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1. Introduction

Let Ω ⊂ RN(N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω = Γ. T is a fixed
positive constant, Q = Ω × (0, T). We consider the following nonlinear parabolic boundary
value problems with equivalued surface:

∂u

∂t
−

N∑

i,j=1

∂

∂xi

(
aij(x, u)

∂u

∂xj

)
= f(x, t) in Q,

u = C(t)(a function of t to be determined) on Γ × (0, T),
∫

Γ

∂u

∂nL
ds = A(t) ∀ a.e. t ∈ (0, T),

u(x, 0) = 0 in Ω,

(P)

where f ∈ L2(Q) and A ∈ L2(0, T), n = (n1, . . . , nN) denotes the unit outward normal vector
on Γ and

∂u

∂nL
=

N∑

i,j=1

aij(x, u)
∂u

∂xj
ni. (1.1)
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There are many concrete physical sources for problem (P), for example, in the
petroleum exploitation, u denotes the oil pressure, and A(t) is the rate of total oil flux per
unit length of the well at the time t; in the combustion theory, u denotes the temperature, for
any fixed time t, the temperature distribution on the boundary is a constant to be determined,
while, the total heat A(t) through the boundary is given (cf. [1–7]). For linear equations, the
existence, uniqueness of solution to the corresponding problem are well understood (cf. [1–
3]), for the purpose, the Galerkin method was used. For semilinear equations, the existence of
global smooth solution was obtained in [7] in which a comparison principle was established.
If aij(x, u) is locally Lipschitz continuous with respect to the second variable, the existence
and uniqueness of bounded weak solution to problem (P) have been discussed in [8] under
the hypotheses of f ∈ Lq(Q) and A ∈ Lr(0, T) with q > N/2 + 1, r > N + 2. However, if
f ∈ L2(Q) and A ∈ L2(0, T), we cannot get a bounded weak solution. In order to deal with
this situation, we will introduce the concept of renormalized solution to problem (P) and
discuss the existence and uniqueness of renormalized solution.

The paper is organized as follows. In Section 2, we introduce the concept of
renormalized solution and prove the existence of renormalized solution to problem (P). In
Section 3, uniqueness and a comparison principle of renormalized solution to problem (P) are
established. In Section 4, we discuss the relation between renormalized solutions and weak
solutions for problem (P).

2. Existence of Renormalized Solution to Problem (P)

In order to prove the existence of renormalized solution to problem (P), we make the
following assumptions.

Let aij : Ω × R → R be Carathéodory functions with 1 ≤ i, j ≤ N. We assume that
aij(·, 0) ∈ L∞(Ω) and for any given M > 0 there exist dM ∈ L∞(Ω) and a positive constant λ0
such that for every s, s1, s2 ∈ R, ξ = (ξ1, . . . , ξN) ∈ RN , and a.e. x ∈ Ω,

∣∣aij(x, s1) − aij(x, s2)
∣∣ ≤ dM(x)|s1 − s2|, |sk| ≤ M,k = 1, 2, (2.1)

N∑

i,j=1

aij(x, s)ξiξj ≥ λ0|ξ|2. (2.2)

Set

V =
{
v ∈ H1 (Ω)|v|Γ = constant

}
. (2.3)

Under hypotheses (2.1)-(2.2) and f ∈ L2(Q), A ∈ L2(0, T), we cannot obtain an L∞

estimate on the determined function C(t); thus, we cannot prove the existence of bounded
weak solutions to problem (P), hence aij(·, u)Dju may not belong to L2(Q). In order to
overcome this difficulty, we will use the concept of renormalized solution introduced by
DiPerna and Lions in [9] for Boltzmann equations (see also [10–12]).
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As usual, for k > 0, Tk denotes the truncation function defined by

Tk(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k, if v > k,

v, if |v| ≤ k,

−k, if v < −k.
(2.4)

Set

W =
{
ξ ∈ C∞

(
Q
)
|ξ(T) = 0, ξ(t)|Γ = C(t)

(
an arbitrary function of t

)}
. (2.5)

Definition 2.1. A renormalized solution to problem (P) is a measurable function u : Q → R,
satisfying u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) and for all h ∈ C1

c(R), ξ ∈ W ,

−
∫

Q

ξt

∫u

0
h(r)drdxdt +

∫

Q

N∑

i,j=1

aij(x, u)DjuDi(h(u)ξ)dxdt

=
∫

Q

fh(u)ξdxdt +
∫T

0
A(t)h(u(t)|Γ)ξ(t)|Γdt,

(2.6)

lim
m→+∞

∫

{(x,t)∈Q:m≤|u(x,t)|≤m+1}

N∑

i,j=1

aij(x, u)DjuDiudxdt = 0. (2.7)

Remark 2.2. Each term in (2.6) and (2.7) is well defined. Indeed, the first term on the left side
of (2.6) is welldefined as |∫u0h(r)dr| ≤ ‖h‖L∞|u| and u ∈ L2(Q). The second term on the left
side of (2.6) should be understood as

∫

{(x,t)∈Q:|u|<k}

N∑

i,j=1

aij(x, Tk(u))DjTk(u)Di[h(Tk(u))ξ]dxdt, (2.8)

for k > 0 such that supph ⊂ [−k, k]. Since u ∈ L2(0, T ;V ), it is the same for h(u)ξ and
h(u(t)|Γ)ξ(t)|Γ. The integral in (2.7) should be understood as

∫

{(x,t)∈Q:m≤|u(x,t)|≤m+1}

N∑

i,j=1

aij(x, Tm+1(u))DjTm+1(u)DiTm+1(u)dxdt. (2.9)

Remark 2.3. Note that if u is a renormalized solution of problem (P), we get Bh(u) =∫u
0h(r)dr ∈ L2(0, T ;V ), Bh(u)t ∈ L2(0, T ;V ′) + L1(Q); thus, Bh(u) ∈ C([0, T];L1(Ω)), hence
Bh(u)(·, 0) = 0 makes sense.

