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This work explores the effect of mismatches between adults’ and children’s speech due to differences in various acoustic correlates
on the automatic speech recognition performance under mismatched conditions. The different correlates studied in this work
include the pitch, the speaking rate, the glottal parameters (open quotient, return quotient, and speech quotient), and the
formant frequencies. An effort is made to quantify the effect of these correlates by explicitly normalizing each of them using
the already existing techniques available in literature. Our initial study done on a connected digit recognition task shows that
among these parameters only the formant frequencies, the pitch, and the speaking rate affect the automatic speech recognition
performance. Significant improvements are obtained in the performance with normalization of these three parameters. With
combined normalization of the pitch, the speaking rate, and the formant frequencies, 80% and 70% relative improvements are
obtained over the baseline for children’s speech and adults’ speech recognition under mismatched conditions.

1. Introduction

In recent years, development of speech recognition systems
has enhanced the use of machines and other interactive
multimedia systems in diverse areas [1]. Nowadays children
have also become the potential users of these systems and,
therefore, there is need for children’s speech recognition.
This will make their interaction with machines possible for
various tasks like reading tutors, language learning by chil-
dren, information retrieval, and entertainment applications
[2–5]. Most speech recognition systems perform reasonably
well for adult users but exhibit severe degradation in case of
children users [6, 7]. Children’s speech differs considerably
from adults’ speech in many important aspects and char-
acteristics. The various acoustic and linguistic differences
include differences in the pitch, the formant frequencies,
the average phone duration, the speaking rate, the glottal
parameters, pronunciation, and grammar. Children have a
greater range of values with different means and variances
for these parameters than adults due to anatomical and

physiological changes occurring during a child’s growth [8],
thus resulting in a high inter- and intraspeaker acoustic
variability. These differences together cause the deterioration
in the recognition performance of children’s speech on
adults’ speech trained models and vice versa [9, 10].

Children have nonlinearly increasing formants located at
high values [11–13]. Also, they have high pitch frequency
values causing large spacing between the harmonics [11–
13]. These high frequency values of formants and pitch
are attributed to their inherently short vocal tract and
vocal fold lengths, respectively. For instance, five-year-old
children have been reported to have 50% higher value
of formant frequencies than adult males [8]. The higher
formants of children fall outside the transmission bandwidth
of telephone channel resulting in the loss of the spectral
information in case of narrowband speech recognition. In
comparison to the presence of 3-4 formants of an adult
in 0.3–3.2 kHz bandwidth range, children have only 2-3
formants present [14]. The phoneme durations and the
average sentence durations have also been observed to be



2 EURASIP Journal on Audio, Speech, and Music Processing

nearly 10% longer than those of adults [8, 11, 13, 15], which
in turn reduce their speaking rate [7, 8]. The physiological
differences among the speakers cause differences in the
glottal parameters and thus the source spectrum [16]. For
instance, the open quotient (OQ) mainly affects the levels
of the lower part of the source spectrum so that a large OQ
typically means a higher level of the lowest few harmonics.
The return quotient (RQ) affects the steepness of the source
spectrum, a large RQ corresponds to greater attenuation
of the higher frequencies. These glottal parameters like the
open quotient (OQ), the return quotient (RQ), and the
speed quotient (SQ) have also been observed to be different
for speech corresponding to children and adult speakers
[17, 18]. Children exhibit less precision in the control of
their articulators especially at the age of 5-6 years rendering
to various pronunciation problems like disfluencies, false-
starts, and extraneous speech [7]. Their vocabulary is smaller
than that of adults and sometimes also contains some
spurious words which are not found in the case of adults.
It has been reported that children of the age of 5 years have
about 60% of vowel classification accuracy against that of
90% of the adults [8].

Various methodologies and research issues have been
investigated for improving children’s speech recognition
performance on adults’ speech trained models. The foremost
includes the vocal tract length normalization (VTLN)
[7, 13]. It diminishes the effect of varying vocal tract
length among different speakers by warping the frequency
axis of the speech power spectrum during signal analysis
[19]. Various forms of speaker adaptation techniques like
maximum a posteriori (MAP) and maximum likelihood
linear regression (MLLR) [13], speaker adaptive training
(SAT) [20, 21], constrained MLLR speaker normalization
(CMLSN) [22], and their combinations [13] have also been
tried so as to reduce the mismatch of children’s speech
with adults’ speech trained models. SAT performs speaker-
specific transformations to compensate for the interspeaker
acoustic variations in the training set [20]. It involves
MLLR adaptation of the means of output distributions
of continuous density hidden Markov models (HMMs).
CMLSN method transforms the acoustic observation vectors
by means of speaker-specific affine transformations obtained
through constrained MLLR [13]. In order to cope with
the age-dependent variability, age-specific modeling of
recognizers has also been tried [3, 9, 23]. However, training
age-specific speech models requires huge amount of data
from the target age speakers, thus making the method
costlier. To incorporate the linguistic mismatches between
children’s and adults’ speech, language modeling [24, 25]
and pronunciation modeling [26] have also been explored.

In contrast to various feature and model domain tech-
niques, recent few studies have reported explicit normal-
ization of various differences in the signal domain. A voice
transformation technique which normalizes the children’s
speech signal before being fed to the adults’ speech trained
recognizer has been explored in [27]. It modifies the speech
signal by transforming its pitch using the time-domain
pitch-synchronous overlap-add (TD-PSOLA) method and
obtaining VTLN by linear compression of the spectral

envelope of each window. The use of the phase vocoder
algorithm has also been demonstrated for achieving the same
transformation. In [28], the speaking rate normalization in
combination with VTLN has also been explored to achieve
a better performance for children’s speech on adults’ speech
trained recognizer.

