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The purpose of this work is to present some (local and global) fixed point results for singlevalued
and multivalued generalized contractions on spaces endowed with vector-valued metrics. The
results are extensions of some theorems given by Perov (1964), Bucur et al. (2009), M. Berinde and
V. Berinde (2007), O’Regan et al. (2007), and so forth.

1. Introduction

The classical Banach contraction principle was extended for contraction mappings on spaces
endowed with vector-valued metrics by Perov in 1964 (see [1]).

Let X be a nonempty set. A mapping d : X ×X → R
m is called a vector-valued metric

on X if the following properties are satisfied:

(d1) d(x, y) ≥ 0 for all x, y ∈ X; if d(x, y) = 0, then x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

If α, β ∈ R
m, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm), and c ∈ R, by α ≤ β (resp., α < β)

we mean that αi ≤ βi (resp., αi < βi) for i ∈ {1, 2, . . . , m} and by α ≤ c we mean that αi ≤ c for
i ∈ {1, 2, . . . , m}.

A set X equipped with a vector-valued metric d is called a generalized metric space.
We will denote such a space with (X, d). For the generalized metric spaces, the notions of
convergent sequence, Cauchy sequence, completeness, open subset, and closed subset are
similar to those for usual metric spaces.
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If (X, d) is a generalized metric space, x0 ∈ X and r = (ri)
m
i=1 ∈ R

m, with ri > 0 for each
i ∈ {1, 2, . . . , m}, then we will denote by

B(x0, r) := {x ∈ X | d(x0, x) < r} (1.1)

the open ball centered in x0 with radius r, by B(x0, r) the closure (in (X, d)) of the open ball,
and by

˜B(x0, r) := {x ∈ X | d(x0, x) ≤ r} (1.2)

the closed ball centered in x0 with radius r.
If f : X → X is a singlevalued operator, then we denote by Fix(f) the set of all fixed

points of f ; that is, Fix(f) := {x ∈ X | x = f(x)}.
For the multivalued operators we use the following notations:

P(X) := {Y ⊂ X | Y /= ∅};
Pb(X) := {Y ∈ P(X) | Y is bounded};
Pcl(X) := {Y ∈ P(X) | Y is closed}.

(1.3)

Now, if F : X → P(X) is a multivalued operator, then we denote by Fix(F) the fixed points
set of F, that is, Fix(F) := {x ∈ X | x ∈ F(x)}.

The set Graph(F) = {(x, y) ∈ X ×X | y ∈ F(x)} is called the graph of the multivalued
operator F.

In the context of a metric space (X, d), if A,B ∈ P(X), then we will use the following
notations:

(a) the gap functional D : P(X) × P(X) → R+:

D(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}; (1.4)

(b) the generalized excess functional ρ : Pcl(X) × Pcl(X) → R+ ∪ {+∞}:

ρ(A,B) := sup{D(a, B) | a ∈ A}; (1.5)

(c) the generalized Pompeiu-Hausdorff functional H : Pcl(X) × Pcl(X) → R+ ∪ {+∞}:

H(A,B) := max
{

ρ(A,B), ρ(B,A)
}

. (1.6)

It is well known that H is a generalized metric, in the sense that if A,B ∈ Pcl(X), then
H(A,B) ∈ R+ ∪ {+∞}.

Throughout this paper we denote by Mm,m(R+) the set of all m × m matrices with
positive elements, by Θ the zero m × m matrix, and by I the identity m × m matrix. If
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A ∈ Mm,m(R+), then the symbol Aτ stands for the transpose matrix of A. Notice also that,
for the sake of simplicity, we will make an identification between row and column vectors in
R

m.
Recall that a matrixA is said to be convergent to zero if and only ifAn → 0 as n → ∞

(see Varga [2]).
Notice that, for the proof of the main results, we need the following theorem, part of

which being a classical result in matrix analysis; see, for example, [3, Lemma 3.3.1, page 55],
[4, page 37], and [2, page 12]. For the assertion (iv) see [5].

Theorem 1.1. Let A ∈ Mm,m(R+). The following are equivalents.

(i) A is convergent towards zero.

(ii) An → 0 as n → ∞.

(iii) The eigenvalues of A are in the open unit disc, that is, |λ| < 1, for every λ ∈ C with
det(A − λI) = 0.

(iv) The matrix I −A is nonsingular and

(I −A)−1 = I +A + · · · +An + · · · . (1.7)

(v) The matrix I −A is nonsingular and (I −A)−1 has nonnenegative elements.