Remark 2.4. By approximation, (2.6) holds for any h ∈ W1,∞(R)with compact support and all
ξ ∈ {ξ ∈ L2(0, T ;V ) | ξt ∈ L2(Q), ξ(·, T) = 0}.
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Now we can state the existence result for prolem (P) as follows.

Theorem 2.5. Under hypotheses (2.1)-(2.2) and f ∈ L2(Q), A ∈ L2(0, T), problem (P) admits a
renormalized solution u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) in the sense of Definition 2.1.

In order to prove Theorem 2.5, we will consider the following problem:

∂un

∂t
−

N∑

i,j=1

∂

∂xi

(
a
(n)
ij (x, un)

∂un

∂xj

)
= f in Q,

un|Γ×(0,T) = Cn(t) (a function of t to be determined) on Γ × (0, T),
∫

Γ

∂un

∂nL
ds = A(t) ∀ a.e. t ∈ (0, T),

un(x, 0) = 0 in Ω,

(Pn)

where a(n)
ij (x, u) = aij(x, Tn(u)), i, j = 1, 2, . . . ,N.

Then problem (Pn) admits a unique weak solution un ∈ L2(0, T ;V ) ∩ C([0, T];L2(Ω))
such that u′

n ∈ L2(0, T ;V ′) and satisfies

〈
u′
n(t), v

〉
V ′,V +

∫

Ω

N∑

i,j=1

a
(n)
ij (x, un)DjunDivdx

=
∫

Ω
f(x, t)v(x)dx +A(t)v|Γ, a.e. t ∈ (0, T), ∀v ∈ V,

(2.10)

un(x, 0) = 0 a.e. x ∈ Ω. (2.11)

In fact, here we can prove the existence of weak solution for problem (Pn) via Galerkin
method. Let us consider the operator

B : L2(Ω) −→ V,

F �−→ v,
(2.12)

where v is the weak solution of the following problem:

−Δv + v = F in Ω,

v = C (a constant to be determined) on Γ,
∫

Γ

∂v

∂nL
ds = 0.

(E)

By Lax-Milgram Theorem, the above problem exists a unique weak solution v which
continuously depending on F. Hence B is a compact self-adjoint operator from L2(Ω) to
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L2(Ω). By Riesz-Schauder’s theory, there is a completed orthogonal eigenvalues sequence
{wk} of the operator B. Here we may take the special orthogonal system {wk}.

Define A : V → V ′,

(Aw,v)V ′,V =
∫

Ω

N∑

i,j=1

an
ij(x,w)DjwDivdx,

(F(t), v)V ′,V =
∫

Ω
f(x, t)v(x)dx +A(t)v|Γ, a.e. t ∈ (0, T), ∀w,v ∈ V.

(2.13)

Let um
n (x, t) =

∑m
k=1 Φ

km
n wk, then Galerkin equations can be written as

(
(um

n )
′(t), wk

)
+
(
Aum

n (t), w
k
)
=
(
F(t), wk

)
, a.e. t ∈ (0, T),

um
n (x, 0) = 0 a.e. x ∈ Ω.

(2.14)

By using the same arguments as [13, Lemma 30.4], we get a solution um
n ∈ L2(0, T ;V ) to the

above Galerkin equations such that (um
n )

′ ∈ L2(0, T ;V ). Moreover, we can easily prove the
following estimates:

‖um
n ‖L∞(0,T ;L2(Ω)) ≤ C0,

‖um
n ‖L2(0,T ;V ) ≤ C0,

‖Aum
n ‖L2(0,T ;V ′) ≤ C0,

∥∥(um
n )

′∥∥
L2(0,T ;V ′) ≤ C0,

(2.15)

where C0 is a positive constant independent ofm.
The above estimates imply that there exists a subsequence of {um

n } (still be denoted by
{um

n }) such that

um
n ⇀ un weak ∗ in L∞

(
0, T ;L2(Ω)

)
,

um
n ⇀ un weakly in L2(0, T ;V ),

(um
n )

′ ⇀ u′
n weakly in L2(0, T ;V ′),

Aum
n ⇀ Aun weakly in L2(0, T ;V ′).

(2.16)

Thus we can pass to the limit in the above Galerkin equations and obtain the existence of
weak solution for problem (Pn). Since it is easy to prove the uniqueness of weak solution for
problem (Pn), we omit the details.
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To deal with the time derivative of truncation function, we introduce a time
regularization of a function u ∈ L2(0, T ;V ). Let

uν(x, t) =
∫ t

−∞
νũ(x, s)eν(s−t)ds, ũ(x, s) = u(x, s)χ(0,T)(s), (2.17)

where χ(0,T) denotes the characteristic function of a set (0, T) and ν > 0. This convolution
function has been first used in [14] (see also [10]), and it enjoys the following properties: uν

belongs to C([0, T];V ), uν(x, 0) = 0, and uv converges strongly to u in L2(0, T ;V ) as ν tends
to the infinity. Moreover, we have

(uν)t = ν(u − uν), (2.18)

and finally if u ∈ L∞(Q), then uν ∈ L∞(Q) and

‖uν‖L∞(Q) ≤ ‖u‖L∞(Q), ∀ν > 0. (2.19)

Taking v = un(t) in (2.10), then integrating over (0, τ) with τ ∈ (0, T), we have

∫ τ

0

∫

Ω

d

dt
|un(x, t)|2dxdt +

∫ τ

0

∫

Ω

N∑

i,j=1

a
(n)
ij (x, un)DjunDiundxdt

=
∫ τ

0

∫

Ω
fundxdt +

∫ τ

0
A(t)un(t)|Γdt.

(2.20)

By (2.2), trace theorem, Hölder’s inequality, Young’s inequality and Gronwall’s inequality,
we get

‖un‖L∞(0,T ;L2(Ω)) ≤ C1, (2.21)

‖un‖L2(0,T ;V ) ≤ C1, (2.22)

where C1 is a positive constant depending only on ‖f‖L2(Q), ‖A‖L2(0,T), λ0, but independent of
n and un.

