
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2009, Article ID 840386, 15 pages
doi:10.1155/2009/840386

Research Article
Vartiational Optimal-Control Problems with
Delayed Arguments on Time Scales

Thabet Abdeljawad (Maraaba),1 Fahd Jarad,1
and Dumitru Baleanu1,2

1 Department of Mathematics and Computer Science, Çankaya University, 06530 Ankara, Turkey
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1. Introduction

The calculus of variations interacts deeply with some branches of sciences and engineering,
for example, geometry, economics, electrical engineering, and so on [1]. Optimal control
problems appear in various disciplines of sciences and engineering as well [2].

Time-scale calculus was initiated by Hilger (see [3] and the references therein) being
in mind to unify two existing approaches of dynamic models difference and differential
equations into a general framework. This kind of calculus can be used to model dynamic
processes whose time domains are more complex than the set of integers or real numbers
[4]. Several potential applications for this new theory were reported (see, e.g., [4–6] and the
references therein). Many researchers studied calculus of variations on time scales. Some of
them followed the delta approach and some others followed the nabla approach (see, e.g.,
[7–12]).

It is well known that the presence of delay is of great importance in applications. For
example, its appearance in dynamic equations, variational problems, and optimal control
problems may affect the stability of solutions. Very recently, some authors payed the
attention to the importance of imposing the delay in fractional variational problems [13].
The nonlocality of the fractional operators and the presence of delay as well may give
better results for problems involving the dynamics of complex systems. To the best of our
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knowledge, there is no work in the direction of variational optimal-control problems with
delayed arguments on time scales.

Our aim in this paper is to obtain the Euler-Lagrange equations for a functional, where
the state variables of its Lagrangian are defined on a time scale whose backward jumping
operator is ρ(t) = qt − h, q > 0, h ≥ 0. This time scale, of course, absorbs the discrete, the
continuous and the quantum cases. The state variables of this Lagrangian allow the presence
of delay as well. Then, we generalize the results to the n-dimensional case. Dealing with such
a very general problem enables us to recover many previously obtained results [14–17].

The structure of the paper is as follows. In Section 2 basic definitions and preliminary
concepts about time scale are presented. The nabla time-scale derivative analysis is followed
there. In Section 3 the Euler-Lagrange equations into one unknown function and then in
the n-dimensional case are obtained. In Section 4 the variational optimal control problem is
proposed and solved. In Section 5 the results obtained in the previous sections are particulary
studied in the discrete and quantum cases, where two examples are analyzed in details.
Finally, Section 6 contains our conclusions.

2. Preliminaries

A time scale is an arbitrary closed subset of the real line R. Thus the real numbers and the
natural numbers, N, are examples of a time scale. Throughout this paper, and following [4],
the time scale will be denoted by T. The forward jump operator σ : T → T is defined by

σ(t) := inf{s ∈ T : s > t}, (2.1)

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}, (2.2)

where, inf ∅ = supT (i.e., σ(t) = t if T has a maximum t) and sup ∅ = infT (i.e., ρ(t) = t if T
has a minimum t). A point t ∈ T is called right-scattered if t < σ(t), left-scattered if ρ(t) < t,
and isolated if ρ(t) < t < σ(t). In connection we define the backward graininess function
ν : T → [0,∞) by

ν(t) = t − ρ(t). (2.3)

In order to define the backward time-scale derivative down, we need the set Tκ which is
derived from the time scale T as follows. If T has a right-scattered minimum m, then Tκ =
T − {m}. Otherwise, Tκ = T.

Definition 2.1 (see [18]). Assume that f : T → R is a function and t ∈ Tκ. Then the backward
time-scale derivative f∇(t) is the number (provided that it exists)with the property that given
any ε > 0, there exists a neighborhood U of t (i.e.,U = (t − δ, t + δ) for some δ > 0) such that

∣
∣
[

f(s) − f
(

ρ(t)
)] − [

s − ρ(t)
]∣
∣ ≤ ε

∣
∣s − ρ(t)

∣
∣ ∀s ∈ U. (2.4)

Moreover, we say that f is (nabla) differentiable on Tκ provided that f∇(t) exists for all t ∈ Tκ.
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The following theorem is Theorem 3.2 in [19] and an analogue to Theorem 1.16 in [4].

Theorem 2.2 (see [18]). Assume that f : T → R is a function and t ∈ Tκ, then one has the
following.