Motivated by the studies done in [27, 28], this paper
explores the independent effect of all of the acoustic sources
of mismatch between adults’ and children’s speech reported
in literature, that is, the pitch, the speaking rate, the formant
frequencies, and the glottal parameters: OQ, RQ, and SQ on
the recognition performance on a linguistically neutral task.
Among these different acoustic sources of mismatch, the
independent effects of the pitch and the glottal parameters
on ASR have not been reported so far. The study is done on
a limited vocabulary task (i.e., digit recognition) where the
linguistic differences would be minimal.

The rest of the paper is organized as follows. Section 2
describes the technique used for transformation of different
acoustic parameters of speech signals. Section 3 presents
the details about the speech corpus and the experimental
setup. Section 4 studies the degree of variation in various
acoustic correlates between the adults’ and the children’s
speech data used in this work. Section 5 discusses the results
of the recognition experiments and the paper concludes in
Section 6.

2. Transformation Procedures

In this work, the pitch, the signal duration (for modifying the
speaking rate), and the glottal parameters, namely, the OQ,
the RQ, and the SQ of the speech signals, are modified using
a recently proposed pitch-synchronous time-scaling (PSTS)
method [29]. The PSTS method is reported to provide
faithful transformations over a wide range of transformation
factors for the abovesaid parameters.

For addressing the mismatch in the formant frequencies
between adults’ and children’s speech, the commonly used
frequency warping is employed. For warping the frequency
axis of the utterances during computation of the mel fre-
quency cepstral coefficients (MFCCs) feature, the piece-wise
linear frequency warping of filterbank, as supported in the
hidden Markov toolkit (HTK) [30], has been used. In the fol-
lowing subsections, we describe the use of PSTS method for
transforming the average pitch, the signal duration, and the
glottal parameters (OQ, RQ, and SQ) of the speech signals.

2.1. PSTS Method. The PSTS method involves pitch-synch-
ronous-time scaling of the linear prediction (LP) residual
waveform of the speech signal. By time-scaling the short-
time signals, the overlapping interval can be changed
maintaining the energy balance of the modified signal.
Since the LP residual signal approximates the derivative of
the excitation signal, the time scaling operation also helps
in preserving various important parameters of the glottal
waveform like the OQ, the RQ, and the SQ. Additionally,
it also overcomes the problem of energy fluctuations at
large pitch modification factors which have been observed
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in case of pitch transformation using the pitch-synchronous
overlap-add-based approaches [29].

For doing the pitch-synchronous LP analysis, the pitch
marks in the voiced regions are computed by glottal closure
instants (GCIs) estimation algorithm, and in the unvoiced
regions, the pitch marks are kept 5 ms equispaced. A 10th
order pitch-synchronous LP analysis of the speech signal
is performed using a 20 ms Hanning window centered on
each pitch mark estimate. The residual signal is obtained
by inverse filtering of the speech signal by a time-varying
all-zeros filter defined by the linear prediction coefficients
(LPCs) associated with each pitch mark. The analysis short-
time signals, resi(n), are obtained by shifting the LP residual
signal, res(n), to begin in the previous analysis pitch mark,
pa(i−1), and then multiplying it with a rectangular window,
rec(n), of length equal to the analysis pitch period, Pa(i) =
pa(i)− pa(i− 1):

resi(n) = res
(
n + pa(i− 1)

)
rec(n), (1)

where

rec(n) =
⎧
⎨

⎩

1, 0 ≤ n < Pa(i),

0, otherwise.
(2)

2.1.1. Pitch and Signal Duration Transformation. The pitch
marks and the LP residual signal are computed as described
in Section 2.1. The modified pitch mark locations are then
computed in accordance to the desired pitch and signal
duration (for speaking rate) modification. The shift between
successive synthesis pitch marks is equal to the desired pitch
period Ps( j) = ps( j) − ps( j − 1). The short-time signals
res j(n) are computed by mapping the synthesis pitch marks
ps( j) on the estimated analysis pitch marks pa(i). Each short-
time signal res j(n) is time scaled by a factor N = Ps( j)/Pa(i)
resulting in the modified short-time signal xj(n) where Ps( j)
is the desired synthesis pitch period.

The pitch and duration transformations can lead to
either removal or replication of the analysis short-time
signals according to the modification factor. To avoid various
phase and frequency discontinuities in the energy envelope
and achieve smooth spectral transitions, the nonadjacent lth
and rth short-time analysis signals are first time scaled to the
desired synthesis pitch period Ps( j) to get xl(n) and xr(n).
Then, xl(n) and xr(n) are weighted and added to obtain the
resultant modified jth short-time synthesis signal yj(n):

yj(n) = h(n)xl(n) + h
(
Ps
(
j
)− n

)
xr(n), (3)

where h(n) is a decaying weighting window of size equal to
Ps( j), such that h(n) + h(Ps( j)− n) = 1. The right half of the
Hanning window satisfies this condition.

Finally, the complete synthesis LP residual signal is
obtained by the pitch-synchronous sum of all of the synthesis
short-time signals using (4). The modified speech signal is
synthesized by passing the modified LP residual through a
time-varying all-zeros filter defined by the LPC mapped to
the synthesis pitch marks:

y(n) =
∑

j

(
yj
(
n− ps

(
j
)

+ Ps
(
j
)))

. (4)
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Figure 1: Representation of the extracted time instants and the
glottal cycle phases in (a) the glottal flow waveform and (b) its time-
derivative (i.e., the LP residual signal). The figure is adapted from
[29].