(vi) Anq → 0 and qAn → 0 as n → ∞, for each q ∈ R
m.

Remark 1.2. Some examples of matrix convergent to zero are

(a) any matrix A :=
(

a a

b b

)

, where a, b ∈ R+ and a + b < 1;

(b) any matrix A :=
(

a b

a b

)

, where a, b ∈ R+ and a + b < 1;

(c) any matrix A :=
(

a b

0 c

)

, where a, b, c ∈ R+ and max{a, c} < 1.

For other examples and considerations on matrices which converge to zero, see Rus
[4], Turinici [6], and so forth.

Main result for self contractions on generalized metric spaces is Perov’s fixed point
theorem; see [1].

Theorem 1.3 (Perov [3]). Let (X, d) be a complete generalized metric space and the mapping f :
X → X with the property that there exists a matrix A ∈ Mm,m(R) such that d(f(x), f(y)) ≤
Ad(x, y) for all x, y ∈ X.

If A is a matrix convergent towards zero, then

(1) Fix(f) = {x∗};
(2) the sequence of successive approximations (xn)n∈N, xn = fn(x0) is convergent and it has

the limit x∗, for all x0 ∈ X;

(3) one has the following estimation:

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1); (1.8)
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(4) if g : X → X satisfies the condition d(f(x), g(x)) ≤ η, for all x ∈ X, η ∈ R
m and

considering the sequence yn = gn(x0) one has

d
(

yn, x
∗) ≤ (I −A)−1η +An(I −A)−1d(x0, x1). (1.9)

On the other hand, notice that the evolution ofmacrosystems under uncertainty or lack
of precision, from control theory, biology, economics, artificial intelligence, or other fields of
knowledge, is often modeled by semilinear inclusion systems:

x1 ∈ T1(x1, x2),

x2 ∈ T1(x1, x2),
(1.10)

(where Ti : X × X → P(X) for i ∈ {1, 2} are multivalued operators; here P(X) stands for the
family of all nonempty subsets of a Banach space X). The system above can be represented
as a fixed point problem of the form

x ∈ T(x)
(

where T := (T1, T2) : X2 −→ P
(

X2
)

, x = (x1, x2)
)

. (1.11)

Hence, it is of great interest to give fixed point results for multivalued operators on a set
endowed with vector-valued metrics or norms. However, some advantages of a vector-
valued norm with respect to the usual scalar norms were already pointed out by Precup
in [5]. The purpose of this work is to present some new fixed point results for generalized
(singlevalued and multivalued) contractions on spaces endowed with vector-valued metrics.
The results are extensions of the theorems given by Perov [1], O’Regan et al. [7], M. Berinde
and V. Berinde [8], and by Bucur et al. [9].

2. Main Results

We start our considerations by a local fixed point theorem for a class of generalized
singlevalued contractions.

Theorem 2.1. Let (X, d) be a complete generalized metric space, x0 ∈ X, r := (ri)
m
i=1 ∈ R

m
+ with

ri > 0 for each i ∈ {1, 2, . . . , m} and let f : ˜B(x0, r) → X having the property that there exist
A,B ∈ Mm,m(R+) such that

d
(

f(x), f
(

y
)) ≤ Ad

(

x, y
)

+ Bd
(

y, f(x)
)

(2.1)

for all x, y ∈ ˜B(x0, r). We suppose that

(1) A is a matrix that converges toward zero;

(2) if u ∈ R
m
+ is such that u(I −A)−1 ≤ (I −A)−1r, then u ≤ r;

(3) d(x0, f(x0))(I −A)−1 ≤ r.

Then Fix(f)/= ∅.
In addition, if the matrix A + B converges to zero, then Fix(f) = {x∗}.



Fixed Point Theory and Applications 5

Proof. We consider (xn)n∈N the sequence of successive approximations for the mapping f ,
defined by

xn+1 = f(xn), ∀n ∈ N,

x0 ∈ X, be arbitrary.
(2.2)

Using (3), we have d(x0, x1)(I −A)−1 = d(x0, f(x0))(I −A)−1 ≤ r ≤ (I −A)−1r.
Thus, by (2) we get that d(x0, x1) ≤ r and hence x1 ∈ ˜B(x0, r). Similarly, d(x1, x2)(I −

A)−1 = d(f(x0), f(x1))(I −A)−1 ≤ Ad(x0, x1)(I −A)−1 + Bd(x1, f(x0))(I −A)−1 ≤ Ar.
Since d(x0, x2) ≤ d(x0, x1) + d(x1, x2), by (2) we get

d(x0, x2)(I −A)−1 ≤ d(x0, x1)(I −A)−1 + d(x1, x2)(I −A)−1

≤ Ir +Ar ≤
(

I +A +A2 + · · ·
)

r = (I −A)−1r.
(2.3)

Thus d(x0, x2) ≤ r and hence x2 ∈ ˜B(x0, r).
Inductively, we construct the sequence (xn)n∈N in ˜B(x0, r) satisfying, for all n ∈ N, the

following conditions:

(i) xn+1 = f(xn);

(ii) d(x0, xn)(I −A)−1 ≤ (I −A)−1r;

(iii) d(xn, xn+1)(I −A)−1 ≤ Anr.