By (2.21) and (2.22), there is a subsequence of {un} (still denoted by {un}) such that

un ⇀ u weak ∗ in L∞
(
0, T ;L2(Ω)

)
,

un ⇀ u weakly in L2(0, T ;V )

un|Γ ⇀ u|Γ weakly in L2(0, T).

(2.23)

Using the same method as [10], we can obtain

un −→ u a.e. in Q
(
up to some subsequence

)
. (2.24)
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Thus for any given k > 0,

Tk(un) ⇀ Tk(u) weakly in L2(0, T ;V ), strongly in L2(Q), a.e. in Q. (2.25)

By [15, Lemma 2 and Lemma 3], we have

un −→ u strongly in Lq(Q), ∀1 ≤ q < 2 +
4
N

, (2.26)

un −→ u strongly in Lr(Γ × (0, T)), ∀2 ≤ r < 2 +
2
N

. (2.27)

impling that

un|Γ −→ u|Γ, a.e. in (0, T). (2.28)

For any given k > 0, it follows from (2.27)-(2.28) and Vitali’s theorem that

Tk(un|Γ) −→ Tk(u|Γ) strongly in L2(0, T). (2.29)

Set

ην(u) = (Tk(u))ν. (2.30)

Similar to [10], this function has the following properties: (ην(u))t = ν(Tk(u) −
ην(u)), ην(u)(0) = 0, |ην(u)| ≤ k,

ην(u) −→ Tk(u) strongly in L2(0, T ;V ), as ν tends to the infinity. (2.31)

For any fixed h and k with h > k > 0, let

wn = T2k
(
un − Th(un) + Tk(un) − ην(u)

)
. (2.32)

Then we have the following lemma.

Lemma 2.6. Under the previous assumptions, we have

∫T

0
< (un)t, wn > dt ≥ ω(n, ν, h), (2.33)

where limh→+∞limν→+∞limn→+∞ω(n, ν, h) = 0.

Proof. The proof of Lemma 2.6 is the same as [10, Lemma 2.1], and we omit the details.
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Lemma 2.7. Under the previous assumptions, for any given k > 0, we have

Tk(un) −→ Tk(u) strongly in L2(0, T ;V ). (2.34)

Proof. Taking v = wn(t) in (2.10), then integrating over (0, T), by Lemma 2.6, we have

∫

Q

N∑

i,j=1

a
(n)
ij (x, un)DjunDiwndxdt ≤

∫

Q

fwndxdt +
∫T

0
A(t)wn(t)|Γdt +ω(n, ν, h). (2.35)

Now note thatDwn = 0 if |un| > h+ 4k; then if we setM = h+ 4k, splitting the integral
on the left side of (2.35) on the sets {(x, t) ∈ Q : |un(x, t)| > k} and {(x, t) ∈ Q : |un(x, t)| ≤ k},
∀n > M, we get

∫

Q

N∑

i,j=1

a
(n)
ij (x, un)DjunDiwndxdt

=
∫

Q

N∑

i,j=1

aij(x, TM(un))DjTM(un)Diwndxdt

≥
∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)Di

(
Tk(un) − ην(u)

)
dxdt

−
∫

{|un|>k}

N∑

i,j=1

∣∣aij(x, TM(un))DjTM(un)
∣∣∣∣Diην(u)

∣∣dxdt.

(2.36)

While,

∫

{|un|>k}

N∑

i,j=1

∣∣aij(x, TM(un))DjTM(un)
∣∣∣∣Diην(u)

∣∣dxdt

≤
∫

{|un|>k}

N∑

i,j=1

∣∣aij(x, TM(un))DjTM(un)
∣∣|DiTk(u)|dxdt

+
∫

Q

N∑

i,j=1

∣∣aij(x, TM(un))DjTM(un)
∣∣∣∣Diην(u) −DiTk(u)

∣∣dxdt.

(2.37)

For any fixed h > 0, (2.1) and (2.22) imply that aij(x, TM(un))DjTM(un) is bounded in L2(Q)
with respect to n, while |DiTk(u)|χ{|un|>k} strongly converges to zero in L2(Q). Moreover it
follows from (2.31) that

∫

{|un|>k}

N∑

i,j=1

∣∣aij(x, TM(un))DjTM(un)
∣∣∣∣Diην(u)

∣∣dxdt ≤ ω(n, ν), (2.38)
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where limν→+∞limn→+∞ω(n, ν) = 0. Equations (2.38), (2.36), and (2.35) imply that

∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)Di

(
Tk(un) − ην(u)

)
dxdt

≤
∫

Q

fwndxdt +
∫T

0
A(t)wn(t)|Γdt +ω(n, ν) +ω(n, ν, h).

(2.39)

By (2.25), (2.31), and (2.39), we get

∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)Di(Tk(un) − Tk(u))dxdt

≤
∫

Q

fwndxdt +
∫T

0
A(t)wn(t)|Γdt +ω(n, ν) +ω(n, ν, h).

(2.40)