For pitch transformation factors N > 1, the spectra of the
speech signal get compressed, giving rise to an “energy hole”
at the higher frequencies. Since in our experiments children’s
speech is transformed to adults’ speech, this problem gets
even more enhanced. To overcome this problem, a high-
frequency regeneration method based on time-scaling the
open phase of the glottal source waveform has been used
so as to reduce the OQ which in turn boosts the energy at
the high-frequency region of the source spectrum to fill the
energy hole. For details of the high-frequency regeneration
method refer to [31].

2.1.2. Glottal Parameter Transformation. The pitch marks
and the LP residual signal are computed as described in
Section 2.1. Corresponding to each pitch cycle a short-time
analysis frame is determined using (1). The following time
instants are then estimated for each of the voiced short-time
analysis frames: the glottal closure instant (ncl), the glottal
opening instant (nop), and the instant of maximum of the
glottal flow (np).

In order to transform the glottal flow parameters, time
scale transformations are done over the segments corre-
sponding to the glottal flow phases in each of the short-time
analysis frames. The segments corresponding to each of the
glottal cycle phases are computed from the extracted time
instants using following relations:

Return Phase:

Na = ncl, (5)

Peak Flow Duration:

Ne = N − nop, (6)

Closed Phase:

Nc = N −Na −Ne, (7)
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Table 1: Age groupwise breakup of the children’s speech data.

Age group (Yrs.)

6-7 8-9 10-11 12-13 14-15

No. of Speakers 8 31 42 17 3

(Boys/Girls) (5/3) (12/19) (27/15) (5/12) (1/2)

No. of Utterances 615 2386 3231 1309 231

Opening Phase:

Nop = np − nop, (8)

Closing Phase:

Ncl = N − np. (9)

A typical illustration of the various extracted time instants
and the glottal cycle phases is given in Figure 1.

The open quotient is related to the duration of the open
phase and can be expressed as

OQ = (Na + Ne)
N

. (10)

To increase OQ, both the return phase duration and the
peak flow duration must be increased. To decrease OQ, both
of the durations must be shortened. Thus, the time scale
factor is equal to the required modification factor for OQ.
Due to time scale transformation it is necessary to adjust the
duration of the closed phase to preserve the pitch period of
the glottal waveform as described in [29].

The return quotient is related with the duration of the
closing phase and determines the cutoff frequency of the
spectral tilt. It is computed as.

RQ = Na

N
. (11)

The return quotient can be increased or decreased by a
time scale expansion or compression of the return phase. To
maintain the pitch period and the open quotient, the peak
flow duration is also time scaled by an adequate factor.

The speed quotient is related to the asymmetry coeffi-
cient and accounts for variations in the shape of the segment
corresponding to the open phase of the glottal flow. It can be
expressed as

SQ = Nop

Ncl
. (12)

The speed quotient can be increased with a time scale
expansion of the opening phase and a time scale compression
of the closing phase so that the peak flow duration Ne =
Nop + Ncl remains constant. SQ can be decreased by the
opposite transformation.

Finally, the complete synthesis LP residual signal and the
modified synthesis speech signal are computed as described
in Section 2.1.1. The sample speech files with the average
pitch, the average utterance duration, and the average values
of the glottal parameters (OQ, RQ, and SQ) modified by
different factors are available at “http://www.iitg.ac.in/ece/
emstlab/psts.htm” for assessing the quality of the various
transformations.

3. Speech Corpus and Experimental Setup

In this work, to assess the impact of various acoustic
parameters of speech signal on the speech recognition per-
formance the automatic speech recognition (ASR) systems
are developed using the TIDIGITS [32]. The TIDIGITS
database contains 11.4 hours of speech data from 326
speakers (111 men, 114 women, 50 boys, and 51 girls)
uttering one to seven digits long strings consisting of eleven
different digits (0–9 and “OH”). The range of the age of the
adult speakers is from 17 years to 70 years while the children
speakers belong to an age group of 6 years to 15 years. All
speech data is downsampled from 20 kHz at 8 kHz for use
in this work. The age groupwise details of the complete
children’s speech data are given in Table 1.

For experiments done on adults’ speech trained recog-
nizer, the adults’ speech training set referred to as “TR1”, the
adults’ speech test set referred to as “AD”, and the children’s
speech test set referred to as “CH1” have been derived from
the TIDIGITS corpus. “TR1” comprises of the adults’ speech
data containing a total of 11,016 utterances, or 35,566 digits,
from 90 male and 107 female speakers. “AD” comprises of the
adults’ speech data containing a total of 3,303 utterances, or
10,813 digits, from 29 male and 52 female speakers. “CH1”
comprises of whole children’s speech data containing a total
of 7,772 utterances, or 25,525 digits, available from 50 boys
and 51 girls.

For experiments done on children’s speech trained
recognizer, the children’s speech training set referred to as
“TR2”, the children’s speech test set referred to as “CH2”,
and the adults’ speech test set referred to as “AD” have been
derived from the TIDIGITS corpus. “TR2” and the “CH2”
datasets have been derived by splitting the “CH1” dataset.
“TR2” comprises of the children’s speech data containing
a total of 4,481 utterances, or 14,725 digits, from 31 boys
and 33 girls. “CH2” comprises of only the children’s speech
data containing a total of 3,291 utterances, or 10,800 digits,
available from 22 boys and 27 girls. It is to note that all of
these datasets are disjoint from each other in terms of the
speech utterances but not the speakers. The details of all
of the training and test speech sets used in the following
experiments are summarized in Table 2.

Throughout this paper, word error rate (WER) is used
to evaluate the performance of various techniques. The error
rate is computed as follows:

%WER = Sub + Del + Ins
Total No. of Words

× 100, (13)

where “Sub” is the number of substitutions, “Del” is the
number of deletions, and “Ins” is the number of insertions.
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Table 2: Details of all of the training and test speech sets.