(i) If f is differentiable at t then f is continuous at t.

(ii) If f is continuous at t and t is left-scattered, then f is differentiable at t with

f∇(t) =
f(t) − f

(

ρ(t)
)

ν(t)
. (2.5)

(iii) If t is left-dense, then f is differentiable at t if and only if the limit

lim
s→ t

f(t) − f(s)
t − s

(2.6)

exists as a finite number. In this case

f∇(t) = lim
s→ t

f(t) − f(s)
t − s

. (2.7)

(iv) If f is ∇-differentiable at t, then

f(t) = f
(

ρ(t)
)

+ ν(t)f∇(t). (2.8)

Example 2.3. (i) T = R or any any closed interval (the continuous case) σ(t) = ρ(t) = t,
ν(t) = 0, and f∇(t) = f ′(t).

(ii) T = hZ, h > 0 or any subset of it (the difference calculus, a discrete case) σ(t) = t+h,
ρ(t) = t − h, ν(t) = h, and f∇(t) = ∇hf(t) = f(t) − f(t − h).

(iii) T = Tq = {qn : n ∈ Z} ∪ {0}, 0 < q < 1, (quantum calculus) σ(t) = q−1t, ρ(t) = qt,
ν(t) = (1 − q)t, and f∇(t) = ∇qf(t) = (f(t) − f(qt))/(1 − q)t.

(iv) T = T
h
q = {qk −∑k−2

i=0 qih : k ≥ 2, k ∈ N} ∪ {−h/(1 − q)}, 0 < q < 1, h > 0 (unifying
the difference calculus and quantum calculus). There are σ(t) = q−1(t + h), ρ(t) = qt − h,
ν(t) = (1− q)t+h, and f∇(t) = ∇h

qf(t) = (f(t)− f(qt−h))/((1− q)t+h). If α0 ∈ N then ρα0(t) =

qα0t −∑α0−1
k=0 qkh and so ∇h

qρ
α0(t) = qα0 . Note that in this example the backward operator is of

the form ρ(t) = ct + d and hence T
h
q is an element of the class H of time scales that contains

the discrete, the usual, and the quantum calculus (see [17]).

Theorem 2.4. Suppose that f, g : T → R are nabla differentiable at t ∈ Tκ, then,

(1) the sum f + g : T → R is nabla differentiable at t and (f + g)∇(t) = f∇(t) + g∇(t);

(2) for any λ ∈ R, the function λf : T → R is nabla differentiable at t and (λf)∇(t) = λf∇(t);

(3) the product fg : T → R is nabla differentiable at t and

(

fg
)∇ = f∇(t)g(t) + fρ(t)g∇(t) = f∇(t)gρ(t) + f(t)g∇(t). (2.9)
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For the proof of the following lemma we refer to [20].

Lemma 2.5. Let T be an H-time scale (in particular T = T
h
q ), f : T → R two times nabla

differentiable function, and g(t) = ρα0(t), for α0 ∈ N. Then

(

f ◦ g)∇(t) = f∇(g(t)
) · g∇(t), t ∈ Tκ. (2.10)

Throughout this paper we use for the time-scale derivatives and integrals the symbol
∇h

q which is inherited from the time scale T
h
q . However, our results are true also for the H-

time scales (those time scales whose jumping operators have the form at + b). The time scale
T
h
q is a natural example of an H-time scale.

Definition 2.6. A function F : T → R is called a nabla antiderivative of f : T → R provided
F(t) = f(t), for all t ∈ Tκ. In this case, for a, b ∈ T, we write

∫b

a

f(t)∇t := F(b) − F(a). (2.11)

The following lemma which extends the fundamental lemma of variational analysis
on time scales with nabla derivative is crucial in proving the main results.

Lemma 2.7. Let g ∈ Cld, g : [a, b] → R
n. Then

∫b

a

gT (t)η∇(t)∇t ∀η ∈ C1
ld with η(a) = η(b) = 0 (2.12)

holds if and only if

g(t) ≡ c on [a, b]κ for some c ∈ R
n. (2.13)

The proof can be achieved by following as in the proof of Lemma 4.1 in [9] (see also
[17]).