By (2.24)-(2.25) and the Lebesgue dominated convergence theorem, we have

∫

Q

fwndxdt =
∫

Q

fT2k
(
u − Th(u) + Tk(u) − ην(u)

)
dxdt +ω(n), (2.41)

where limn→+∞ω(n) = 0. (2.31) and (2.41) imply that

∫

Q

fwndxdt =
∫

Q

fT2k(u − Th(u))dxdt +ω(n, ν); (2.42)

thus, we get

∫

Q

fwndxdt = ω(n, ν, h). (2.43)

Similarly to the proof of (2.43), we also have

∫T

0
A(t)wn(t)|Γdt = ω(n, ν, h). (2.44)

Therefore we get

∫

Q

N∑

i,j=1

aij(x, Tk(un))
(
DjTk(un) −DjTk(u)

)
Di(Tk(un) − Tk(u))dxdt

≤ ω(n, ν, h) −
∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(u)Di(Tk(un) − Tk(u))dxdt.

(2.45)
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Let n, ν, then and h tend to the infinity, respectively, we get

lim
n→+∞

∫

Q

N∑

i,j=1

aij(x, Tk(un))Dj(Tk(un) − Tk(u))Di(Tk(un) − Tk(u))dxdt = 0. (2.46)

Using (2.2), (2.25), and (2.46), we obtain (2.34).

Proof of Theorem 2.5. For any given ξ ∈ W , h ∈ C1
c(R), suppose that supph ⊂ [−k, k], taking

v = h(un(t))ξ(t) in (2.10) and integrating over (0, T), we have

∫T

0
〈(un)t, h(un)ξ〉dt +

∫

Q

N∑

i,j=1

a
(n)
ij (x, un)DjunDi(h(un)ξ)dxdt

=
∫T

0
A(t)h(un(t)|Γ)ξ(t)|Γdt +

∫

Q

fh(un)ξdxdt.

(2.47)

By [12, Lemma 1.4], we have

∫T

0
〈(un)t, h(un)ξ〉dt = −

∫

Q

ξt

∫un

0
h(r)drdxdt. (2.48)

However

−
∫

Q

ξt

∫un

0
h(r)drdxdt −→ −

∫

Q

ξt

∫u

0
h(r)drdxdt. (2.49)

In fact, Noting (2.26) we get

∣∣∣∣∣−
∫

Q

ξt

∫un

0
h(r)drdxdt +

∫

Q

ξt

∫u

0
h(r)drdxdt

∣∣∣∣∣

=

∣∣∣∣∣

∫

Q

ξt

∫un

u

h(r)drdxdt

∣∣∣∣∣

≤ ‖ξt‖L2(Q)‖h‖L∞(R)‖un − u‖L2(Q) −→ 0, as n −→ +∞.

(2.50)
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As n > k, we have

∫

Q

N∑

i,j=1

a
(n)
ij (x, un)DjunDi(h(un)ξ)dxdt

=
∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)DiTk(un)h′(un)ξdxdt

+
∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)h(un)Diξdxdt.

(2.51)

Equations (2.47)(2.25) and (2.34) imply that

∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)DiTk(un)h′(un)ξdxdt

−→
∫

Q

N∑

i,j=1

aij(x, Tk(u))DjTk(u)DiTk(u)h′(u)ξdxdt,

∫

Q

N∑

i,j=1

aij(x, Tk(un))DjTk(un)Diξh(un)dxdt

−→
∫

Q

N∑

i,j=1

aij(x, Tk(u))DjTk(u)Diξh(u)dxdt.

(2.52)

Thus we get

∫

Q

N∑

i,j=1

a
(n)
ij (x, un)DjunDi(h(un)ξ)dxdt

−→
∫

Q

N∑

i,j=1

aij(x, Tk(u))DjTk(u)Di(h(u)ξ)dxdt

=
∫

Q

N∑

i,j=1

aij(x, u)DjuDi(h(u)ξ)dxdt.

(2.53)

It follows from (2.28) that

∫T

0
A(t)h(un(t)|Γ)ξ(t)|Γdt −→

∫T

0
A(t)h(u(t)|Γ)ξ(t)|Γdt. (2.54)
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Equation (2.24) yields

∫

Q

fh(un)ξdxdt −→
∫

Q

fh(u)ξdxdt. (2.55)

Taking n → +∞ in (2.47), by (2.48), (2.49), and (2.53)–(2.55), we obtain

−
∫

Q

ξt

∫u

0
h(r)drdxdt +

∫

Q

N∑

i,j=1

aij(x, u)DjuDi(h(u)ξ)dxdt

=
∫T

0
A(t)h(u(t)|Γ)ξ(t)|Γdt +

∫

Q

fh(u)ξdxdt.

(2.56)

For any given m > 0, taking v = T1(un(t) − Tm(un(t))) in (2.10), then integrating over (0, T),
we get

∫T

0
< (un)t, T1(un − Tm(un)) > dt +

∫

Q

N∑

i,j=1

a
(n)
ij (x, un)DjunDiT1(un − Tm(un))dxdt

=
∫T

0
A(t)T1(un(t)|Γ − Tm(un(t)|Γ))dt +

∫

Q

fT1(un − Tm(un))dxdt.

(2.57)

Setting S1(s) =
∫s
0T1(t − Tm(t))dt, then 0 ≤ S1(s) ≤ |s|sign+

0 (|s| − m), for all s ∈ R, where
sign+

0 (s) = 1 if s > 0, sign+
0 (s) = 0 if s ≤ 0. Thus we get

∫

{m≤|un|≤m+1}

N∑

i,j=1

aij(x, un)DjunDiundxdt ≤
∫

{t∈(0,T):|un(t)|Γ|≥m}
|A(t)|dt +

∫

{|un|≥m}

∣∣f
∣∣dxdt.