Dataset No. of Utterances
No. of Speakers

Adults Children

Men Women Boys Girls

Adults
Train “TR1” 11,016 90 107 — —

Test “AD” 3,303 29 52 — —

Children
Test “CH1” 7,772 — — 50 51

Train “TR2” 4,481 — — 31 33

Test “CH2” 3,291 — — 22 27
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Figure 2: Distribution of the average pitch of the original signals of
the adult training set “TR1”.

The connected digit recognizer used in this work has
been developed using the HTK toolkit [30]. The 11 digits
(0–9 and “OH”) are modeled as whole word left-to-right
hidden Markov model (HMM). Each word model has 16
states with simple left to right paths and no skip paths over
the states. The observation densities are mixtures of five
multivariate Gaussian distributions with diagonal covariance
matrices. The silence is explicitly modeled using three-state
HMM model having six Gaussian mixtures per state. A
single-state short-pause model tied to the middle state of the
silence model is also used. A 21-channel filterbank is used
for 13-dimensional MFCC (C0 to C12) feature computation.
In addition to the base features, their first- and second-
order derivatives are also appended making the final feature
dimension as 39. Cepstral mean subtraction is also applied
to all features. The speech is preemphasized using a factor of
0.97 and for analysis a Hamming window of length of 25 ms
and the frame rate of 100 Hz is used.

4. Acoustic Analysis of the Speech Database

In this section, we quantify the degree of mismatch in various
acoustic correlates of the adults’ and the children’s speech
data used for the recognition experiments in this work.
This is done in order to hypothesize the relative effect of
normalization of each of these acoustic correlates on the ASR
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Figure 3: Distribution of the average pitch of the original signals
of the children test set “CH1”. Three broad pitch groups have been
marked with three different colors for studying their distribution
after pitch-normalization.

performance under mismatched conditions. The various
acoustic correlates that have been analyzed include the pitch,
the speaking rate, and the glottal parameters (OQ, RQ, and
SQ).

4.1. Pitch. The difference in the average pitch values of the
children’s and the adults’ speech data used in this work can
be understood by observing the distribution of the average
pitch of the signals of the adults training set “TR1” and
the children test set “CH1” as shown in Figures 2 and 3,
respectively. It is noted that the mean of the pitch distribution
of the children test set “CH1” is nearly of the order of 1.6
to that of the adults training set “TR1”. Thus, as expected,
children have significantly higher pitch values than adults.

In [33], we have explored the effect of pitch variations
on MFCC feature. Our study reveals that as the pitch of the
signals increases some pitch-dependent distortions appear in
the spectrum corresponding to MFCC feature particularly
at lower frequencies up to 1 kHz. These distortions can be
seen in the smooth spectrum of the stable voiced portion
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Figure 4: Plots of smooth spectra corresponding to MFCC feature
along with linear (DFT) spectra of a stable voiced frame extracted
from the digit “OH” signals having average pitch value of (a) 85 Hz
and (b) 310 Hz.

extracted from the digit “OH” signal having average pitch
value 310 Hz when compared with that of the 85 Hz average
pitch signal as shown in Figure 4. The smooth spectrum
corresponding to MFCC is derived by computing a 128-
point inverse discrete cosine transform of 13-dimensional
MFCC feature (C0–C12). The cause of these distortions in the
spectral envelope is attributed to the insufficient smoothing
of the pitch harmonics by the filterbank particularly at low
frequencies as the width of the lower-order filters is around
100 Hz only.

Therefore, on noting the high degree of variation in
the average pitch values of the children’s and the adults’
speech data and the effect of high pitch value on the smooth
spectrum corresponding to MFCC feature, it is hypothesized
that pitch-normalization would significantly improve the
ASR performance for children’s speech due to reduction
in the pitch-dependent distortions observed in the spectral
envelope.

4.2. Speaking Rate. The difference in the average speaking
rate of the children’s and the adults’ speech data used in this
work can be understood by observing the distribution of the
average speaking rate of the adults training set “TR1” and
the children test set “CH1” as shown in Figures 5 and 6,
respectively. It is noted that the mean of the speaking rate
distribution of the adults training set “TR1” is 1.2 times that
of the children test set “CH1”. Thus, as expected, children
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Figure 5: Distribution of the speaking rate of the original signals of
the adult training set “TR1”.
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Figure 6: Distribution of the speaking rate of the original signals of
the children test set “CH1”.

have longer sentence duration, and thus lower speaking rate
than adults.

It has been reported in perceptual studies that the
variation in the speaking rate affects the acoustic patterns of
speech by restructuring the relationship between the acoustic
cues and the phonetic categories [34]. It has also been shown
that when speaking rate increases the duration of the vowels
is affected the most [35]. So, the models, trained with fast
and slow speaking rate speech data, would have different
transition probabilities. The models trained with speech
data having slow speaking rate would have greater self-loop
transition probabilities than the models trained with speech
data having fast speaking rate. In order to verify this, we
compared the self-loop transition probability of each of the
16 states of the single digit “OH” model corresponding to
both the speech data with slow speaking rate (children test set
“CH1”) and the speech data with fast speaking rate (adults
training set “TR1”) as shown in Figure 7. It is noted that, as
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Figure 7: Statewise self-loop transition probabilities of the digit
“OH” models corresponding to the adults dataset “TR1” and the
children dataset “CH1”.

expected, the children’s speech trained model has greater self-
loop transition probability across all states in comparison
to that of the adults’ speech trained model due to longer
sentence/phone durations.