From (iii) we get, for all n ∈ N and p ∈ N, p > 0, that

d
(

xn, xn+p
)

(I −A)−1 = d(xn, xn+1)(I −A)−1 + d(xn+1, xn+2)(I −A)−1

+ · · · + d
(

xn+p−1, xn+p
)

(I −A)−1

≤ Anr +An+1r + · · · +An+p−1r

≤ An
(

I +A +A2 + · · · +Ap−1 + · · ·
)

r

≤ An(I −A)−1r −→ 0, as n −→ ∞.

(2.4)

Hence (xn)n∈N is a Cauchy sequence. Using the fact that ( ˜B(x0, r), d) is a complete
metric space, we get that (xn)n∈N is convergent in the closed set ˜B(x0, r). Thus, there exists
x∗ ∈ ˜B(x0, r) such that x∗ = limn→∞xn.

Next, we show that x∗ ∈ Fix(f).
Indeed, we have the following estimation:

d
(

x∗, f(x∗)
) ≤ d(x∗, xn) + d

(

xn, f(x∗)
)

= d(x∗, xn) + d
(

f(xn−1), f(x∗)
)

≤ d(x∗, xn) +Ad(xn−1, x∗) + Bd(x∗, xn) −→ 0, as n −→ ∞.
(2.5)
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Hence x∗ ∈ Fix(f). In addition, letting p → ∞ in the estimation of d(xn, xn+p), we get

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1). (2.6)

We show now the uniqueness of the fixed point.
Let x∗, y∗ ∈ Fix(f)with x∗ /=y∗. Then

d
(

x∗, y∗) = d
(

f(x∗), f
(

y∗)) ≤ Ad
(

x∗, y∗) + Bd
(

y∗, f(x∗)
)

= (A + B)d
(

x∗, y∗), (2.7)

which implies (I −A−B)d(x∗, y∗) ≤ 0 ∈ R
m. Taking into account that I −A−B is nonsingular

and (I −A − B)−1 ∈ Mm,m(R+) we deduce that d(x∗, y∗) ≤ 0 and thus x∗ = y∗.

Remark 2.2. By similitude to [10], a mapping f : Y ⊆ X → X satisfying the condition

d
(

f(x), f
(

y
)) ≤ Ad

(

x, y
)

+ Bd
(

y, f(x)
)

, ∀x, y ∈ Y, (2.8)

for some matrices A,B ∈ Mm,m(R+) with A a matrix that converges toward zero, could be
called an almost contraction of Perov type.

We have also a global version of Theorem 2.1, expressed by the following result.

Corollary 2.3. Let (X, d) be a complete generalized metric space. Let f : X → X be a mapping
having the property that there exist A,B ∈ Mm,m(R+) such that

d
(

f(x), f
(

y
)) ≤ Ad

(

x, y
)

+ Bd
(

y, f(x)
)

, ∀x, y ∈ X. (2.9)

If A is a matrix that converges towards zero, then

(1) Fix(f)/= ∅;
(2) the sequence (xn)n∈N given by xn := fn(x0) converges towards a fixed point of f , for all

x0 ∈ X;

(3) one has the estimation

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1), (2.10)

where x∗ ∈ Fix(f).

In addition, if the matrix A + B converges to zero, then Fix(f) = {x∗}.

Remark 2.4. Any matrix A =
(

a 0

0 c

)

, where a, c ∈ R+ and max{a, c} < 1, satisfies the
assumptions (1)-(2) in Theorem 2.1.

Remark 2.5. Let us notice here that some advantages of a vector-valued norm with respect
to the usual scalar norms were very nice pointed out, by several examples, in Precup in [5].
More precisely, one can show that, in general, the condition that A is a matrix convergent
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to zero is weaker than the contraction conditions for operators given in terms of the scalar
norms on X of the following type:

‖x‖M := ‖x1‖ + ‖x2‖
‖x‖C := max{‖x1‖, ‖x2‖} or
‖x‖E := (‖x1‖2 + ‖x2‖2)1/2.