3. First-Order Euler-Lagrange Equation with Delay

We consider the Th
q -integral functional J : S → R,

J
(

y
)

=
∫b

a

L
(

x, yρ(x),∇h
qy(x), y

ρ(ρα0(x)
)

,∇h
qy

(

ρα0(x)
))∇h

qx, (3.1)
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where

a, b ∈ T
h
q , a < ρα0(b) < b,

L : [a, b] × (Rn)4 −→ R, yρ(x) = y
(

ρ(x)
)

,

S =
{

y :
[

ρα0(a), b
] −→ R

n : y(x) = ϕ(x)
(∀x ∈ [

ρα0(a), a
])

, y(b) = c0
}

.

(3.2)

We will shortly write

L(x) ≡ L
(

x, yρ(x),∇h
qy(x), y

ρ(ρα0(x)
)

,∇h
qy

(

ρα0(x)
))

. (3.3)

We calculate the first variation of the functional J on the linear manifold S. Let η ∈
H = {h : [ρα0(a), b] → R

n : h(x) = 0 (∀x ∈ [ρα0(a), a] ∪ {b})}, then

δJ
(

y(x), η(x)
)

=
d

dε
J
(

y(x) + εη(x)
)
∣
∣
∣
∣
ε=0

,

∫b

a

[

∂1L(x)ηρ(x) + ∂2L(x)∇h
qη(x) + ∂3L(x)ηρ(ρα0(x)

)

+ qα0∂4L(x)∇h
qη

(

ρα0(x)
)]∇h

qx,

(3.4)

where

∂1L =
∂L

∂
(

yρ(x)
) , ∂2L =

∂L

∂
(

∇h
qy(x)

) , ∂3L =
∂L

∂
(

yρ
(

ρα0(x)
)) , ∂4L =

∂L

∂
(

∇h
qy

(

ρα0(x)
)) ,

(3.5)

and where Lemma 2.5 and that ∇h
qρ

α0(t) = qα0 are used. If we use the change of variable
u = ρα0(x), which is a linear function, and make use of Theorem 1.98 in [4] and Lemma 2.5
we then obtain

δJ
(

y(x), η(x)
)

=
∫b

a

[

∂1L(x)ηρ(x) + ∂2L(x)∇h
qη(x)

]

∇h
qx

+
∫ρα0 (b)

a

[

q−α0∂3L
((

ρα0
)−1(x)

)

ηρ(x) + q−α0∂4L
((

ρα0
)−1(x)

)

∇h
qη(x)

]

∇h
qx,

(3.6)

where we have used the fact that η ≡ 0 on [ρα0(a), a].
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Splitting the first integral in (3.6) and rearranging will lead to

δJ
(

y(x), η(x)
)

=
∫ρα0 (b)

a

[

∂1L(x)ηρ(x) + ∂2L(x)∇h
qη(x) + q−α0∂3L

((

ρα0
)−1(x)

)

ηρ(x)

+q−α0∂4L
((

ρα0
)−1(x)

)

∇h
qη(x)

]

∇h
qx

+
∫b

ρα0 (b)

[

∂1L(x)ηρ(x) + ∂2L(x)∇h
qη(x)

]

∇h
qx.

(3.7)

If we make use of part (3) of Theorem 2.4 then we reach

δJ
(

y(x), η(x)
)

=
∫ρα0 (b)

a

{

∂2L(x)∇h
qη(x) + q−α0∂4L

((

ρα0
)−1(x)

)

∇h
qη(x) +∇h

q

[∫x

a

∂1L(z)∇h
qz · η(x)

]

−
∫x

a

∂1L(z)∇h
qz · ∇h

qη(x) + q−α0∇h
q

[∫x

a

∂3L
((

ρα0
)−1(z)

)

∇h
qz · η(x)

]

−q−α0

∫x

a

∂3L
((

ρα0
)−1(z)

)

∇h
qz · ∇h

qη(x)
}

∇h
qx

+
∫b

ρα0 (b)

{

∂2L(x)∇h
qη(x) +∇h

q

[∫x

ρα0 (b)
∂1L(z)∇h

qz · η(x)
]

−
∫x

ρα0 (b)
∂1L(z)∇h

qz · ∇h
qη(x)

}

∇h
qx.

(3.8)

In (3.8), once choose η such that η(a) = 0 and η ≡ 0 on [qα0b, b] and in another case choose
η such that η(b) = 0 and η ≡ 0 on [a, qα0b], and then make use of Lemma 2.7 to arrive at the
following theorem.

