t) =
√

2
Tp

[

̂SsiH(t)
̂SsiV (t)

]

=
[

cos εsi
sin εsie jδsi

]√

E

Tp

̂Ssi(t)e jωit, 0 < t < Tp,

(1)

where ̂Ssi(t) is the constant amplitude pulse envelope;
√

E/Tp

is a normalization factor to let
∫ Tp

0 {(
√

E/Tp) Re[̂Ssi(t)e jωit]}dt
= 1, wherein, E is the energy of the waveform and Tp is
the time duration for the radar pulses and each oscillator;
ωi is the center frequency; εsi and δsi are its polarization
parameters with εsi denoting the polarized angle, and δsi
the phase difference in polarized angle. The polarized angle
and the phase difference in polarized angle determine the
polarized states of the signal as follows.

(1) If δ = 0,π, the polarization is linear.

(2) δ = −π/2, ε = π/4 indicates the right-handed
circular polarization, and δ = π/2, ε = π/4 shows
the left-handed circular polarization.

(3) If δ ∈ (0, 90◦) and ε ∈ (0, 90◦), then the polarization
is left-handed elliptic. When δ ∈ (−90◦, 0) and ε ∈
(0, 90◦), the polarization is right-handed elliptic.

The polarized state is determined by the amplitude and
phase relationship between the two components received by
the ODPA. Taking the polarization of the ith radar member
as an instance, the polarized angle and the phase difference
in polarized angle are calculated as

εsi = arctan

⎡

⎣

∣

∣

∣
̂SsiV (t)

∣

∣

∣

∣

∣

∣
̂SsiH(t)

∣

∣

∣

⎤

⎦, (2)

δsi = arg
{

̂SsiV (t)
}

− arg
{

̂SsiH(t)
}

, (3)

respectively, where arg{x} indicates the argument of the vec-
tor x. After being radiated by the ODPA, the EM waves may
produce the so-called cross-polarization (XP) component
whose polarization is orthogonal to the original transmitted
polarization, and this is known as the effect of depolarization

[21, 22]. The degree of the depolarization is described by
the cross-polarization discrimination (XPD) which indicates
the ratio of the original transmitted polarization component
power and the cross-polarization component power at
the same location point. The depolarization effect can be
eliminated by introducing the depolarization compensation
technology [23].

There are also many methods for estimation of the polar-
ized states (see [15, 24]). In a communication realization, the
polarized states can be estimated in the frequency domain
if each user holds different frequency bands [15]. If they
overlap in the frequency domain, then we can estimate
their polarized states in the Fractional Fourier domain,
because the modulation rate or the starting frequency of
each member may be different. By using the Fractional
Fourier Transformation (FrFT), their polarized states can be
estimated effectively. We assume that the polarized state is
already known at the receiver in this paper.

As depicted in Figure 1, a point moving target at an
instant range is taken into our consideration. The two-way
time delay of the ith radar member is denoted as τi. Due to
the movement of the target, the Doppler-shift denoting asωdi

is introduced. Hence, the back-scattered radiation of the ith
radar member from the target is written as

̂Sri(t) =
√

2
Tp

[

̂SriH(t)
̂SriV (t)

]

=
[

cos εri
sin εrie jδri

]√

E

Tp

̂Sri(t)e j(ωi+ωdi)(t−τi), 0 < t < Tp,

(4)

where ̂Sri(t) is the amplitude of the return of the ith radar
member; εri and δri are the polarization information of its
own return. If the target is a fluctuating one, the most
popular and reasonable model for |̂Sri(t)| is the “Swerling 2”
model. Therefore, |̂Sri(t)| follows the Rayleigh distribution
[1].

The polarized state suffers changes during the propaga-
tion [21, 22], for example, the reflections and the shadowing
effect can destroy the polarization. Hence, the estimation
of the polarized states (or polarization measurement) is
essential for the PF. When the polarized states suffers
changes, the depolarization compensation technology is
valid to compensate the changes [23].