As an application of the previous results we present an existence theorem for a system
of operatorial equations.

Theorem 2.6. Let (X, | · |) be a Banach space and let f1, f2 : X ×X → X be two operators. Suppose
that there exist aij , bij ∈ R+, i, j ∈ {1, 2} such that, for each x := (x1, x2), y := (y1, y2) ∈ X ×X, one
has:

(1) |f1(x1, x2)−f1(y1, y2)| ≤ a11|x1−y1|+a12|x2−y2|+b11|x1−f1(y1, y2)|+b12|x2−f2(y1, y2)|,
(2) |f2(x1, x2)−f2(y1, y2)| ≤ a21|x1−y1|+a22|x2−y2|+b21|x1−f1(y1, y2)|+b22|x2−f2(y1, y2)|.

In addition, assume that the matrix A :=
(

a11 a12

a21 a22

)

converges to 0.
Then, the system

u1 = f1(u1, u2), u2 = f1(u1, u2) (2.11)

has at least one solution x∗ ∈ X × X. Moreover, if, in addition, the matrix A + B converges to zero,
then the above solution is unique.

Proof. Consider E := X × X and the operator f : E → Pcl(E) given by the expression
f(x1, x2) := (f1(x1, x2), f2(x1, x2)). Then our system is now represented as a fixed point
equation of the following form: x = f(x), x ∈ E. Notice also that the conditions (1) + (2)
can be jointly represented as follows:

∥

∥f(x) − f
(

y
)∥

∥ ≤ A · ∥∥x − y
∥

∥ + B · ∥∥x − f
(

y
)∥

∥, for each x, y ∈ E := X ×X. (2.12)

Hence, Corollary 2.3 applies in (E, d), with d(u, v) := ‖u − v‖ :=
(

|u1−v1|
|u2−v2|

)

.

We present another result in the case of a generalized metric space but endowed with
two metrics.

Theorem 2.7. Let X be a nonempty set and let d, ρ be two generalized metrics on X. Let f : X → X
be an operator. We assume that

(1) there exists C ∈ Mm,m(R+) such that d(f(x), f(y)) ≤ ρ(x, y) · C;
(2) (X, d) is a complete generalized metric space;

(3) f : (X, d) → (X, d) is continuous;

(4) there exists A,B ∈ Mm,m(R+) such that for all x, y ∈ X one has

ρ
(

f(x), f
(

y
)) ≤ Aρ

(

x, y
)

+ Bρ
(

y, f(x)
)

. (2.13)

If the matrix A converges towards zero, then Fix(f)/= ∅.
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In addition, if the matrix A + B converges to zero, then Fix(f) = {x∗}.

Proof. We consider the sequence of successive approximations (xn)n∈N defined recurrently by
xn+1 = f(xn), x0 ∈ X being arbitrary. The following statements hold:

ρ(x1, x2) = ρ
(

f(x0), f(x1)
) ≤ Aρ(x0, x1) + Bρ

(

x1, f(x0)
)

= Aρ(x0, x1),

ρ(x2, x3) = ρ
(

f(x1), f(x2)
) ≤ Aρ(x1, x2) + Bρ

(

x2, f(x1)
) ≤ A2ρ(x0, x1),

...

ρ(xn, xn+1) ≤ Anρ(x0, x1), ∀n ∈ N, n ≥ 1.

(2.14)

Now, let p ∈ N, p > 0. We estimate

ρ
(

xn, xn+p
) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · · + ρ

(

xn+p−1, xn+p
)

≤ Anρ(x0, x1) +An+1ρ(x0, x1) + · · · +An+p−1ρ(x0, x1)

≤ An
(

I +A +A2 + · · · +Ap−1 + · · ·
)

ρ(x0, x1)

= An(I −A)−1ρ(x0, x1).

(2.15)

Letting n → ∞ we obtain that ρ(xn, xn+p) → 0 ∈ R
m. Thus (xn)n∈N is a Cauchy sequence

with respect to ρ.
On the other hand, using the statement (1), we get

d
(

xn, xn+p
)

= d
(

f(xn−1), f
(

xn+p−1
)) ≤ ρ

(

xn−1, xn+p−1
) · C

≤ An−1(I −A)−1ρ(x0, x1)C −→ 0, as n −→ ∞.
(2.16)

Hence, (xn)n∈N is a Cauchy sequence with respect to d. Since (X, d) is complete, one
obtains the existence of an element x∗ ∈ X such that x∗ = limn→∞xn with respect to d.