Theorem 3.1. Let J : S → R be the Th
q -integral functional

J
(

y
)

=
∫b

a

L
(

x, yρ(x),∇h
qy(x), y

ρ(ρα0(x)
)

,∇h
qy

(

ρα0(x)
))∇h

qx, (3.9)

where

a, b ∈ T
h
q , a < ρα0(b) < b,

L : [a, b] × (Rn)4 −→ R, yρ(x) = y
(

ρ(x)
)

,

S =
{

y :
[

ρα0(a), b
] −→ R

n : y(x) = ϕ(x)
(∀x ∈ [

ρα0(a), a
])

, y(b) = c0
}

.

(3.10)
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Then the necessary condition for J(y) to possess an extremum for a given function y(x) is that y(x)
satisfies the following Euler-Lagrange equations

∇h
q∂2L(x) + q−α0∇h

q∂4L
((

ρα0
)−1(x)

)

= ∂1L(x) + q−α0∂3L
((

ρα0
)−1(x)

) (

x ∈ [

a, ρα0(b)
]

κ

)

,

∇h
q∂2L(x) = ∂1L(x)

(

x ∈ [

ρα0(b), b
]

κ

)

.

(3.11)

Furthermore, the equation:

q−α0∂4L
((

ρα0
)−1(x)

)

η(x)
∣
∣
∣

ρα0 (b)

a
= 0 (3.12)

holds along y(x) for all admissible variations η(x) satisfying η(x) = 0, x ∈ [ρα0(a), a] ∪ {b}.

The necessary condition represented by (3.12) is obtained by applying integration by
parts in (3.7) and then substituting (3.11) in the resulting integrals. The above theorem can
be generalized as follows.

Theorem 3.2. Let J : Sm → R be the Th
q -integral functional

J
(

y1, y2, . . . , ym

)

=
∫b

a

L
((

x, y
ρ

1(x), y
ρ

2(x), . . . , y
ρ
m(x)

)

,
(

∇h
qy1(x),∇h

qy2(x), . . . ,∇h
qym(x)

)

,

(

y
ρ

1

(

ρα0(x)
)

, y
ρ

2

(

ρα0(x)
)

, . . . , y
ρ
m

(

ρα0(x)
))

,

(

∇h
qy1

(

ρα0(x)
)

,∇h
qy1

(

ρα0(x)
)

, . . . ,∇h
qym

(

ρα0(x)
)∇h

qx
))

,

(3.13)

where

a, b ∈ T
h
q , a < ρα0(b) < b,

L : [a, b] × (Rn)4m −→ R, yρ(x) = y
(

ρ(x)
)

,

Sm =
{

y =
(

y1, y2, . . . , ym

)

: yi :
[

ρα0(a), b
] −→ R

n, yi(x) = ϕi(x)
(∀x ∈ [

ρα0(a), a
])

, yi(b) = ci, i = 1, 2, . . . , m
}

.

(3.14)

Then a necessary condition for J(y) to possess an extremum for a given function y(x) =
(y1(x), y2(x), . . . , ym(x)) is that y(x) satisfies the following Euler-Lagrange equations:

∇h
q∂2L

i(x) + q−α0∇h
q∂4L

i
((

ρα0
)−1(x)

)

= ∂1L
i(x) + q−α0∂3L

i
((

ρα0
)−1(x)

) (

x ∈ [

a, ρα0(b)
]

κ

)

,

∇h
q∂2L

i(x) = ∂1L
i(x)

(

x ∈ [

ρα0(b), b
]

κ

)

.

(3.15)
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Furthermore, the equations

q−α0∂4L
i
((

ρα0
)−1(x)

)

ηi(x)
∣
∣
∣

ρα0 (b)

a
= 0 (3.16)

hold along y(x) for all admissible variations ηi(x) satisfying

ηi(x) = 0, x ∈ [

ρα0(a), a
] ∪ {b}, i = 1, 2, . . . , m, (3.17)

where

∂1L
i =

∂L

∂
(

y
ρ

i (x)
) , ∂2L

i =
∂L

∂
(

∇h
qyi(x)

) , ∂3L
i =

∂L

∂
(

y
ρ

i

(

ρα0(x)
)) , ∂4L

i =
∂L

∂
(

∇h
qyi

(

ρα0(x)
)) .