Since all of the radar members are transmitting signals,
the received signal for all the radar members are mixed
signals containing its own desired back-scattered signal
and scattered signals generated by others. Then, the signal
received by the ODPA of the ith radar member can be
modelled as

ri(t) =
N
∑

k=1

̂Srk(t) + ni(t), (5)

where ̂Srk(t) is the amplitude of the returned signal from the
kth radar member; ni(t) is the additive white Gaussian noise
(AWGN) with mean value zero and variance σ2

i .
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In order to suppress those components coming from
other radar members, several work based on the waveform
design of the signal has been proposed [4–7, 9, 10]. The
propagation processing also destroys the orthogonality of the
waveforms. Due to the movement of the target, the relative
speed rate of the target to each radar member is different,
and the Doppler-shift and its uncertainty are essential to the
waveform-design-based systems. In this paper, we make use
of the polarization information to suppress those interfer-
ences. It is obvious that the polarization is independent of
the frequency, and the Doppler-shift and its uncertainty.

2.2. Oblique Projections. Herein, we consider two full column
rank matrices S ∈ Mn,m(CN ) and L ∈ Mn,k(CN ), and
suppose m + k < n. The columns of S and L are
nonoverlapped indicating that the intersection of the range
subspaces 〈S〉 and 〈L〉, respectively, spanned by S and L
only contains vector 0. It is obvious that the condition
of nonoverlapped implies that the vector spaces are linear
independent. If their intersection of the range subspaces only
contains vector 0, then they are called as disjointed vector
spaces. Two vectors are disjointed does not imply that they
are orthogonal with each other. It is easy to find that the
composite matrix [S, L] is also a full column rank matrix
with rank m + k.

The oblique projection operator along the subspace 〈L〉
onto the subspace 〈S〉 is defined as [20]

ESL =
[

S 0
]

[

SHS SHL
LHS LHL

]†[
SH

LH

]

. (6)

The properties of the oblique projection operator are as
follows [20]:

ESLS = S, ESLL = 0. (7)

It can be found that the range space of the oblique
projection operator ESL is 〈S〉, and 〈L〉 is a subset of its null
subspace.

As an extension to the orthogonal projection, oblique
projection does not need the condition that the two sub-
spaces are orthogonal. If they are orthogonal, the projection
operator becomes the orthogonal projection operator.

3. OPPF in the Cooperative Scenario

According to the polarization information and equations (1)
and (4), equation (5) can be rearranged in the matrix form
and written as

ri(t) =
[

cos εr1, . . . , cos εrN
sin εr1e jδr1 , . . . , sin εrNe jδrN

]

×
√

E

Tp

⎡

⎢

⎢

⎢

⎣

̂Sr1(t)e j(ω1+ωd1)(t−τ1)

· · ·
· · ·

̂SrN (t)e j(ωN+ωdN )(t−τN )

⎤

⎥

⎥

⎥

⎦

+ ni(t).

(8)

We consider that all radar members share their polar-
ization information. For convenience, we assume that there

are two radar members in the RSN, that is, N = 2. It is
proved that the OPPF can solve the problem of interference
suppressions when there are more than two radar members
[18]. We propose the polarization vector transformation
(PVT) to fulfil the multiinterference suppressions based on
the merits of the oblique projections.

The polarization can be defined as a domain or a
subspace, and the polarized waves can be considered as
belonging to its corresponding polarization subspace, or
different polarized states are corresponding to different
components of the polarization subspaces. It is obvious
that two arbitrary different polarized states satisfy the
requirement of disjointed. Signals with different polarized
states can be represented by different components in the
polarization subspaces. According to the fundamental theory
of the oblique projection, the target signal (the desired
return) polarization subspace S and the interference (return
from the second radar member) polarization subspace L are
defined as

S = [cos εr1, sin εr1 exp
(

jδr1
)]T ,

L = [cos εr2, sin εr2 exp
(

jδr2
)]T

.
(9)

Obviously, S and L are column vectors and are both full
column rank (rank is 1). If the polarized states of the target
and the interference are different, then the subspaces 〈S〉 and
〈L〉 are disjointed, where the composite matrix [S, L] is a full
column rank matrix.

Furthermore, we define

θ =
√

E

Tp

̂Sr1(t)e j(ω1+ωd1)(t−τ1),

φ =
√

E

Tp

̂Sr2(t)e j(ω2+ωd2)(t−τ2).