We prove next that x∗ = f(x∗), that is, Fix(f)/= ∅. Indeed, since xn+1 = f(xn), for all
n ∈ N, letting n → ∞ and taking into account that f is continuous with respect to d, we get
that x∗ = f(x∗).

The uniqueness of the fixed point x∗ is proved below.
Let x∗, y∗ ∈ Fix(f) such that x∗ /=y∗. We estimate

ρ
(

x∗, y∗) = ρ
(

f(x∗), f
(

y∗)) ≤ Aρ
(

x∗, y∗) + Bρ
(

y∗, f(x∗)
)

= (A + B)ρ
(

x∗, y∗). (2.17)

Thus, using the additional assumption on the matrix A + B, we have that

(I −A − B)ρ
(

x∗, y∗) ≤ 0 =⇒ ρ
(

x∗, y∗) ≤ 0 =⇒ x∗ = y∗. (2.18)

In what follows, we will present some results for the case of multivalued operators.
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Theorem 2.8. Let (X, d) be a complete generalized metric space and let x0 ∈ X, r := (ri)
m
i=1 ∈ R

m
+

with ri > 0 for each i ∈ {1, 2, . . . , m}. Consider F : ˜B(x0, r) → Pcl(X) a multivalued operator. One
assumes that

(i) there exist A,B ∈ Mm,m(R+) such that for all x, y ∈ ˜B(x0, r) and u ∈ F(x) there exists
v ∈ F(y) with

d(u, v) ≤ Ad
(

x, y
)

+ Bd
(

y, u
)

; (2.19)

(ii) there exists x1 ∈ F(x0) such that d(x0, x1)(I −A)−1 ≤ r;

(iii) if u ∈ R
m
+ is such that u(I −A)−1 ≤ (I −A)−1r, then u ≤ r.

If A is a matrix convergent towards zero, then Fix(F)/= ∅.

Proof. By (ii) and (iii), there exists x1 ∈ F(x0) such that

d(x0, x1)(I −A)−1 ≤ r ≤ (I −A)−1r =⇒ d(x0, x1) ≤ r =⇒ x1 ∈ ˜B(x0, r). (2.20)

For x1 ∈ F(x0), there exists x2 ∈ F(x1) with

d(x1, x2)(I −A)−1 ≤ Ad(x0, x1)(I −A)−1 + Bd(x1, x1)(I −A)−1 ≤ Ar. (2.21)

Hence

d(x0, x2)(I −A)−1 ≤ d(x0, x1)(I −A)−1 + d(x1, x2)(I −A)−1

≤ Ir +Ar ≤
(

I +A +A2 + · · ·
)

r = (I −A)−1r

=⇒ d(x0, x2) ≤ r =⇒ x2 ∈ ˜B(x0, r).

(2.22)

Next, for x2 ∈ F(x1), there exists x3 ∈ F(x2) with

d(x2, x3)(I −A)−1 ≤ Ad(x1, x2)(I −A)−1 + Bd(x2, x2)(I −A)−1 ≤ A2r, (2.23)

and hence

d(x0, x3)(I −A)−1 ≤ d(x0, x1)(I −A)−1 + d(x1, x2)(I −A)−1 + d(x2, x3)(I −A)−1

≤ Ir +Ar +A2r ≤
(

I +A +A2 + · · ·
)

r = (I −A)−1r

=⇒ d(x0, x3) ≤ r =⇒ x3 ∈ ˜B(x0, r).

(2.24)
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By induction, we construct the sequence (xn)n∈N in ˜B(x0, r) such that, for all n ∈ N, we
have

(1) xn+1 ∈ F(xn);

(2) d(x0, xn)(I −A)−1 ≤ (I −A)−1r;

(3) d(xn, xn+1)(I −A)−1 ≤ Anr.

By a similar approach as before (see the proof of Theorem 2.1), we get that (xn)n∈N is a Cauchy
sequence in the complete space ( ˜B(x0, r), d). Hence (xn)n∈N is convergent in ˜B(x0, r). Thus,
there exists x∗ ∈ ˜B(x0, r) such that x∗ = limn→∞xn.