Thus, the state transition probabilities of models trained
on speech data with fast speaking rate (adults’ speech) would
adversely affect the ASR performance for speech data with
slow speaking rate (children’s speech) [36–38]. So, in order
to recognize a particular acoustic property as the intended
phonetic segment, it is required to normalize the speaking
rate differences.

4.3. Glottal Parameters. The difference in the average value
of the three glottal parameters of the children’s and the
adults’ speech data used in this work can be understood
by observing the distribution of the average values of the
OQ, RQ, and SQ for both the adults training set “TR1” and
the children test set “CH1” as shown in Figures 8, 9, and
10, respectively. It is noted that the mean values of all the
three glottal parameters for the adults training set “TR1” are
smaller than those for the children test set “CH1”. Thus, as
expected, children have more breathiness in their speech than
adults.

In order to hypothesize the effect of normalization of
each of these three glottal parameters on the ASR perfor-
mance of the children test set “CH1” under mismatched
condition, the smooth spectra corresponding to MFCC
obtained from speech signals with original glottal parameter
values and with transformed glottal parameter values are
compared. The smooth spectra for the stable voiced portions
extracted from the single digit “OH” signals with original
and transformed values of OQ, RQ, and SQ are shown in
Figure 11. It is noted that transformation of each of the three
glottal parameters gives rise to some changes in the smooth
spectra corresponding to MFCC but not in any systematic
manner. Thus, it is hypothesized that the normalization of
these glottal parameters for the children’s speech signals

may not significantly affect their ASR performance under
mismatched conditions.

5. Experimental Results and Discussion

This section describes our experiments to study the effect
of various acoustic correlates in addressing the mismatch
between adults’ and children’s speech on their recognition
performance under mismatched conditions. This study is
first explored in detail for addressing the recognition of
children’s speech on adults’ speech trained models. Following
it we have also shown the results of a similar study on vice-
versa condition.

5.1. Children’s Speech Recognition on Adults’ Speech Trained
Models. The adults’ speech trained models used in this
study have been developed using the adults training set
“TR1” derived from the TIDIGITS corpus. The recognition
performances for the adult test set “AD” and the children test
set “CH1” are 0.43% and 11.37%, respectively.

For normalizing the mismatch of the children’s speech
signals with respect to the adults’ speech trained acoustic
models, various acoustic correlates need to be modified
appropriately. To determine the optimal value to which each
of the acoustic correlates is to be transformed, a maximum-
likelihood- (ML-) based grid search is used. For instance, the
optimal value of an acoustic correlate, say α̂, given its various
transformed values within the valid range, is estimated as

α̂ = arg max
α

Pr
(
Xα
i λ,Wi

)
, (14)

where Xα
i is the feature corresponding to a particular value

α of an acoustic correlate for the ith utterance, λ is the
speech recognition model, and Wi is the transcription
of the ith utterance. The Wi is determined by doing an
initial recognition pass using original feature (i.e., with no
transformation).

The appropriate values for transformation of the average
pitch frequency, the signal duration (and thus the speaking
rate), the glottal source parameters (OQ, RQ, SQ), and the
formant frequencies are obtained using the above procedure.
In this work, the average pitch frequency, the signal duration,
and the glottal source parameters are transformed explicitly
in the signal domain prior to feature computation whereas
the formant frequencies are modified in the feature domain.
The average pitch of a speech signal is estimated using the
ESPS tool available in the Wavesurfer software package [39].
The average speaking rate of the signals is measured as the
number of syllables per second computed as the ratio of
the number of syllables in an utterance to the total length
of the utterance. Each of the 11 digits constituting the
training and test set utterances used in this work comprises
of only 1 syllable except for the digits “zero” and “seven”
which contain 2 syllables. In the following, we describe in
detail the experimental conditions and the results obtained
by the normalization of each of these acoustic correlates
independently as well as in combinations.

5.1.1. Pitch. For pitch-normalization of the children test set
“CH1”, the signals are transformed to seven different pitch
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Figure 8: Distribution of the average OQ values of the original signals of the (a) adult training set “TR1” and (b) children test set “CH1”.
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Figure 9: Distribution of the average RQ values of the original signals of the (a) adult training set “TR1” (b) children test set “CH1”.

values ranging from 70 Hz to 250 Hz with a step size of
30 Hz. Such pitch range has been chosen based on the pitch
distribution of the training data as shown in Figure 2.

The recognition performances of the children test set
“CH1” with and without pitch-normalization are given in
Table 3. It is noted that pitch-normalization results in 15%
relative improvement over the baseline performance. On
observing the pitch groupwise performances, also given in

Table 3, for test signals having average pitch value before
transformation in the range of <250 Hz, 250–300 Hz, and
>300 Hz, a relative improvement of about 8%, 19%, and
23% is obtained after pitch-normalization, respectively.
Thus, consistent improvements are noted for the different
pitch groups; that is, higher pitch groups have greater
improvements. The improvements obtained with the pitch-
normalization can be further understood by observing the
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Figure 10: Distribution of the average SQ values of the original signals of the (a) adult training set “TR1” and (b) children test set “CH1”.

0 0.5 1 1.5 2 2.5 3 3.5

Frequency (kHz)

−80

−60

−40

−20

0

M
ag

n
it

u
de

(d
B

)

Linear (DFT)
Original
OQ transformed by factor 0.5
OQ transformed by factor 0.75

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Frequency (kHz)

−80

−60

−40

−20

0

M
ag

n
it

u
de

(d
B

)

Linear (DFT)
Original
RQ transformed by factor 0.5
RQ transformed by factor 0.75

(b)

0 0.5 1 1.5 2 2.5 3 3.5
Frequency (kHz)

−80

−60

−40

−20

0

M
ag

n
it

u
de

(d
B

)

Linear (DFT)
Original
SQ transformed by factor 0.5
SQ transformed by factor 0.75

(c)

Figure 11: Plots of the original linear (DFT) spectrum along with the smooth spectra corresponding to MFCC feature of a digit “OH” signal
with original and transformed values of (a) OQ, (b) RQ, and (c) SQ.
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Table 3: Performances of the children test set “CH1” (with breakup for different pitch groups based on original average pitch values) with
and without pitch-normalization. The quantity in bracket shows the number of utterances in that group. The 95% confidence interval for
the performance is 0.39 (for the <250 Hz, 250–300 Hz, and >300 Hz pitch groups the confidence interval turns out to be 0.39, 0.79, and 3.37,
resp.).