(10)

For two radar members, the signal received by the 1st
radar member is described as

r1(t) = ̂Sr1(t) + ̂Sr2(t) + n1(t), (11)

where ̂Sr1(t) and ̂Sr2(t) are

̂Sr1(t) = Sθ, ̂Sr2(t) = Lφ. (12)

With (6), the oblique projection operator corresponding
to the polarization subspaces of the target and the inter-
ference can be constructed to extract the target signal. The
expression of formula (6) is expanded as [20]

ESL = S
(

SHPL
⊥S
)−1

SHPL
⊥, (13)

where PL
⊥ is the orthogonal projection operator onto the

orthogonal complementary subspace of L, which can be
calculate as

PL
⊥ = I− PL = I− L

(

LHL
)−1

LH , (14)

where PL is the orthogonal projection operator onto the
interference polarization subspace L.
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From (7), the output signal e1(t) of the received signal
passing through the oblique projection operator ESL, can be
obtained as

e1(t) = ESL
(

Sθ + Lφ + n1
) = ̂Sr1(t) + n̂1, (15)

where n̂1 is the result after n1 passing through ESL.
Formula (15) demonstrates that the interference is

suppressed totally, and the output is the original target signal
plus the additive Gaussian noise, with the amplitude and
phase of the target signal remaining the same after projection
processing. As long as the polarized states of the target signal
and the interference are different, that is, the polarized angles
and the phase difference in polarized angle are not equal
simultaneously, then the oblique projection operator can
suppress the interference totally and keep the amplitude and
phase information of the target. The proposed scheme does
not require the information of the frequency, the time-scale,
and the Doppler-shift and its uncertainty. If the target signal
and the interference are overlapped in the frequency domain,
the interference can also be suppressed by using the oblique
projection operator.

The output of the oblique projection operator is a two-
dimension signal that contains the horizontal component
and the vertical component, which keeps the entire informa-
tion of the original signal including the polarization infor-
mation. Therefore, posterior polarization processing is still
available after adopting the proposed filtering algorithm, for
example, another polarization filtering can be implemented.
In order to obtain the one-dimension signal, we project the
results obtained from the oblique projection orthogonally
onto the subspace of R1, where R1 is described as

R1 = [cos εr1, sin εr1]T . (16)

The orthogonal projection can be written as

e1(t) · R1 = [ESLr1(t)] · R1 = rT1 (t)ESL
TR1

∗. (17)

And (ESL
TR∗1 )

∗
can be defined as the OPPF operator Q1

Q1 =
(

ESL
TR1

∗
)∗ = 1

A1
[B1,C1]T , (18)

where

A1 = (cos εr1 sin εr2)2 + (sin εr1 cos εr2)2

− 2 sin εr1 sin εr2 cos εr1 cos εr2 cos(δr2 − δr1),

B1 = sin2εr1 cos εr1sin2εr2 exp
(

jδr1
)

− sin εr2 cos εr2sin3εr1 exp
(

jδr2
)

+ cos3εr1sin2εi

− sin εr1cos2εr1 sin εr2 cos εr2 exp
(

j(δr2 − δr1)
)

,

C1 = sin εr1cos2εr1cos2εr2 exp
(− jδr1

)

− sin εr2 cos εr2cos3εr1 exp
(− jδr2

)

+ sin3εr1cos2εr2

− sin2εr1 cos εr1 sin εr2 cos εr2 exp
(

j(δr1 − δr2)
)

.
(19)

The OPPF operator contains the polarization informa-
tion of the target and the interference. If the polarized states
of both the target signal and the interference are known,
the OPPF operator can be constructed according to the
formulaes (18)-(19) to extract the target signal.

Along the same analysis flow, it can be found out that
the oblique projection operator ELS along subspace S onto
subspace L can also extract the components of ̂Sr2(t). Hence,
in the cooperative RSN, each radar can obtain its own target
signal while suppressing other radar members’ interfering
signals, since ELSL = L and ELSS = 0.

Consider that there are more than two radar members in
the RSN, that is, N > 2. For simplicity of analysis, we assume
there are three radar members, while it can be extended to
more radar members in a straightforward way.

Let

S = [cos εr1, sin εr1 exp
(

jδr1
)]T ,

L1 =
[

cos εr2, sin εr2 exp
(

jδr2
)]T ,

L2 =
[

cos εr3, sin εr3 exp
(

jδr3
)]T

.

(20)

Therefore, the received signal of the 1st radar member
can be written as

r1(t) = Sθ + I1φ1 + I2φ2 + n1. (21)

It is easy to find that the linear model for oblique
projections is not a full column rank matrix, the model is
a matrix belonging to M2,3(C), that is, rank([S, I1, I2]) = 2.
In order to construct a model that satisfies the full-rank
property, we utilize the polarization vector transformation
(PVT) to transform the target signal into a vertically
polarized waves.