Next we show that x∗ ∈ F(x∗).
Using (i) and the fact that xn ∈ F(xn−1), for all n ∈ N n ≥ 1, we get, for each n ∈ N, the

existence of un ∈ F(x∗) such that

d(xn, un) ≤ Ad(xn−1, x∗) + Bd(x∗, xn). (2.25)

On the other hand

d(x∗, un) ≤ d(x∗, xn) + d(xn, un)

≤ d(x∗, xn) +Ad(xn−1, x∗) + Bd(x∗, xn).
(2.26)

Letting n → ∞, we get d(x∗, un) → 0. Hence, we have limn→∞un = x∗ and since un ∈ F(x∗)
and F(x∗) is closed set, we get that x∗ ∈ F(x∗).

Remark 2.9. From the proof of the above theorem, we also get the following estimation:

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1), for each n ∈ N with n ≥ 1, (2.27)

where x∗ is a fixed point for the multivalued operator F, and the pair (x0, x1) ∈ Graph(F) is
arbitrary.

We have also a global variant for the Theorem 2.8 as follows.

Corollary 2.10. Let (X, d) be a complete generalized metric space and F : X → Pcl(X) a multivalued
operator. One supposes that there exist A,B ∈ Mm,m(R+) such that for each x, y ∈ X and all u ∈
F(x), there exists v ∈ F(y) with

d(u, v) ≤ Ad
(

x, y
)

+ Bd
(

y, u
)

. (2.28)

If A is a matrix convergent towards zero, then Fix(F)/= ∅.

Remark 2.11. By a similar approach to that given in Theorem 2.6, one can obtain an existence
result for a system of operatorial inclusions of the following form:

x1 ∈ T1(x1, x2),

x2 ∈ T1(x1, x2),
(2.29)
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where T1, T2 : X × X → Pcl(X) are multivalued operators satisfying a contractive type
condition (see also [9]).

The following results are obtained in the case of a set X endowed with two metrics.

Theorem 2.12. Let (X, d) be a complete generalized metric space and ρ another generalized metric
on X. Let F : X → P(X) be a multivalued operator. One assumes that

(i) there exists a matrix C ∈ Mm,m(R+) such that d(x, y) ≤ ρ(x, y) · C, for all x, y ∈ X;

(ii) F : (X, d) → (P(X),Hd) has closed graph;

(iii) there exist A,B ∈ Mm,m(R+) such that for all x, y ∈ X and u ∈ F(x), there exists v ∈
F(y) with

ρ(u, v) ≤ Aρ
(

x, y
)

+ Bρ
(

y, u
)

. (2.30)

If A is a matrix convergent towards zero, then Fix(F)/= ∅.

Proof. Let x0 ∈ X such that x1 ∈ F(x0).
For x1 ∈ F(x0), there exists x2 ∈ F(x1) such that

ρ(x1, x2) ≤ Aρ(x0, x1) + Bρ(x1, x1) = Aρ(x0, x1). (2.31)

For x2 ∈ F(x1), there exists x3 ∈ F(x2) such that

ρ(x2, x3) ≤ Aρ(x1, x2) + Bρ(x2, x2) ≤ A2ρ(x0, x1). (2.32)

Consequently, we construct by induction the sequence (xn)n∈N in X which satisfies the
following properties:

(1) xn+1 ∈ F(xn), for all n ∈ N;

(2) ρ(xn, xn+1) ≤ Anρ(x0, x1), for all n ∈ N.

We show that (xn)n∈N is a Cauchy sequence in X with respect to ρ. In order to do that,
let p ∈ N, p > 0. One has the estimation

ρ
(

xn, xn+p
) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · · + ρ

(

xn+p−1, xn+p
)

≤ Anρ(x0, x1) +An+1ρ(x0, x1) + · · · +An+p−1ρ(x0, x1)

≤ An
(

I +A + · · · +Ap−1 + · · ·
)

ρ(x0, x1)

= An(I −A)−1ρ(x0, x1).

(2.33)

Since the matrix A converges towards zero, one has An → Θ as n → ∞. Letting n → ∞ one
get ρ(xn, xn+p) → 0 which implies that (xn)n∈N is a Cauchy sequence with respect to ρ.

Using (i), we obtain that d(xn, xn+p) ≤ ρ(xn, xn+p) · C → 0 as n → ∞. Thus, (xn)n∈N is
a Cauchy sequence with respect to d too.
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Since (X, d) is complete, the sequence (xn)n∈N is convergent in X. Thus there exists
x∗ ∈ X such that x∗ = limn→∞xn with respect to d.

Finally, we show that x∗ ∈ F(x∗).
Since xn+1 ∈ F(xn), for all n ∈ N and F has closed graph, by using the limit presented

above, we get that x∗ ∈ F(x∗), that is, Fix(F)/= ∅.