(3.18)

4. The Optimal-Control Problem

Our aim in this section is to find the optimal control variable u(x) defined on the H-time
scale, which minimizes the performance index

J
(

y, u
)

=
∫b

a

L
(

x, yρ(x), uρ(x), yρ(ρα0(x)
)

,∇h
qy

(

ρα0(x)
))∇h

qx (4.1)

subject to the constraint

∇h
qy(x) = G

(

x, yρ(x), uρ(x)
)

(4.2)

such that

y(b) = c, y(x) = φ(x)
(

x ∈ [

ρα0(a), a
])

,

a, b ∈ T
h
q , a < ρα0(b) < b,

L : [a, b] × (Rn)4 −→ R, yρ(x) = y
(

ρ(x)
)

,

(4.3)

where c is a constant and L and G are functions with continuous first and second partial
derivatives with respect to all of their arguments. To find the optimal control, we define a
modified performance index as

I
(

y, u
)

=
∫b

a

[

L
(

x, yρ(x), uρ(x), yρ(ρα0(x)
)

,∇h
qy

(

ρα0(x)
))

+λρ(x)
(

∇h
qy(x) −G

(

x, yρ(x), uρ(x)
))]∇h

qx,

(4.4)

where λ is a Lagrange multiplier or an adjoint variable.
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Using (3.11) and (3.12) of Theorem 3.2 with m = 3 (y1 = y, y2 = u, y3 = λ), the
necessary conditions for our optimal control are (we remark that as there is no any time-scale
derivative of u(x), no boundary constraints for it are needed)

∇h
qλ

ρ(x) + q−α0∇h
q

∂L

∂∇h
q

(

y
(

ρα0(x)
))

((

ρα0
)−1(x)

)

+ λρ(x)
∂G

∂yρ(x)
− ∂L

∂yρ(x)

−q−α0
∂L

∂
(

yρ
(

ρα0(x)
))

((

ρα0
)−1(x)

)

= 0
(

x ∈ [

a, ρα0(b)
]

κ

)

,

∇h
qλ

ρ(x) + λρ(x)
∂G

∂yρ(x)
− ∂L

∂yρ(x)
= 0

(

x ∈ [

ρα0(b), b
]

κ

)

,

λρ(x)
∂G

∂uρ(x)
− ∂L

∂uρ(x)
= 0 (x ∈ [a, b]),

(4.5)

∂L

∂∇h
q

(

y
(

ρα0(x)
))

(

ρα0
)−1(x)η(x)

∣
∣
∣
∣
∣

ρα0 (b)

a

= 0 (4.6)

and also

∇h
qy(x) = G

(

x, yρ(x), uρ(x)
)

. (4.7)

Note that condition (4.6) disappears when the Lagrangian L is free of the delayed time
scale derivative of y.

5. The Discrete and Quantum Cases

We recall that the results in the previous sections are valid for time scales whose backward
jump operator ρ has the form ρ(x) = qx − h, in particular for the time scale Th

q .

(i) The Discrete Case

If q = 1 and h > 0 (of special interest the case when h = 1), then our work becomes on the
discrete time scale hZ = {hn : n ∈ Z}. In this case the functional under optimization will have
the form

Jh
(

y
)

= h
b∑

i=a+1

L
(

ih, y((i − 1)h),∇hy(ih), y(ih − (d + 1)h),∇hy(ih − dh)
)

,

a, b ∈ Z, d ∈ N, a < b − d < b,

(5.1)

and that y(bh) = c, y(ih) = ϕ(ih) for a − d ≤ i ≤ a where

∇hy(x) = y(x) − y(x − h), x ∈ hZ. (5.2)
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The necessary condition for Jh(y) to possess an extremum for a given function y : {ih :
i = a−d, a−d+1, . . . , a, a+1, . . . , b} → R

n is that y(x) satisfies the following h-Euler-Lagrange
equations:

∇h∂2L(ih) +∇h∂4L((i + d)h) = ∂1L(ih) + ∂3L((i + d)h) (i = a + 1, a + 2, . . . , b − d),

∇h∂2L(ih) = ∂1L(ih) (i = b − d + 1, b − d + 2, . . . , b).
(5.3)

Furthermore, the equation

∂4L(bh)η((b − d)h) − ∂4L((a + d)h)η(ah) = 0 (5.4)

holds along y(x) for all admissible variations η(x) satisfying η(ih) = 0, i ∈ {a − d, a − d +
1, . . . , a} ∪ {b}.