The transformation matrix is defined as [15]

M = 1
√

(

|W1|2 + |W2|2
)(

|V1|2 + |V2|2
)

×
[

W1V1 + W2V2,W2V1 −V2W1

W1V2 −V1W2,V1W1 + W2V2

]

,

(22)

where

W =
[

W1

W2

]

, V =
[

V1

V2

]

. (23)

Let W = S, and V = [0, exp( jδr1)]T , that is, V denotes
the vertical polarization. It is easy to obtain that M∗W = V.
Then after the transformation, the returned signal of the 1st
user is a vertically polarized waves.

After the transformation by M, (21) is obtained as

Mr1(t) = Vθ + MI1φ1 + MI2φ2 + Mn1. (24)

We focus on the polarization changes of other two radar
members. It can be achieved that

MI1 =
[

a1 + b1 j
c1 + d1 j

]

MI2 =
[

a2 + b2 j
c2 + d2 j

]

, (25)
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where ap, bp, cp, and dp (p = 1, 2) are the parameters after
transformation by W.

Then the horizontal component of the transformed
signal, that is, the first array of the matrix, can be obtained
as,

u(t) = (a1 + b1 j
)

φ1 +
(

a2 + b2 j
)

φ2. (26)

Ignoring the absolute phase of interferences, (26) is
achieved as

u1(t) = mφ1 + nφ2, (27)

where m, and n are both real numbers. Particularly, m and n
can be chosen as the modulus of the complex number a1+b1 j
and a2+b2 j, or can be also just selected the real part of a1+b1 j
and a2 + b2 j.

We can add the u1(t) as the third component of the signal

r̂1(t) =
[

r1(t)
u1(t)

]

. (28)

Therefore, the system model can be constructed as,

Z

=

⎡

⎢

⎣

cos εr1, cos εr2, cos εr3

sin εr1 exp
(

jδr1
)

, sin εr2 exp
(

jδr2
)

, sin εr3 exp
(

jδr3
)

0, m, n

⎤

⎥

⎦,

r̂1(t) = Z
[

θ,φ1,φ2

]T
.

(29)

If the target signal and the two interferences hold the
different polarized states, it can be verified that the matrix Z
is a full-rank one, that is, rank(Z) = 3. According to (6) and
(13), the OPPF can be established, and the oblique projection
operator can be written as

E
̂ŜL = ̂S

(

̂SHP
̂L
⊥
̂S
)−1
̂SHP

̂L
⊥, (30)

where

̂S = [cos εr1, sin εr1 exp
(

jδr1
)

, 0
]T ,

̂L =

⎡

⎢

⎢

⎢

⎣

cos εr2, cos εr3

sin εr2 exp
(

jδr2
)

, sin εr3 exp
(

jδr3
)

m, n

⎤

⎥

⎥

⎥

⎦

.
(31)

After the projection process, the other two radar mem-
bers’ returned signals are suppressed. We select only the first
two array components of the projection results since the
third array is a virtual component.

For more than three radar members, we can select W
and V as different parameters. Take four radar members
as an instance, for the 1st user, it should add at least two
virtual components to its true received signals. The first
virtual component can be selected according to the analysis
mentioned above, and the second component can be selected

ri (t)

ODPA

Mi

SPS EPS

OPPFCombination
device Output

signal

Figure 2: Block diagram of the radar member’s receiver in the RSN.

according to the following principle: transform the second
radar member’s polarization to vertical polarization, then
repeat the same process.

Figure 2 shows the block diagram of the radar member’s
receiver in the RSN. The signal received by the ith radar
member’s ODPA is fed to the Transformer Mi and the
Combination Device, and the parameters of Mi are selected
from the Set of Polarized States (SPS) which contain all
radar members’ polarized states. Each radar member is
equipped with the Estimator of Polarized State (EPS). After
transformation by Mi, the results are fed to the Combination
Device, and the Combination Device combines the true
signals and the virtual signals as a new signal. Finally, the
new signal is fed to the OPPF, and the OPPF suppresses other
radar members’ signals.

4. Detailed Analysis and Simulation Results

In order to fully understand the performance of the proposed
OPPF, the detailed analysis and the simulation results are
presented in this section.