Remark 2.13. (1) Theorem 2.12 holds even if the assumption (iii) is replaced by
(iii′) there exist A,B ∈ Mm,m(R+) such that for all x, y ∈ X and u ∈ F(x), there exists

v ∈ F(y) such thatρ(u, v) ≤ Aρ(x, y) + Bd(y, u).
(2) Letting p → ∞ in the estimation of ρ(xn, xn+p), presented in the proof of

Theorem 2.12, we get

ρ(xn, x
∗) ≤ An(I −A)−1ρ(x0, x1). (2.34)

Using the relation between the generalized metrics d and ρ, one has immediately

d(xn, x
∗) ≤ CAn(I −A)−1ρ(x0, x1). (2.35)

Theorem 2.14. Let (X, d) be a complete generalized metric space and ρ another generalized metric on
X. Let x0 ∈ X, r := (ri)

m
i=1 ∈ R

m
+ with ri > 0 for each i ∈ {1, 2, . . . , m} and let F : ˜Bρ(x0, r) → P(X)

be a multivalued operator. Suppose that

(i) there exists C ∈ Mm,m(R+) such that d(x, y) ≤ Cρ(x, y), for all x, y ∈ X;

(ii) F : ( ˜Bρ(x0, r), d) → (Pb(X),Hd) has closed graph;

(iii) there exist A,B ∈ Mm,m(R+) such that A is a matrix that converges to zero and for all
x, y ∈ ˜Bρ(x0, r) and u ∈ F(x), there exists v ∈ F(y) such that

ρ(u, v) ≤ Aρ
(

x, y
)

+ Bρ
(

y, u
)

; (2.36)

(iv) if u ∈ R
m
+ is such that u(I −A)−1 ≤ (I −A)−1r, then u ≤ r;

(v) ρ(x0, x1)(I −A)−1 ≤ r.

Then Fix(F)/= ∅.

Proof. Let x0 ∈ X such that x1 ∈ F(x0). By (v) one has

ρ(x0, x1)(I −A)−1 ≤ r ≤ (I −A)−1r, (2.37)

which implies x1 ∈ ˜Bρ(x0, r).
Since x1 ∈ F(x0), there exists x2 ∈ F(x1) such that

ρ(x1, x2)(I −A)−1 ≤ Aρ(x0, x1)(I −A)−1 + Bρ(x1, x1)(I −A)−1 ≤ Ar. (2.38)
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Hence,

ρ(x0, x2)(I −A)−1 ≤ ρ(x0, x1)(I −A)−1 + ρ(x1, x2)(I −A)−1

≤ Ir +Ar ≤ (I +A + · · · +An + · · · )r ≤ (I −A)−1r,
(2.39)

which implies that ρ(x0, x2) ≤ r, that is, x2 ∈ ˜Bρ(x0, r).
For x2 ∈ F(x1), there exists x3 ∈ F(x2) such that

ρ(x2, x3)(I −A)−1 ≤ Aρ(x1, x2)(I −A)−1 + Bρ(x2, x2)(I −A)−1 ≤ A2r. (2.40)

Then the following estimation holds:

ρ(x0, x3)(I −A)−1 ≤ ρ(x0, x1)(I −A)−1 + ρ(x1, x2)(I −A)−1 + ρ(x2, x3)(I −A)−1

≤ Ir +Ar +A2r ≤ (I −A)−1r,
(2.41)

and thus ρ(x0, x3) ≤ r, that is, x3 ∈ ˜Bρ(x0, r).
Inductively, we can construct the sequence (xn)x∈N which has its elements in the closed

ball ˜Bρ(x0, r) and satisfies the following conditions:

(1) xn+1 ∈ F(xn), for all n ∈ N;

(2) ρ(xn, xn+1)(I −A)−1 ≤ Anr, for all n ∈ N.

By a similar approach as in the proof of Theorem 2.12, the conclusion follows.

A homotopy result for multivalued operators on a set endowed with a vector-valued
metric is the following.

Theorem 2.15. Let (X, d) be a generalized complete metric space in Perov sense, let U be an open
subset ofX, and let V be a closed subset ofX, withU ⊂ V . LetG : V×[0, 1] → P(X) be a multivalued
operator with closed (with respect to d) graph, such that the following conditions are satisfied:

(a) x /∈G(x, t), for each x ∈ V \U and each t ∈ [0, 1];

(b) there exist A,B ∈ Mm,m(R+) such that the matrix A is convergent to zero such that for
each t ∈ [0, 1], for each x, y ∈ X and all u ∈ G(x, t)), there exists v ∈ G(y, t) with
d(u, v) ≤ Ad(x, y) + Bd(y, u).