Condition
WER (%)

All Fo Values (7,772) Fo < 250 Hz (5,224) Fo = 250–300 Hz (2,346) Fo > 300 Hz (202)

Baseline 11.37 6.54 17.47 39.03

Norm. 9.64 6.02 14.24 30.11
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Figure 12: Distributions of the average pitch of the signals of the
children test set “CH1” after ML-based pitch-normalization for all
of the three pitch groups (as defined in Figure 3 based on their
original pitch values) plotted separately.

distribution of the pitch of the adults training set “TR1”
and the children test set “CH1” before and after pitch-
normalization as shown in Figures 2, 3, and 12, respectively.
It is noted that the mean of the pitch distribution of the
children test set “CH1” has shifted towards that of the adults
training set “TR1” due to ML-based pitch-normalization.
Also, comparing the mean of the pitch distribution for all
pitch group signals before and after pitch-normalization, it
is noted that the shift in the mean of the pitch distribution is
more for higher pitch groups.

These improvements in the recognition performance
of children’s speech with pitch-normalization could be
attributed to the reduction of the earlier hypothesized pitch-
dependent distortions that occur in the smooth spectral
envelope corresponding to the MFCC feature due to insuf-
ficient smoothing of the pitch harmonics by the filterbank,
particularly for high pitch signals. This can be further
verified by comparing the smooth spectrum of a stable
voiced portion extracted from a digit “OH” signal having
original average pitch value of 310 Hz with that obtained
after reducing the average pitch of the signal by a factor of 1.6
as shown in Figure 13. It is noted that, as hypothesized, after
pitch reduction the pitch-dependent distortions observed in

the spectral envelope at the lower frequencies (below 1 kHz)
for the original 310 Hz pitch signal are significantly reduced.

5.1.2. Speaking Rate. For normalization of the speaking rate
of the children test set “CH1” according to that of the
adults’ speech trained models, the duration of the signals is
reduced by factors ranging from 0.6 to 1 with a step size of
0.05, thereby increasing the speaking rate of the signals by
factors ranging from 1 to 1.65. The choice of such duration
transformation factors is based on the distribution of the
speaking rate of the signals belonging to the adults training
set as shown in Figure 5.

The recognition performances of the children test set
“CH1” with and without speaking rate normalization are
given in Table 4. It is noted that speaking rate normalization
results in a significant 9% relative improvement over the
baseline performance. This improvement is consistent with
the results reported in literature obtained with speaking rate
normalization for ASR of signals of mismatched speaking
rate [28, 36]. The distributions of the speaking rate of the
adults training set “TR1” and the children test set “CH1”
before and after speaking rate normalization are shown
in Figures 5, 6, and 14, respectively. On comparing these
distributions, it is noted that the mean speaking rate of
the children test set “CH1” has been transformed towards
that of the adults training set “TR1” after speaking rate
normalization.

Further, on comparing the likelihood of the signals from
the children test set “CH1” on the adults’ speech trained
models before and after speaking rate normalization, as
shown in Figure 15, it is noted that the likelihood of all of the
children’s speech utterances has increased after normaliza-
tion of their speaking rate. This verifies the reduction in the
earlier hypothesized mismatch in the duration modeling of
the children test set with respect to the adults’ speech trained
models.

5.1.3. Glottal Parameters. For normalizing the variations in
the glottal parameters of the children test set “CH1” with
respect to those of the adults training set “TR1” used for
training the acoustic models using the ML-based approach,
the OQ, RQ, and SQ of the signals are modified by factors
ranging from 0.55 to 1, 0.35 to 1, and 0.45 to 1, each
with a step size of 0.05, respectively. The choice of such
transformation factors for OQ, RQ, and SQ modification
is supported by the studies done in literature which report
that children’s speech has higher OQ, RQ, and SQ values
than those of the adults’ speech [17, 18, 40]. The recognition
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Table 4: Performances of the children test set “CH1” with and
without normalization of different acoustic correlates of speech.
The 95% confidence interval for the performances is 0.39.

Condition WER (%)

Baseline 11.37

Norm. (Speaking Rate) 10.31

Norm. (Open Quotient) 11.32

Norm. (Return Quotient) 11.28

Norm. (Speed Quotient) 11.01

Norm. (Formant Frequencies) 2.95

performances of the children test set “CH1” with and
without normalization of the three glottal parameters are
given in Table 4. As hypothesized earlier, none of the
glottal parameters give any significant improvement over the
baseline after normalization. Although the glottal parameters
have been found to be of significance in case of one-to-
one voice transformation in case of ASR, where the acoustic
model is trained using data from a large number of speakers,
there is enough variation in the glottal parameters within
the training set itself leaving a very little mismatch due to
differences in the glottal parameters between the training and
the test data.