(2.58)

Let n,m tend to the infinity in (2.58), respectively, then one can deduce that u satisfies (2.7).
Thus u is a renormalized solution to problem (P) in the sense of Definition 2.1. This finishes
the proof of Theorem 2.5.

Remark 2.8. Using the same approach as before, we can deal with the nonzero initial value
u0 /= 0. In fact, we only replace ην(u) = (Tk(u))ν by ην(u) = Tk(u)ν + e−νtTk(u0) in (2.30).

3. Uniqueness of Renormalized Solution to Problem (P)

In this section, we will present the uniqueness of renormalized solution to problem (P). Here
we will modify a method based on Kruzhkov’s technique of doubling variables in [12] and
prove uniqueness and a comparison principle of renormalized solution for problem (P).
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Only simply modifying [12, Lemma 3.1], we can obtain the following result.

Lemma 3.1. Let u be a renormalized solution to problem (P) for the data (f,A). Then

∫

Q

ξtsign+
0 (u)

∫u

0
h(r)drdxdt +

∫T

0
sign+

0 (u(t)|Γ)A(t)ξ(t)|Γh(u(t)|Γ)dt +
∫

Q

sign+
0 (u)fh(u)ξdxdt

≥
∫

Q

sign+
0 (u)

N∑

i,j=1

aij(x, u)DjuDi(h(u)ξ)dxdt,

(3.1)
∫

Q

ξtsign+
0 (−u)

∫u

0
h(r)drdxdt +

∫T

0
sign+

0 (−u(t)|Γ)A(t)ξ(t)|Γh(u(t)|Γ)dt+
∫

Q

sign+
0 (−u)fh(u)ξdxdt

≤
∫

Q

sign+
0 (−u)

N∑

i,j=1

aij(x, u)DjuDi(h(u)ξ)dxdt,

(3.2)

for any h ∈ C1
c(R), h ≥ 0, ξ ∈ W, ξ ≥ 0.

Let sign+ denote the multivalued function defined by sign+(r) = 0 if r < 0, and
sign+(0) ⊂ [0, 1], sign+(r) = 1 if r > 0.

Lemma 3.2. For i = 1, 2, let fi ∈ L2(Q),Ai ∈ L2(0, T), ui be a renormalized solution to problem (P)
for the data (fi,Ai). Then there existK1 ∈ sign+(u1 − u2) and K2 ∈ sign+(u1|Γ − u2|Γ) such that

−
∫

Q

ξtsign+
0 (u1 − u2)

∫u1

u2

h(r)drdxdt

+
∫

Q

sign+
0 (u1 − u2)

N∑

i,j=1

[
h(u1)aij(x, u1)Dju1 − h(u2)aij(x, u2)Dju2

]
Diξdxdt

+
∫

Q

N∑

i,j=1

sign+
0 (u1 − u2)

[
h′(u1)aij(x, u1)Dju1Diu1 − h′(u2)aij(x, u2)Dju2Diu2

]
ξdxdt

≤
∫

Q

K1
[
h(u1)f1 − h(u2)f2

]
ξdxdt +

∫T

0
K2[h(u1(t)|Γ)A1(t) − h(u2(t)|Γ)A2(t)]ξ|Γdt,

∀h ∈ C1
c(R), h ≥ 0, ∀ξ ∈ W, ξ ≥ 0.

(3.3)

Proof. Let ξ ∈ W , ξ ≥ 0, ρl be a sequence of mollifiers in R with supp ρl ⊂ (−2/l, 0) and ρl ≥ 0.
Define

ξl(x, t, s) = ξ(x, t)ρl(t − s). (3.4)
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Note that for l sufficiently large,

(x, s) �−→ ξl(x, t, s) ∈ W, ∀t ∈ [0, T],

(x, t) �−→ ξl(x, t, s) ∈ W, ∀s ∈ [0, T].
(3.5)

Let h ∈ C1
c(R), h ≥ 0, Hε ∈ W1,∞(R) be defined by Hε(r) = H(r/ε), where H ∈ W1,∞(R),

H(r) = 0 for r ≤ 0, H(r) = r for 0 < r < 1 and H(r) = 1 if r ≥ 1. As u1, u2 are renormalized
solutions , according to (2.6), for a.e. t ∈ (0, T), we have

∫

Q

(ξl)s

∫u1

0
h(r)Hε(r − u2(t, x))drdxds +

∫

Q

f1h(u1)Hε(u1(s, x) − u2(t, x))ξldxds

+
∫T

0
A1(s)h(u1(s)|Γ)Hε(u1(s)|Γ − u2(t)|Γ)ξl(s)|Γds

=
∫

Q

N∑

i,j=1

aij(x, u1)Dju1Di[h(u1)Hε(u1(s, x) − u2(t, x))ξl]dxds

(3.6)

and for a.e. s ∈ (0, T), we have

∫

Q

(ξl)t

∫u2

0
h(r)Hε(u1(s, x) − r)drdxdt +

∫

Q

f2h(u2)Hε(u1(s, x) − u2(t, x))ξldxdt

+
∫T

0
A2(t)h(u2(t)|Γ)Hε(u1(s)|Γ − u2(t)|Γ)ξl(t)|Γdt

=
∫

Q

N∑

i,j=1

aij(x, u2)Dju2Di[h(u2)Hε(u1(s, x) − u2(t, x))ξl]dxdt.