(c) there exists a continuous increasing function φ : [0, 1] → R
m such that for all t, s ∈ [0, 1],

each x ∈ V and each u ∈ G(x, t) there exists v ∈ G(x, s) such that d(u, v) ≤ |φ(t)−φ(s)|;
(d) if v, r ∈ R

m
+ are such that v · (I −A)−1 ≤ (I −A)−1 · r, then v ≤ r;

Then G(·, 0) has a fixed point if and only if G(·, 1) has a fixed point.

Proof. Suppose that G(·, 0) has a fixed point z. From (a) we have that z ∈ U. Define

Q := {(t, x) ∈ [0, 1] ×U | x ∈ G(x, t)}. (2.42)
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Clearly Q/= ∅, since (0, z) ∈ Q. Consider on Q a partial order defined as follows:

(t, x) ≤ (

s, y
)

iff t ≤ s, d
(

x, y
) ≤ 2

[

φ(s) − φ(t)
] · (I −A)−1. (2.43)

Let M be a totally ordered subset of Q and consider t∗ := sup{t | (t, x) ∈ M}. Consider a
sequence (tn, xn)n∈N∗ ⊂ M such that (tn, xn) ≤ (tn+1, xn+1) for each n ∈ N

∗ and tn → t∗, as
n → +∞. Then

d(xm, xn) ≤ 2
[

φ(tm) − φ(tn)
] · (I −A)−1, for each m,n ∈ N

∗, m > n. (2.44)

When m,n → +∞, we obtain d(xm, xn) → 0 and, thus, (xn)n∈N∗ is d-Cauchy. Thus (xn)n∈N∗

is convergent in (X, d). Denote by x∗ ∈ X its limit. Since xn ∈ G(xn, tn), n ∈ N
∗ and since G

is d-closed, we have that x∗ ∈ G(x∗, t∗). Thus, from (a), we have x∗ ∈ U. Hence (t∗, x∗) ∈ Q.
Since M is totally ordered we get that (t, x) ≤ (t∗, x∗), for each (t, x) ∈ M. Thus (t∗, x∗) is an
upper bound of M. By Zorn’s Lemma, Q admits a maximal element (t0, x0) ∈ Q. We claim
that t0 = 1. This will finish the proof.

Suppose t0 < 1. Choose r := (ri)
m
i=1 ∈ R

m
+ with ri > 0 for each i ∈ {1, 2, . . . , m} and

t ∈]t0, 1] such that B(x0, r) ⊂ U, where r := 2[φ(t) − φ(t0)] · (I − A)−1. Since x0 ∈ G(x,t0), by
(c), there exists x1 ∈ G(x0, t) such that d(x0, x1) ≤ |φ(t) − φ(t0)|. Thus, d(x0, x1)(I − A)−1 ≤
|φ(t) − φ(t0)| · (I −A)−1 < r.

Since B(x0, r) ⊂ V , the multivalued operator G(·, t) : B(x0, r) → Pcl(X) satisfies, for
all t ∈ [0, 1], the assumptions of Theorem 2.1 Hence, for all t ∈ [0, 1], there exists x ∈ B(x0, r)
such that x ∈ G(x, t). Thus (t, x) ∈ Q. Since d(x0, x) ≤ r = 2[φ(t) − φ(t0)](I − A)−1, we
immediately get that (t0, x0) < (t, x). This is a contradiction with the maximality of (t0, x0).

Conversely, if G(·, 1) has a fixed point, then putting t := 1 − t and using first part of the
proof we get the conclusion.

Remark 2.16. Usually in the above result, we take Q = U. Notice that in this case, condition
(a) becomes

(a′) x /∈G(x, t), for each x ∈ ∂U and each t ∈ [0, 1].

Remark 2.17. If in the above results we consider m = 1, then we obtain, as consequences,
several known results in the literature, as those given by M. Berinde and V. Berinde [8],
Precup [5], Petruşel and Rus [11], and Feng and Liu [12]. Notice also that the theorems
presented here represent extensions of some results given Bucur et al. [9], O’Regan and
Precup [13], O’Regan et al. [7], Perov [1], and so forth.

Remark 2.18. Notice also that since R
n
+ is a particular type of cone in a Banach space, it is a

nice direction of research to obtain extensions of these results for the case of operators on K-
metric (or K-normed) spaces (see Zabrejko [14]). For other similar results, open questions,
and research directions see [7, 11–13, 15–18].
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