The age groupwise distributions of the ML-based trans-
formation factors chosen for normalization of OQ, RQ, and
SQ of the children’s test speech signals with respect to the
adults’ speech trained models are shown in Figures 16, 17,
and 18, respectively. It is noted that in ML search for the
optimal transformation factor, for normalization of each of
these glottal parameters, majority of the signals have opted
for no transformation across all age groups for all of the
three glottal parameters. Also, it is worth noting that all
transformation factors have been chosen by the signals of
all age groups in similar proportion. Thus, there seems to
be very little correlation between the age and the glottal
parameters (OQ, RQ, SQ).

5.1.4. Formant Frequencies. The variation in the formant
frequencies among adults’ and children’s speech occurs due
to differences in their vocal tract lengths, which is usually
modeled as a constant scaling of the resonant peaks in
the spectral domain. For normalizing the variations in the
formant frequencies of the signals of the children test set
“CH1”, an ML search is performed among features warped
by 13 equally spaced warping factors ranging from 0.88 to
1.12 with a step size of 0.02 for each signal. The recognition
performances of the children test set “CH1” with and
without VTLN are given in Table 4. It is noted that VTLN
results in a 74% relative improvement over the baseline
performance which is highly significant as compared to the
previous parameters studied. The improvements obtained
with VTLN can be further understood by observing the
distribution of the ML-based warping factors chosen for
VTLN of the original children’s speech signals with respect
to the adults’ speech trained models as shown in Figure 19. It
is noted that majority of warp factors for the children test set
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Figure 13: Plots of smooth spectra corresponding to MFCC feature
along with linear (DFT) spectra of a stable voiced frame extracted
from the digit “OH” signals having average pitch value of (a) 310 Hz
(original), and (b) 190 Hz (after transformation of the average pitch
of the signal from 310 Hz by factor of 1.6).
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Figure 14: Distribution of the speaking rate of signals of the
children test set “CH1” after ML-based rate normalization.

“CH1” are estimated as <1 (i.e., compression of the spectra),
which is consistent with the fact that children have smaller
vocal tract lengths than adults.

5.1.5. Combined Normalization of Acoustic Correlates. From
the study done in the previous subsections analyzing the
independent effect of each of the acoustic correlates of
speech like the pitch, the speaking rate, the glottal param-
eters, and the formant frequencies on children’s speech
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normalization on models trained with adults training set “TR1”.
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Figure 16: Age groupwise distribution of the optimal OQ transfor-
mation factors chosen for the signals of the children test set “CH1”.

recognition performance, it is noted that the significant
improvements in the recognition performance are obtained
with the normalization of the pitch, the speaking rate,
and the formant frequencies only. In this subsection, we
study the effect of combined normalization of only these
three acoustic correlates of speech on children’s speech
recognition performance. The combined normalization of
the acoustic correlates of speech has been done in sequential
manner, that is, for obtaining both the speaking rate and
the pitch-normalized speech signals; first the speaking rate
of the speech signal is normalized followed by its pitch-
normalization. As mentioned earlier, VTLN is performed
in the feature domain whereas the speaking rate and the
pitch-normalization are done in the signal domain. Thus,
to incorporate VTLN in combination with the speaking
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Figure 17: Age groupwise distribution of the optimal RQ transfor-
mation factors chosen for the signals of the children test set “CH1”.

Table 5: Performances of the children test set “CH1” with and
without normalization of different acoustic correlates of speech
in various combinations. The 95% confidence interval for the
performances is 0.39.

Condition WER (%)

Baseline 11.37

Norm. (Speaking Rate + Pitch) 9.48

Norm. (Speaking Rate + Formant Freq.) 2.37

Norm. (Pitch + Formant Freq.) 3.70

Norm. (Speaking Rate + Pitch + Formant Freq.) 3.55

Norm. (Rate + Formant Freq.)
2.28

(Using “Back Off” Procedure)

Norm. (Pitch + Formant Freq.)
2.46

(Using “Back Off” Procedure)

Norm. (Speaking Rate + Pitch + Formant Freq.)
2.25

(Using “Back Off” Procedure)

rate and the pitch-normalization, the signal is first speaking
rate and/or pitch-normalized followed by VTLN. Between
the speaking rate and the pitch-normalization, we have
first normalized the speaking rate since the speaking rate
transformation may result in slight modification of the pitch
of the signals.

The recognition performances of the children test set
“CH1” with normalization of various combinations of the
said three acoustic correlates of speech are given in Table 5.
It is noted that, on performing both the speaking rate
and the pitch-normalization of children’s speech, about
16% relative improvement is obtained over the baseline in
children’s speech recognition performance. On combining
the speaking rate normalization along with VTLN, about
19% relative improvement is obtained over the recognition
performance obtained with only VTLN of the original
children’s speech signals. This suggests that speaking rate
normalization is additive to the improvement obtained by
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Figure 18: Age groupwise distribution of the optimal SQ transfor-
mation factors chosen for the signals of the children test set “CH1”.
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Figure 19: Distribution of the warping factors chosen for VTLN
of the original, the speaking rate normalized, the pitch-normalized,
and the combined speaking rate and pitch-normalized signals of the
children test set “CH1”.

VTLN of the children’s speech signals. On the other hand, the
combination of the pitch-normalization with VTLN and that
of both the speaking rate and the pitch-normalization with
VTLN show degraded performances as compared to that
obtained with only VTLN of the original children’s speech
signals. Since the combined normalization of speaking rate
and VTL shows a significant improvement in the recognition
performance, this degradation due to the inclusion of the
pitch-normalization is further investigated.