(3.7)

Integrating the above two equalities in t, respectively, s over (0, T) and taking their difference,
we get

∫T

0

∫

Q

[
(ξl)s

∫u1

0
h(r)Hε(r − u2(t, x))dr − (ξl)t

∫u2

0
h(r)Hε(u1(s, x) − r)dr

]
dxdsdt

+
∫T

0

∫

Q

[
f1h(u1)Hε(u1(s, x) − u2(t, x)) − f2h(u2)Hε(u1(s, x) − u2(t, x))

]
ξldxdsdt

+
∫T

0

∫T

0
[A1(s)h(u1(s)|Γ)Hε(u1(s)|Γ − u2(t)|Γ)ξl(s)|Γ

−A2(t)h(u2(t)|Γ)Hε(u1(s)|Γ − u2(t)|Γ)ξl(t)|Γ]dsdt
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=
∫T

0

∫

Q

N∑

i,j=1

[
aij(x, u1)Dju1h(u1)Di(Hε(u1(s, x) − u2(t, x))ξl)

−aij(x, u2)Dju2h(u2)Di(Hε(u1(s, x) − u2(t, x))ξl)
]
dxdsdt

+
∫T

0

∫

Q

N∑

i,j=1

[
h′(u1)aij(x, u1)Dju1Diu1Hε(u1(s, x) − u2(t, x))

−h′(u2)aij(x, u2)Dju2Diu2Hε(u1(s, x) − u2(t, x))
]
ξldxdsdt.

(3.8)

Denote the three integrals on the left-hand side by I1, I2, I3, the two integrals on the right-
hand side by I4, I5.

It is easy to prove that

lim
l→∞

lim
ε→ 0

I5 =
∫

Q

N∑

i,j=1

sign+
0 (u1 − u2)ξ

[
h′(u1)aij(x, u1)Dju1Diu1 − h′(u2)aij(x, u2)Dju2Diu2

]
dxdt.

(3.9)

Similarly to the estimates for I2 in [12], (c.f. page 102), we can obtain

lim
l→∞

lim
ε→ 0

I2 ≤
∫

Q

K1
[
f1h(u1) − f2h(u2)

]
ξdxdt,

lim
l→∞

lim
ε→ 0

I3 ≤
∫T

0
ξ(t)|ΓK2[h(u1(t)|Γ)A1(t) − h(u2(t)|Γ)A2(t)]dt,

(3.10)

where K1 = χ{u1>u2} + χ{u1=u2}sign
+
0 (f1 − f2), K2 = χ{t∈(0,T):u1(t)|Γ>u2(t)|Γ} + sign+

0 (A1 −
A2)χ{t∈(0,T):u1(t)|Γ=u2(t)|Γ}.

As for I1, recall that supp ρl ⊂ (−2/l, 0), hence

lim
ε→ 0

I1 =
∫T

0

∫

Q

sign+
0 (u1(x, s) − u2(x, t))

[
(ξl)s

∫u1(x,s)

u2(x,t)
h(r)dr + (ξl)t

∫u1(x,s)

u2(x,t)
h(r)dr

]
dxdsdt

+
∫

Q

ξl(x, t, 0)sign+
0 (−u2(x, t))

∫0

u2(x,t)
h(r)drdxdt

+
∫

Q

ξl(x, 0, s)sign+
0 (u1(x, s))

∫u1(x,s)

0
h(r)drdxds

=
∫T

0

∫

Q

sign+
0 (u1(x, s) − u2(x, t))ξt(x, t)ρl(t − s)

∫u1(x,s)

u2(x,t)
h(r)drdsdt

+
∫

Q

ξ(x, 0)ρl(−s)sign+
0 (u1(x, s))

∫u1(x,s)

0
h(r)drdxds = I11 + I12.

(3.11)



16 Boundary Value Problems

We have

lim
l→∞

I11 =
∫

Q

sign+
0 (u1 − u2)ξt

∫u1

u2

h(r)drdxdt. (3.12)

Consider the function

φl(x, s) =
∫T

s

ρl(−r)drξ(x, 0) =
∫2/l

inf{s,2/l}
ρl(−r)drξ(x, 0). (3.13)

Note that ξ ∈ W , thus for l sufficiently large, φl ∈ W . Applying (3.1) with u = u1, ξ = φl,
f = f1, A(t) = A1(s), and t = s, we have

I12 = −
∫

Q

(
φl

)
ssign

+
0 (u1)

∫u1

0
h(r)drdxds

≤
∫T

0
sign+

0 (u1(s)|Γ)A1(s)φl(s)|Γh(u1(s)|Γ)ds

+
∫

Q

sign+
0 (u1)φlfh(u1)dxds −

∫

Q

sign+
0 (u1)

N∑

i,j=1

aij(x, u1)Dju1Di

(
φlh(u1)

)
dxds.

(3.14)

It is easy to prove that the integrals on the right-hand side of (3.14) converge to 0 as l → +∞.
Thus we get

lim
l→∞

I12 ≤ 0. (3.15)

It remains to consider I4. We have

I4 =
∫T

0

∫

Q

N∑

i,j=1

[
h(u1)aij(x, u1)Dju1Hε(u1 − u2(t, ·))

−h(u2)aij(x, u2)Dju2Hε(u1(s, ·) − u2)
]
Diξldxdsdt

+
1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}

N∑

i,j=1

[
h(u1)aij(x, u1)Dju1Di(u1 − u2(t, ·))

−h(u2)aij(x, u2)Dju2Di(u1(s, ·) − u2)
]
ξldxdsdt

= I41 + I42.