If the polarized states are not exactly estimated, that is,
some estimation errors are introduced, we also consider the
case of two-radar-member in the RSN for simplifying the
complexity of analysis. For the 1st user, if εr1 cannot be
estimated exactly, ̂Sr1(t) will suffer distortions after passing
through the OPPF, since the oblique projection cannot be
established correctly. And if the estimation of εr2 is not the
exact value, the component of ̂Sr2(t) cannot be suppressed
totally.

Considering that there is estimation error on εr1 while
other parameters are exactly estimated, the filtering operator
̂Q1 which is established by the incorrect parameter is
different from the filtering operator Q1 obtained from the
exact parameters. Suppose that the output of the received
signal after passing through Q1 is O(t) and the output of the
received signal after passing through ̂Q1 is O1(t), then O1(t)
is obtained as

O1(t) = r1(t) · ̂Q1 = rT1 (t) ̂Q∗
1 . (32)

The absolute error between the desired output O(t) and
the actual output O1(t) can be obtained as

ea = O(t)−O1(t) = rT1 (t)
(

Q∗
1 − ̂Q∗

1

)

. (33)
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Figure 3: Relationship between εr2, ε̃r1 and the relative error.

And the relative error is given by

er = ‖ea‖
‖O(t)‖ =

∥

∥

∥rT1 (t)
(

Q∗
1 − ̂Q∗

1

)∥

∥

∥

∥

∥

∥rT1 (t)Q∗
1

∥

∥

∥

, (34)

For simplicity of analysis, let the polarized angle of target
signal be 90o, and assume the estimation of polarized angle
be ε̃r1. Then, the absolute error and relative error are

ea = − cos ε̃r1 tan εr2 exp
[

j((ω1 + ωd1)(t − τ1) + δr2)
]

,

er = cot ε̃r1 tan εr2.
(35)

Figure 3 illustrates the relationship between the relative
error and the estimation error on εr1 (the exact value of εr1

is 90◦). As can be seen from the figure, when the estimation
ε̃r1 is fixed, the relative error has the relationship with εr2:
the smaller the angle is, the less the errors will be introduced,
which can be easily demonstrated from the PF theory. We
can also prove that the larger the polarization difference, the
better the performance. For example, when ε̃r1 is 89.5◦ and
εr2 is 60◦, the relative error is 1.8%; when εr2 is 20◦, the
relative error is 0.4%. If the relative error must be controlled
below 10%, the estimation error on εr1 cannot be more than
1◦.

When there is estimation error on εr2, the interference
cannot be totally suppressed for the 1st radar member. The
performance degradation brought by the estimation error is
analyzed by the relationship between the error deviation Δεr2

on εr2 and the gain of signal-to-interference ratio ΔSIR.
The signal-to-interference ratio of the received signal

SIRi is

SIRi = 20 lg
|θ|
∣

∣φ
∣

∣

. (36)
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Figure 4: Relationship between between ΔSIR, Δεr2 and εr1 − εr2.

Since there is estimation error on εr2, the OPPF operator
is not an accurate one. if the parameters in formula (18) are
denoted by ̂A1, ̂B1, and ̂C1, the signal-to-interference ratio
after OPPF is given by

SIRo = 20 lg

∣

∣

∣θ
(

cos εr1 ̂B1 + sin εr1 ̂C1

)∣

∣

∣

∣

∣

∣φ
(

cos εr2 ̂B1 + sin εr2 ̂C1

)∣

∣

∣

. (37)

The gain of signal-to-interference ratio is

ΔSIR = SIRo − SIRi = 20 lg
|sin(εr1 − εr2 − Δεr2)|

|sin(Δεr2)| . (38)

By (38), the gain of signal-to-interference ratio has a
relationship with the difference between εr1 − εr2 and the
error deviation Δεr2. The larger the εr1 − εr2 is, the larger
the ΔSIR can be obtained. In order to get good ΔSIR
performance, a moderately large difference between the
polarized angles of each radar member should be designed.

Fig. 4 describes the relationship between ΔSIR, Δεr2 and
εr1 − εr2. When Δεr2 is 0.1◦ and εr1 − εr2 is 60◦, he gain of
signal-to-interference ratio which can be obtained is about
54dB, and if εr1− εr2 is 30◦, the gain of signal-to-interference
ratio is 50 dB. When Δεr2 is 1◦ and εr1 − εr2 are 60◦ and
45◦, the gains of signal-to-interference ratio are 34 dB and
32 dB, respectively. This indicates that the gain of signal-to-
interference ratio is sensitive to Δεr2.