In this case the h-optimal-control problem would read as follows.
Find the optimal control variable u(x) defined on the time scale hZ, which minimizes

the h-performance index

Jh
(

y, u
)

= h
b∑

i=a+1

L
(

ih, y((i − 1)h), u((i − 1)h), y(ih − (d + 1)h),∇hy(ih − dh)
)

,

a, b ∈ Z, d ∈ N, a < b − d < b,

(5.5)

subject to the constraint

∇hy(ih) = G
(

ih, y((i − 1)h), u((i − 1)h)
)

, i = a + 1, a + 2, . . . , b, (5.6)

such that

y(bh) = c, y(ih) = φ(ih) (i = a − d, a − d + 1, . . . , a),

a, b ∈ N, a < b − d < b.
(5.7)
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The necessary conditions for this h-optimal control are

∇hλ((i − 1)h) +∇h ∂L

∂∇hy((i − d − 1)h)
((i + d)h) + λ((i − 1)h)

∂G

∂y((i − 1)h)

− ∂L

∂y((i − 1)h)
− ∂L

∂y((i − d − 1)h)
((i + d)h) = 0 (i = a + 1, a + 2, . . . , b − d),

∇h
qλ((i − 1)h) + λ((i − 1)h)

∂G

∂y((i − 1)h)
− ∂L

∂y((i − 1)h)
= 0 (i = b − d + 1, b − d + 2, . . . , b),

λ((i − 1)h)
∂G

∂u((i − 1)h)
− ∂L

∂u((i − 1)h)
= 0 (i = a, a + 1, . . . , b),

(5.8)

∂L

∂∇hy((i + d)h)
(bh)η((b − d)h) − ∂L

∂∇hy((i + d)h)
((a + d)h)η(ah) = 0, (5.9)

and also

∇hy(ih) = G
(

ih, y((i − 1)h), u((i − 1)h)
)

, i = a + 1, a + 2, . . . , b. (5.10)

Note that condition (5.9) disappears when the Lagrangian L is independent of the
delayed ∇h derivative of y.

Example 5.1. In order to illustrate our results we analyze an example of physical interest.
Namely, let us consider the following discrete action:

Jh(t) =
h

2

b∑

i=a+1

[

∇hy(ih)
]2 − V

(

y(ih − (d + 1)h)
)

, a, b ∈ N, a < b − d < b (5.11)

subject to the condition

y(bh) = c, y(ih) = ϕ(ih), for i = a − d, a − d + 1, . . . , a. (5.12)

The corresponding h-Euler-Lagrange equations are as follows:

y(ih) − 2y((i − 1)h) + y((i − 2)h) +
∂V

∂y(ih − (d + 1)h)
((i + d)h) (i = a + 1, . . . , b − d),

y(ih) − 2y((i − 1)h) + y((i − 2)h) = 0 (i = b − d + 1, b − d + 2, . . . , b).

(5.13)

We observe that when the delay is removed, that is, d = 0, the classical discrete Euler-
Lagrange equations are reobtained.
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(ii) The Quantum Case

If 0 < q < 1 and h = 0, then our work becomes on the time scale Tq = {qn : n ∈ Z} ∪ {0}. In
this case the functional under optimization will have the form

Jq
(

y
)

=
∫b

a

L
(

x, y
(

qx
)

,∇qy(x), y
(

xqα0+1
)

,∇qy
(

xqα0
))∇qx, (5.14)

where

a = qα+1, b = qβ, α, β, α0 ∈ Z, α > β, β + α0 < α,

L : [a, b]q × (Rn)4 −→ R, [a, b]q =
{

qi : i = α + 1, α + 2, . . . , β
}

.
(5.15)

Using the ∇-integral theory on time scales, the functional Jq in (5.14) turns to be

Jq
(

y
)

=
(

1 − q
)

β
∑

i=α

qiL
(

qi, y
(

qi+1
)

,∇qy
(

qi
)

, y
(

qα0+i+1
)

,∇qy
(

qα0+i
))

. (5.16)

The necessary condition for Jq(y) to possess an extremum for a given function y :
{qi : i = α + 1 − α0, α + 2 − α0 . . . , α, α + 1, . . . , β} → R

n is that y(x) satisfies the following
q-Euler-Lagrange equations:

∇q
∂L

∂
(∇qy(x)

) (x) + q−α0∇q
∂L

∂
(∇qy

(

qα0x
))

(

q−α0x
)

=
∂L

∂y
(

qx
)(x) + q−α0

∂L

∂y
(

qα0+1x
)

(

q−α0x
) (

x ∈ [

a, qα0b
]

κ

)

,

∇q
∂L

∂
(∇qy(x)

)(x) =
∂L

∂
(

y
(

qx
)) (x)

(

x ∈ [

qα0b, b
]

κ

)

.