(3.16)



Boundary Value Problems 17

It is easy to see that

lim
l→∞

lim
ε→ 0

I41 =
∫

Q

sign+
0 (u1 − u2)

N∑

i,j=1

[
h(u1)aij(x, u1)Dju1 − h(u2)aij(x, u2)Dju2

]
Diξdxdt.

(3.17)

Since

I42 =
1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}
ξl

N∑

i,j=1

(h(u1(x, s)) − h(u2(x, t)))

× aij(x, u1)Dju1Di(u1 − u2(t, ·))dxdsdt

+
1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}
ξl

N∑

i,j=1

h(u2(x, t))

× [
aij(x, u1)Dju1 − aij(x, u2)Dju2

]
Di(u1 − u2)dxdsdt

= I
(1)
42 + I

(2)
42 ,

(3.18)

let k > 0 such that supph ⊂ (−k, k), for ε < 1, we have

∣∣∣I(1)42

∣∣∣ ≤
∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}

N∑

i,j=1

|ξl|
∣∣h′∣∣|dk+1(x)|

∣∣k + 1 + aij(x, 0)
∣∣

×
(
2|DTk+1(u1)|2 + |DTk+1(u2)|2

)
dxdsdt.

(3.19)

Noting that the right side integral of (3.19) belongs to L1((0, T) ×Q), we get

lim
ε→ 0

I
(1)
42 = 0. (3.20)

It follows from (2.1) and (2.2) that

I
(2)
42 =

1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}
ξl

×
N∑

i,j=1

h(u2(x, t))
[
aij(x, u1)Dju1 − aij(x, u1)Dju2

]
Di(u1 − u2)dxdsdt

+
1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}
ξl
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×
N∑

i,j=1

h(u2(x, t))
[
aij(x, u1) − aij(x, u2)

]
Dju2Di(u1 − u2)dxdsdt

≥ −1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}
ξl

×
N∑

i,j=1

h(u2)|dk+1(x)|
(
|DTk+1(u1)|2 + 2|DTk+1(u2)|2

)
|u1 − u2|dxdsdt.

(3.21)

Using the same approach as in (3.20), we get

lim
ε→ 0

1
ε

∫

(0,T)×Q∩{0<|u1(x,s)−u2(x,t)|<ε}
ξl

×
N∑

i,j=1

h(u2)|dk+1(x)|
(
|DTk+1(u1)|2 + 2|DTk+1(u2)|2

)
|u1 − u2|dxdsdt = 0.

(3.22)

By (3.20)–(3.22) and (3.18)we have

lim
ε→ 0

I42 ≥ 0. (3.23)

Equations (3.8)–(3.12), (3.15)–(3.18), (3.20), and (3.23) imply that (3.3) holds. Thus
Lemma 3.2 is proved.

Remark 3.3. In fact, by the density result, (3.3) is satisfied by any given ξ ∈ W1 = {ξ ∈
W1,∞(Q) | ξ(T) = 0, ξ(t)|Γ = C(t) (an arbitary function of t)} and ξ ≥ 0.

Now we state the uniqueness and comparison principle of renormalized solution to
problem (P) as follows.

Theorem 3.4. Under hypotheses (2.1) and (2.2), for i = 1, 2, let fi ∈ L2(Q), Ai ∈ L2(0, T), ui be a
renormalized solution to problem (P) for the data (fi,Ai). Then there exist K1 ∈ sign+(u1 − u2) and
K2 ∈ sign+(u1|Γ − u2|Γ) such that for a.e. 0 < τ < T ,

∫

Ω
(u1(τ) − u2(τ))

+dx ≤
∫ τ

0

∫

Ω
K1

(
f1 − f2

)
dxdt +

∫ τ

0
K2(A1 −A2)dt. (3.24)

In particular, for any given A ∈ L2(0, T) and f ∈ L2(Q), the renormalized solution u to
problem (P) is unique.
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Proof. For any given τ ∈ (0, T) and any given ε > 0 sufficiently small, let αε(s) be defined by

αε(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if 0 ≤ t ≤ τ − ε,

τ − t

ε
, if τ − ε < t < τ,

0, if T ≥ t ≥ τ.

(3.25)

Defining ξ(x, t) = αε(t), ∀(x, t) ∈ Q, it is easy to see that ξ ∈ W1 and ξ ≥ 0.
Taking ξ = αε in (3.3), we get

−
∫

Q

(αε)tsign
+
0 (u1 − u2)

∫u1

u2

h(r)drdxdt

+
∫

Q

N∑

i,j=1

sign+
0 (u1 − u2)αε

[
h′(u1)aij(x, u1)Dju1Diu1 − h′(u2)aij(x, u2)Dju2Diu2

]
dxdt

≤
∫

Q

K1
[
h(u1)f1 − h(u2)f2

]
αε(t)dxdt

+
∫T

0
K2[h(u1(t)|Γ)A1(t) − h(u2(t)|Γ)A2(t)]αε(t)dt.

(3.26)

Defining hm(r) = inf((m + 1 − |r|)+, 1) and replacing h with hm in (3.26), then letting m →
+∞, we obtain

−
∫

Q

(αε)t(u1 − u2)+dxdt ≤
∫

Q

αε(t)K1
(
f1 − f2

)
dxdt +

∫T

0
K2(A1(t) −A2(t))αε(t)dt. (3.27)

In fact, by the Lebesgue dominated convergence theorem, we have

−
∫

Q

(αε)tsign
+
0 (u1 − u2)