To show the performance when the RSN adopts the
proposed OPPF intuitively, we verify its performance by
using Maltlab simulations.

Figure 5 shows the filtering performance comparison
between the proposed OPPF and the NPSPF. The sampling
rate of this simulation is 1 GHz. The target signal is a
linear frequency modulation (LFM) type with the amplitude
1.5 A, the initial normalized frequency 0.001, and the final
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Figure 5: Filtering performance comparison between the OPPF
and the NPSPF.

normalized frequency 0.15. The interferences are two LFM
signals with amplitudes 3 A and 2A, the initial normalized
frequency 0.1 and 0.13, and the final normalized frequency
0.2 and 0.3, respectively. we let both the target and the
interferences be the vertical polarization. The signal-to-noise
ratio (SNR) is 10 dB. The yellow dashed line is the received
signal. The filtering result of the OPPF is illustrated in
the form of the red line. It can be clearly seen that the
interferences are suppressed effectively, and the original LFM
type target signal appears after the operation of the OPPF.
The blue line is the filtering result of the NPSPF, since both
the target and the interferences are vertically polarized, they
are cancelled simultaneously by the NPSPF. This simulation
result shows that the application scope of the proposed OPPF
is wider than the NPSPF when introducing the PF into RSNs
for interference suppressions.

In Figure 6, we simulate an environment where there is a
continuous-time type interference. The radar member radi-
ates the pulses with LFM pattern modulation. Figure 6(a) is
the expected returned signal for the radar member without
AWGN. The SIR in this simulation is −12 dB, and the SNR is
12 dB. The polarized states of the target and the interference
are defined as follows: the target signal is a linear polarization
with the polarized angle 60◦, and the interference is a right-
handed circular polarization. Figure 6(b) shows the received
signal for the radar member, and we can find out that the
returned pulses are embedded in the interference and cannot
be detected directly from the received signal. The filtering
result of the OPPF is illustrated in the Figure 6(c), and the
two pulses can be easily detected after the operation by the
OPPF. This shows the application of the OPPF is valid for
RSNs.

In order to fully validate the effectiveness of the OPPF
for RSNs, we consider there are three radar members in the
RSN. The expected returned signal is shown in Figure 7(a).
The interferences coming from other two radar members
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Figure 6: Filtering performance of the OPPF for radar member.
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Figure 7: Filtering performance of the OPPF for RSNs.

are simulated as follows: the first interference is one radar
member’s scattered signals, and the second interference is
the transmitted signal of the other radar member and this
transmitted signal is modulated with the Gaussian envelope.
Figure 7(b) is the received signal of the radar member. After
filtering by the OPPF, the returned signal for the radar
member is shown in Figure 7(c).

In Figure 8, there are two radar members in the RSN, and
the received signal for the desired radar member is shown in
Figure 8(b). It can be seen that the returned signals of the two
radar members overlap in the pulse-width distance. After the
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Figure 8: Filtering Performance of the OPPF for RSNs.

processing by the OPPF, the returned signals for the desired
radar member is shown in Figure 8(c).

These simulation results show that once the polarization
of each radar member is different from each other, the
proposed OPPF are valid when dealing with the problem
of interference suppressions for RSNs. Moreover, after the
operation of the OPPF, the diversity combination can also
be available, besides the spatial and the time diversity, the
polarization diversity can also be exploited in the OPPF-
based RSNs.

5. Conclusion

In the RSNs, the radar members interfere with each other
if their waveforms are nonorthogonal and this introduces
degradation to the detection and estimation performance
of the RSNs. In this paper, we introduce the polarization
information rather than the waveform design for RSNs,
and discuss the feasibility when using the proposed oblique
projection polarization filtering (OPPF)-based scheme to
suppress the interferences in a cooperative RSN where all the
polarization information of the radar member are shared.
The analysis shows that the Doppler-shift and its uncertainty
are independent of the polarization information, which
contributes that the interferences can be suppressed without
the utilization of the spatial, the temporal, the frequency, the
time-delay, and the Doppler-shift information. Theoretical
analysis and the mathematical deduction show that the
proposed scheme is a valid and simple implementation to
the interference suppressions problems for RSNs. Simulation
results also illustrates a good filtering performance when
adopting the proposed OPPF for the cooperative RSN.
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