(5.17)

Furthermore, the equation

q−α0
∂L

∂
(∇qy

(

ρα0(x)
))

(

q−α0x
)

η(x)

∣
∣
∣
∣
∣

qα0b

a

= 0 (5.18)

holds along y(x) for all admissible variations η(x) satisfying η(x) = 0, x ∈ [qα0a, a]q ∪ {b}.
In this case the q-optimal-control problem would read as follows.
Find the optimal control variable u(x) defined on the Tq-time scale, which minimizes

the performance index

Jq
(

y, u
)

=
∫b

a

L
(

x, y
(

qx
)

, u
(

qx
)

, y
(

qα0+1x
)

,∇qy
(

qα0+1x
))

∇qx (5.19)



Advances in Difference Equations 13

subject to the constraint

∇h
qy(x) = G

(

x, y
(

qx
)

, u
(

qx
))

, (5.20)

such that

y(b) = c, y(x) = φ(x)
(

x ∈ [

qα0a, a
])

,

a = qα+1, b = qβ, α0 + β < α + 1,

L : [a, b]q × (Rn)4 −→ R,

(5.21)

where c is a constant and L and G are functions with continuous first and second partial
derivatives with respect to all of their arguments.

The necessary conditions for this q-optimal control are

∇qλ
(

qx
)

+ q−α0∇q
∂L

∂∇qy
(

qα0+1x
)

(

q−α0x
)

+ λ
(

qx
) ∂G

∂y
(

qx
) − ∂L

∂y
(

qx
)

−q−α0
∂L

∂y
(

qα0+1x
)

(

q−α0x
)

= 0
(

x ∈ [

a, qα0b
]

κ

)

,

(5.22)

∇qλ
(

qx
)

+ λ
(

qx
) ∂G

∂y
(

qx
) − ∂L

∂yρ(x)
= 0

(

x ∈ [

qα0b, b
]

κ

)

, (5.23)

λ
(

qx
) ∂G

∂u
(

qx
) − ∂L

∂u
(

qx
) = 0

(

x ∈ [a, b]q
)

, (5.24)

∂L

∂∇qy
(

qα0x
)

(

q−α0x
)

η(x)

∣
∣
∣
∣
∣

qα0b

a

= 0, (5.25)

and also

∇h
qy(x) = G

(

x, y
(

qx
)

, u
(

qx
))

. (5.26)

Note that condition (5.25) disappears when the Lagrangian L is independent of the
delayed ∇q derivative of y.

Example 5.2. Suppose that the problem is that of finding a control function u(x) defined on
the time scale Tq such that the corresponding solution of the controlled system

∇qy(x) = −ry(qx) + u
(

qx
)

, r > 0, (5.27)

satisfying the conditions

y(b) = c, y(x) = ϕ(x), for x ∈ [

qα0a, a
]

q, a = qα+1, b = qβ, α0 + β < α + 1 (5.28)
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is an extremum for the q-integral functional (q-quadratic delay cost functional):

Jq
(

y(x), u(x)
)

=
1
2
(

1 − q
)

β
∑

i=α

qi
[

y2
(

qi+α0+1
)

+ u2
(

qi+1
)]

. (5.29)

According to (5.24) and (5.25), the solution of the problem satisfies

∇qλ
(

qx
)

= rλ
(

qx
)

+ q−α0y
(

qx
) (

x ∈ [

a, qα0b
]

κ

)

,

∇qλ
(

qx
)

= rλ
(

qx
) (

x ∈ [

qα0b, b
]

κ

)

,

λ
(

qx
)

= u
(

qx
) (

x ∈ [a, b]q
)

,

(5.30)

and of course

∇qy(x) = −ry(qx) + u
(

qx
)

. (5.31)

When the delay is absent (i.e., α0 = 0), it can be shown that the above system is reduced
to a second-order q-difference equation. Namely, reduced to

∇2
qy(x) + rq

(∇qy
)(

qx
)

= q
(

r2 + 1
)

y
(

qx
)

+ qr∇qy(x). (5.32)

If we solve recursively for this equation in terms of an integer power series by using the
initial data, then the resulting solution will tend to the solutions of the second order linear
differential equation:

y′′ −
(

r2 + 1
)

y = 0. (5.33)

Clearly the solutions for this equation are exp(
√
r2 + 1x) and exp(−

√
r2 + 1x). For details see

[16].