∫u1

u2

hm(r)drdxdt −→ −
∫

Q

(αε)t(u1 − u2)+dxdt,

∫

Q

K1
[
hm(u1)f1 − hm(u2)f2

]
αε(t)dxdt −→

∫

Q

αε(t)K1
(
f1 − f2

)
dxdt,

∫T

0
K2[hm(u1(t)|Γ)A1(t) − hm(u2(t)|Γ)A2(t)]αε(t)dt,−→

∫T

0
K2(A1(t) −A2(t))αε(t)dt.

(3.28)
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As for the second term in (3.26), we have

∫

Q

N∑

i,j=1

sign+
0 (u1 − u2)αε

[
h′
m(u1)aij(x, u1)Dju1Diu1 − h′

m(u2)aij(x, u2)Dju2Diu2
]
dxdt

=
∫

Q

N∑

i,j=1

sign+
0 (u1 − u2)αεh

′
m(u1)aij(x, u1)Dju1Diu1dxdt

−
∫

Q

N∑

i,j=1

sign+
0 (u1 − u2)αεh

′
m(u2)aij(x, u2)Dju2Diu2dxdt = J1 + J2.

(3.29)

Moreover,

|Jk| ≤
∫

{m≤|uk |≤m+1}

N∑

i,j=1

aij(x, uk)DjukDiukdxdt, k = 1, 2. (3.30)

As u1, u2 are renormalized solutions, noting (2.7), we prove

lim
m→+∞

J1 = lim
m→+∞

J2 = 0. (3.31)

By (3.29) and (3.31), the second term in (3.26) tends to zero.

Letting ε tend to zero in (3.27), (3.24) follows from (3.25) and (3.27).

4. The Relation between Weak Solutions and
Renormalized Solutions for Problem (P)

In this section, we will see that the concept of renormalized solution is an extension of the
concept of weak solution. The main result in this section is the following theorem.

Theorem 4.1. (i) Assume that u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) and aij(·, u)Dju ∈ L2(Q), i, j =
1, 2, . . .N. Then u is a weak solution to problem (P) if and only if u is a renormalized solution to
problem (P).

(ii) If u ∈ L2(0, T ;V ) ∩ L∞(Q), then u is a weak solution to problem (P) if and only if u is a
renormalized solution to problem (P).

Proof. (i) If u is a weak solution to problem (P), we have

∫T

0
〈ut, v〉V ′,V dt +

∫

Q

N∑

i,j=1

aij(x, u)DjuDivdxdt

=
∫

Q

fvdxdt +
∫T

0
A(t)v(t)|Γdt, ∀v ∈ L2(0, T ;V ),

(4.1)
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u(x, 0) = 0. (4.2)

Noting that u ∈ L2(0, T ;V ), aij(x, u)Dju ∈ L2(Q), i, j = 1, 2 . . .N, we have u ∈ L2(0, T ;V ′),
hence u ∈ C([0, T];L2(Ω)), for any given h ∈ C1

c(R) and ξ ∈ W . Taking v = ξh(u) in (4.1), we
have

∫T

0
〈ut, ξh(u)〉dt = −

∫

Q

N∑

i,j=1

aij(x, u)DjuDi(ξh(u))dxdt +
∫

Q

fξh(u)dxdt

+
∫T

0
A(t)h(u(t)|Γ)ξ(t)|Γdt.

(4.3)

By [12, Lemma 1.4], we have

∫T

0
〈ut, ξh(u)〉dt = −

∫

Q

ξt

∫u

0
h(r)drdxdt. (4.4)

Equations (4.3) and (4.4) imply that

−
∫

Q

ξt

∫u

0
h(r)dr +

∫

Q

N∑

i,j=1

aij(x, u)DjuDi(ξh(u))dxdt

=
∫

Q

fξh(u)dxdt +
∫T

0
A(t)h(u(t)|Γ)ξ(t)|Γdt. ∀ξ ∈ W, h ∈ C1

c(R).

(4.5)

For any givenm, let Sm(r) =
∫ r
0[Tm+1(s)−Tm(s)]ds, it is easy to see that 0 ≤ Sm(r) ≤ |r|. Taking

v = Tm+1(u) − Tm(u) in (4.1), we get

∫

Ω
Sm(u(x, T))dx +

∫

Q

N∑

i,j=1

aij(x, u)DjuDi[Tm+1(u) − Tm(u)]dxdt

=
∫

Q

f[Tm+1(u) − Tm(u)]dxdt +
∫T

0
A(t)[Tm+1(u(t)|Γ) − Tm(u(t)|Γ)]dt.

(4.6)

By Lebesgue’s dominated convergence theorem, we obtain the first term on the left side, and
all terms on the right side of (4.6) converge to zero as m → +∞. Then it follows from (4.6)
that

lim
m→+∞

∫

{m≤|u|≤m+1}

N∑

i,j=1

aij(x, u)DjuDiudxdt

= lim
m→+∞

∫

Q

N∑

i,j=1

aij(x, u)DjuDi[Tm+1(u) − Tm(u)]dxdt = 0.

(4.7)
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Conversely, assume that u is a renormalized solution. Applying (2.6) with h(u) =
H(n + 1 − |u|), where H ∈ C∞(R), H ′ ≥ 0, H = 0 on (−∞, 0], and H = 1 on [1,+∞), as
n → +∞, we get

−
∫

Q

ξtudxdt +
∫

Q

N∑

i,j=1

aij(x, u)DjuDiξdxdt =
∫

Q

fξdxdt +
∫T

0
A(t)ξ(t)|Γdt. (4.8)

Hence u is a weak solution to problem (P).
(ii) Due to u ∈ L∞(Q), assumption (3.1) and the definition of a renormalized solution

to problem (P), (ii) is an immediate consequence of (i).

Remark 4.2. Theorems 2.5 and 3.4 improve those results of [1, 3, 8].
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