Figure 19 shows the distribution of the warp factors
estimated for VTLN of the speaking rate normalized, the
pitch-normalized and the combined speaking rate and pitch-
normalized signals of the children test set “CH1”. It is noted
that after speaking rate normalization a larger number of
signals have chosen optimal warp factors of 0.88 as compared
to in the case of original speech signals, which is consistent
with the fact that children’s speech spectra need greater
compression to align with that of adults’ speech. However,
after pitch-normalization, though a larger number of signals

have chosen optimal warp factors of 0.88 as compared to the
original speech case, unlike in case of the speaking rate nor-
malization, for all warp factors greater than 0.92 the number
of normalized signals which have chosen those values have
considerably increased compared to those in the original
speech case. Further, we found few signals to choose warp
factors >1 after pitch-normalization as against choosing
values close to 0.88 in original speech case. Such estimation
of warp factors after pitch-normalization is inappropriate
as children’s speech spectrum needs compression rather
than expansion with respect to that of the adults’ speech.
This behavior is attributed to the distortions introduced
in the spectra of few speech signals during explicit pitch-
normalization as it involves decimation and/or interpolation
for time-scaling operations. To overcome these distortions
we have followed a “Back Off” procedure in which all those
of warp factors estimated on the speaking rate and/or the
pitch-normalized speech which have value greater than the
ones obtained prior to that normalization are replaced by
the values obtained on the signals prior to normalization.
This allows us to reduce the errors introduced in the warp
factor estimation particularly after pitch-normalization. The
recognition performances on doing VTLN of the speaking
rate and/or the pitch-normalized signals of the children
test set “CH1” using the “Back Off” procedure are also
given in the last three rows of Table 5 for the ease of
comparison. It is noted that on using the warp factors
estimated using the “Back Off” procedure for VTLN of the
speaking rate and/or the pitch-normalized signals improves
their recognition performances with significant improve-
ments for signals involving the pitch-normalization. The
combined normalization of the pitch, the speaking rate, and
the formant frequencies of the signals results in a relative
improvement of 80% over the baseline. This shows that the
improvements obtained with the pitch and the speaking rate
normalization are significant and additive to that obtained
with VTLN.

5.2. Adults’ Speech Recognition on Children’s Speech Trained
Models. Following the observations made in Section 5.1, it
would be interesting to study the behavior of the normal-
ization of the three identified significant acoustic correlates
in context of adults’ speech recognition on children’s speech
trained models. For this purpose, a new recognizer has been
developed using the children training set “TR2” derived from
the TIDIGITS corpus. The recognition performance for the
children test set “CH2” and the adults test set “AD” on this
new recognizer is 1.01% and 13.28%, respectively. It is to
note here that the children’s ASR performance is more than
twice that of the adults’ under matched condition. This is
consistent with the known fact that children’s speech has
higher intraspeaker variability than adults’ speech leading to
larger variance of the acoustic models [13].

In our previous experiments we have noted that the
normalization of the glottal parameters (OQ, RQ, SQ) do
not have any significant effect on the ASR performance.
Therefore, in this study we have explored the effect of
normalization of the pitch, the speaking rate, and the
formant frequencies only. For reducing the mismatch of
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Table 6: Performances of the adult test set “AD” with and without
normalization of different acoustic correlates. The 95% confidence
interval for the performances is 0.64.

Condition WER (%)

Baseline 13.28

Norm. (Formant Frequencies) 4.22

Norm. (Speaking Rate + Pitch + Formant Frequencies)
4.04

(Using “Back Off” Procedure)

the adults’ speech signals with respect to the children’s
speech trained acoustic models, various acoustic correlates
have been modified appropriately in the same manner as
described in Section 5.1. For ML-based normalization of
various acoustic correlates of speech, the average pitch of the
adults’ test speech signals is transformed to seven different
pitch values ranging from 160 Hz to 340 Hz with a step size
of 30 Hz and the duration of the signals is increased by
factors ranging from 1 to 1.39 with a step size of 0.075,
thereby reducing the speaking rate of the signals by factors
ranging from 1 to 0.7. For VTLN of the signals of the
adults test set “AD”, the ML search is performed among
features warped by 13 equally spaced warping factors ranging
from 0.9 to 1.14 with a step size of 0.02 for each signal.
The baseline recognition performance of the adults test
set “AD” along with those obtained with VTLN and the
combined normalization of the pitch, the speaking rate, and
the formant frequencies using the “Back Off” procedure
(described in Section 5.1.5) is given in Table 6. From Table 6,
it is noted that on combined normalization of the pitch,
the speaking rate, and the formant frequencies of the adults’
speech a relative improvement of 70% is obtained over the
baseline for the adult test set “AD”, which is comparable to
the improvement obtained for the children test set “CH1”
with children’s speech normalization.

6. Conclusion

In this work, the effect of differences in various acoustic
correlates of speech like the pitch, the speaking rate, the glot-
tal parameters (OQ, RQ, SQ), and the formant frequencies
for children’s and adults’ speech has been explored in the
context of ASR under mismatched conditions. Our study
done on a connected digit recognition task indicates that the
differences in the pitch, the speaking rate, and the formant
frequencies significantly affect the ASR performance and
thus lead to significant improvement after normalization.
On the other hand, the glottal parameters (OQ, RQ, SQ)
have not been found to have any significant impact on the
ASR performance. The normalization of the three significant
acoustic correlates (the pitch, the speaking rate, the formant
frequencies) in various combinations has also been studied.
The experimental results show that we can successfully
combine the improvements due to normalization of the
above three acoustic correlates resulting in an overall rel-
ative improvement of 80% and 70% over the baseline for
children’s speech recognition and adults’ speech recognition
under mismatched conditions. Our future work aims at

studying the effect of explicit normalization of the pitch and
the speaking rate on the cepstral features like some studies
are already relating the frequency warping for VTLN to the
linear transformation of the cepstra. These cepstral domain
transformations would not only ease the computational
complexity of the normalization process but also would allow
us to include the Jacobian factor of transformation in the
estimation of the normalization factors.
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