6. Conclusion

In this paper we have developed an optimal variational problem in the presence of delay on
time scales whose backward jumping operators are of the form ρ(t) = qt−h, q > 0, h ≥ 0, called
H-time scales. Such kinds of time scales unify the discrete, the quantum, and the continuous
cases, and hence the obtained results generalized many previously obtained results either
in the presence of delay or without. To formulate the necessary conditions for this optimal
control problem, we first obtained the Euler-Lagrange equations for one unknown function
then generalized to the n-dimensional case. The state variables of the Lagrangian in this case
are defined on the H-time scale and contain some delays. When q = 1 and h = 0 with the
existence of delay some of the results in [14] are recovered. When 0 < q < 1 and h = 0 and
the delay is absent most of the results in [16] can be reobtained. When q = 1 and the delay is
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absent some of the results in [15] are reobtained. When the delay is absent and the time scale
is free somehow, some of the results in [17] can be recovered as well.

Finally, we would like to mention that we followed the line of nabla time-scale
derivatives in this paper, analogous results can be originated if the delta time-scale derivative
approach is followed.
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Birkhäuser, Boston, Mass, USA, 2001.

[5] F. M. Atici, D. C. Biles, and A. Lebedinsky, “An application of time scales to economics,”Mathematical
and Computer Modelling, vol. 43, no. 7-8, pp. 718–726, 2006.

[6] G. Sh. Guseinov, “Integration on time scales,” Journal of Mathematical Analysis and Applications, vol.
285, no. 1, pp. 107–127, 2003.

[7] R. A. C. Ferreira and D. F. M. Torres, “Higher-order calculus of variations on time scales,” in
Mathematical Control Theory and Finance, pp. 149–159, Springer, Berlin, Germany, 2008.

[8] R. Almeida and D. F. M. Torres, “Isoperimetric problems on time scales with nabla derivatives,”
Journal of Vibration and Control, vol. 15, no. 6, pp. 951–958, 2009.

[9] M. Bohner, “Calculus of variations on time scales,” Dynamic Systems and Applications, vol. 13, no. 3-4,
pp. 339–349, 2004.

[10] R. A. C. Ferreira and D. F. M. Torres, “Remarks on the calculus of variations on time scales,”
International Journal of Ecological Economics & Statistics, vol. 9, no. F07, pp. 65–73, 2007.

[11] A. B. Malinowska and D. F. M. Torres, “Strong minimizers of the calculus of variations on time scales
and the Weierstrass condition,” to appear in Proceedings of the Estonian Academy of Sciences.

[12] Z. Bartosiewicz and D. F. M. Torres, “Noether’s theorem on time scales,” Journal of Mathematical
Analysis and Applications, vol. 342, no. 2, pp. 1220–1226, 2008.

[13] D. Baleanu, T. Maaraba, and F. Jarad, “Fractional variational principles with delay,” Journal of Physics
A, vol. 41, no. 31, Article ID 315403, p. 8, 2008.

[14] O. P. Agrawal, J. Gregory, and P. Spector, “A Bliss-type multiplier rule for constrained variational
problems with time delay,” Journal of Mathematical Analysis and Applications, vol. 210, no. 2, pp. 702–
711, 1997.

[15] J. A. Cadzow, “Discrete calculus of variations,” International Journal of Control, vol. 11, no. 3, pp. 393–
407, 1970.

[16] G. Bangerezako, “Variational q-calculus,” Journal of Mathematical Analysis and Applications, vol. 289,
no. 2, pp. 650–665, 2004.

[17] N. Martins and D. F. M. Torres, “Calculus of variations on time scales with nabla derivatives,”
Nonlinear Analysis: Theory, Method & Applications, vol. 71, no. 12, pp. 763–773, 2008.

[18] F. M. Atici and G. Sh. Guseinov, “On Green’s functions and positive solutions for boundary value
problems on time scales,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 75–99,
2002.

[19] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass,
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